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A Parameterized Runtime Analysis of Randomized Local
Search and Evolutionary Algorithm for Max l-Uncut∗

Extended Abstract†

ABSTRACT

In the last few years, parameterized complexity has emerged
as a new tool to analyze the running time of randomized
local search algorithm. However, such analysis are few and far
between. In this paper, we do a parameterized runtime analysis
of a randomized local search algorithm and a (1 + 1) EA for a
classical graph partitioning problem, namely,Max l-Uncut,
and its balanced counterpartMax Balanced l-Uncut.

In Max l-Uncut, given an undirected graph G = (V ,E), the
objective is to find a partition ofV (G) into l parts such that the
number of uncut edges - edges within the parts - is maximized.
In the last few years, Max l-Uncut and Max Balanced l-
Uncut are studied extensively from the approximation point
of view. In this paper, we analyze the parameterized runtime of
a randomized local search algorithm (RLS) forMax Balanced
l-Uncut where the parameter is the number of uncut edges.
RLS generates a solution of specific fitness in polynomial time
for this problem. Furthermore, we design a fixed parameter
tractable randomized local search and a (1 + 1) EA for Max
l-Uncut and prove that they perform equally well.
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1 INTRODUCTION

Bioinspired computing is a widely used method to deal with
NP-hard combinatorial optimization problems. It is always
interesting to analyze the convergence of these techniques
theoretically. In the past few years, parameterized complexity
has emerged as a successful tool to analyze the convergence
of randomized local search algorithms and evolutionary algo-
rithms. This approach has been successfully used forMinimum
Vertex Cover [7],Maximum Leaf Spanning Tree [6], Eu-
clidean Travelling Salesperson Problem [11], Makespan
Scheduling [8] andWeighted Vertex Cover Problem [9].
In this paper, we explore this technique forMax l-Uncut.

Max l-Uncut consists of partitioning of the vertex set of graph
G into l parts such that number of uncut edges is maximized.
An uncut edge is defined as an edge whose both the end points
lie within the same part. It is definedmathematically as follows.
Let P = {A1, · · · ,Al } be a partition of V (G). We define the
weight of an edge e ∈ E(G) corresponding to a partition P as
follows.

we (P) =

{
1 if e is an uncut edge in P

0 otherwise

Then the number of uncut edges for a partition P of V (G) is

funcut(P) =
∑

e ∈E(G)

we (P)

Let P be the set of all partitions of V (G) into l-parts. The
objective ofMax l-Uncut is to find a partition P⋆ ∈ P such
that funcut(P⋆) ≥ funcut(P), for all P ∈ P. InMax Balanced
l-Uncut, the vertex set of graph G must be partitioned into
l almost equal parts, i.e., for a partition P = {A1, · · · ,Al } of
V (G), | |Ai | − |Aj | | ≤ 1, for all i, j ∈ [l]. This problem was
motivated from the study of the homophily law of large scale
networks [15]. The Max l-Uncut problem is the complement
of well studied Min l-Cut problem. It is well known that Min
l-Cut is polynomial time solvable when l is fixed [4] and NP-
complete when l is given as input [3], though the balanced
version of the problem is known to be NP-complete even for
fixed l , where l ≥ 2 . Since the problems Min l-Cut and Max
l-Uncut (Balanced Min l-Cut andMax Balanced l-Uncut)
are complements of each other, the above results hold forMax
l-Uncut as well.

In the last few years, Max l-Uncut and Max Balanced l-
Uncut have been studied extensively from the point of view
of approximation algorithms. Ye and Zhang [14] developed a
0.602-approximation algorithm for Max Balanced 2-Uncut.
Wu et al. [13] designed a 0.3456-approximation algorithm for
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Max Balanced 3-Uncut problem. Zhang et al. [15] proposed
approximation algorithms forMax l-Uncutwhen l is given as
input. They developed a randomized

(
1 − l

n

)2
-approximation

algorithm and a greedy
(
1 − 2(l−1)

n

)
-approximation algorithm.

In this paper, we study Max Balanced l-Uncut where l is
fixed and alsoMax MultiPartite Uncut which deals with
finding a partition of V (G) into l parts where l is given as
part of input such that number of uncut edges is maximized.
ForMax Balanced l-Uncut, we analyze the parameterized
running time of a randomized local search algorithm (RLS),
where the parameter is the number of uncut edges. We also
study the fitness landscape forMax Balanced 2-Uncut. This
problem satisfies Grover’s wave equation [5] under the neigh-
borhood operator defined by our RLS strategy which gives
that Max Balanced 2-Uncut has elementary landscape. We
also prove that RLS generates a solution of specific fitness in
polynomial time for this problem, which is also an optimal
solution for star graphs. Futhermore, we design a fixed param-
eter tractable randomized local search and a (1 + 1) EA for
Max MultiPartite Uncut. These algorithms also obtain a
solution of specific fitness in polynomial time.

2 PRELIMINARIES

In parameterized complexity, each problem instance is associ-
ated with a parameter k . Formally, a parameterized problem is
a language L ⊆ Σ×N, where Σ is fixed finite set of alphabet and
N is a set of natural numbers. For an instance (x ,k) ∈ Σ × N,
k is called the parameter. A parameterized problem is called
fixed-parameter tractable (FPT) if there exists an algorithm
which decides whether (x ,k) ∈ L in time bounded by д(k)|x |c .
An evolutionary or a randomized local search algorithm is
a FPT algorithm for a parameterized problem if its expected
optimiztion time, E(T ), is upper bounded by д(k)|x |c . For a de-
tailed study of parameterized complexity, we refer the reader
to [2].

Throughout the paper, we use following notations. For an
undirected graph G, the vertex set of G is denoted by V (G),
and the edge set of G by E(G). The number of vertices and
edges in the graph G are denoted by n andm respectively.

We define hamming distance between two partitions P and P ′
of V (G) as the minimum number of moves required to change
one partition to the other. If a vertex is moved from one set
to other then it is considered as one move. Let P = {A =
{1, 2, 3},B = {4, 5, 6}} and P ′ = {A = {1, 2},B = {3, 4, 5, 6}},
then P ′ can be generated from P by moving a vertex 3 from A
to B. Hence, the hamming distance between P and P ′ is one.
Suppose P ′ = {A = {1, 2, 4},B = {3, 5, 6}}. Here, we move
two vertices, 3 is moved from A to B and 4 is moved from B
to A. Therefore, the hamming distance between P and P ′ is
two. The partition P ′ is a hamming neighbor (or 2-hamming
neighbor) of P if the hamming distance between them is 1 (or
2).

Let A and B be two sets. A \ B is set of elements of A which
are not in B. For a set A, |A| denotes the number of elements

in the set A. The set {1, 2, · · · , l} is denoted by [l]. For a real
number x ∈ R, |x | denotes the absolute value of x . Let n, l ∈ R.
x = n mod l denotes the remainder when n is divided by l .

A landscape is a triple (X ,N ,ϕ), where X is called the solution
space, N : X → 2X is called the neighborhood operator and
ϕ : X → R is called the objective function. The pair (X ,N)
defines the configuration space which can be represented in
the form of a directed graph ζ , where the vertex set of ζ is
defined as V (ζ ) = X and the arc set E(ζ ) consists of an arc
(x ,y) if y ∈ N(x). Let A denote the adjacency matrix of the
graph ζ . The degree matrix corresponding to the neighborhood
operator N : X → 2X is defined as follows. The rows and
columns are indexed by vertices in X and

Dx,y =

{
|N(x)| if x = y
0 otherwise

The Laplacian matrix, ∆, associated with the neighborhood
is defined as A − D. The landscape is said to be elementary if
there exists a constant b and an eigenvalue λ of −∆ such that
−∆(ϕ − b) = λ(ϕ − b), i.e., ϕ is an eigenvector of the Laplacian
matrix upto an additive constant. The objective function f is
said to be elementarywhen the neighborhood is clear from the
context [12]. For the details of the theory of fitness landscape
we refer the reader to the survey by Reidy and Stadler [10].

3 RANDOMIZED LOCAL SEARCH FOR
MAX BALANCED 2-UNCUT

In this section, we present a randomized local search algorithm,
RLS1, for Max Balanced 2-Uncut and analyse its parame-
terized running time. We also show that RLS1 has elementary
landscape forMax Balanced 2-Uncut. As a result it is able
to obtain a solution of specific fitness in polynomial time. In
RLS1, given an undirected graph G, we start with a uniform
random partition of vertex setV (G) into two setsA and B such
that | |A| − |B | | ≤ 1. Now, given a partition (A,B) of vertex set
V (G), we select two vertices, one each fromA and B, uniformly
at random and swap them. Algorithm 1 outlines RLS1.

Algorithm 1: Randomized Local Search for Max Bal-
anced 2-Uncut (RLS1)

Input: An undirected graph G
1: choose a random partition P = {A,B} of V (G) such that
| |A| − |B | | ≤ 1

2: choose u ∈ A and v ∈ B uniformly at random.
3: generate a new partition P ′ = {A′,B′}, where

A′ = {A \ {u}} ∪ {v} and B′ = {B \ {v}} ∪ {u}
4: if funcut(P) < funcut(P

′) then
P ← P ′

end
5: Repeat Step 2 to 4

Given a partition P = {A,B} of V (G), let N (P) denotes the
set of all 2-hamming neighbors of P such that for all P ′ =
(A′,B′) ∈ N (P), |A′ \ A| = 1 and |B′ \ B | = 1. We will first
show that the landscape induced by neighborhood defined
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by RLS1 and fitness function of Max Balanced 2-Uncut is
elementary. Towards this, we first prove the following result.

Lemma 3.1. For any partition P of vertex set of an undirected
graph G, if n is even∑

P ′∈N (P )

funcut(P
′) = (n − 2)m +

(n2

4 − 2n + 2
)
funcut(P)

otherwise,∑
P ′∈N (P )

funcut(P
′) ≥ (n − 2)m +

(n2

4 − 2n + 3
4

)
funcut(P)

Proof. Let P = {A,B} be a partition of V (G) such that |A| =⌊ n
2
⌋
and |B | =

⌈n
2
⌉
. Suppose that there exists an edge e = uv

such that u ∈ A and v ∈ B. Now, e will contribute to the set
of uncut edges only if either u is moved to B or v is moved
to A. Suppose in RLS1, u is moved to B, then we have

⌈n
2
⌉
− 1

choices to select a vertex from B uniformly at random to move
in A. Similarly, we can move v from B to A. In this manner,
there are exactly (n − 2) 2-hamming neighbors P ′ ∈ N (P)
corresponding to which e is an uncut edge.

Now, suppose that e = uv is an uncut edge corresponding to
partition P . Since both the end points of edge belong to the
same set, any of these vertices cannot be selected to move to
the other set. Now we have two possibilities, either u,v ∈ A
or u,v ∈ B.

(1) Suppose both the end points u and v of edge e belong
to the set A. Then, we have

⌊ n
2
⌋
− 2 choices to select a

vertex from set A and
⌈n

2
⌉
choices to select vertex from

B. Hence,∑
P ′∈N (P )

we (P
′) = (n − 2)(1 −we (P)) +

(( ⌊n
2

⌋
− 2

)⌈n
2

⌉)
we (P)

If n is even, we get∑
P ′∈N (P )

we (P
′) =

(n2

4 − 2n + 2
)
we (P) + n − 2

otherwise,∑
P ′∈N (P )

we (P
′) =

(n2

4 − 2n + 3
4

)
we (P) + n − 2

(2) If u,v ∈ B, then we have
⌈n

2
⌉
− 2 choices to select a

vertex from set B and
⌊ n

2
⌋
choices to select vertex from

A. Hence,∑
P ′∈N (P )

we (P
′) = (n − 2)(1 −we (P)) +

((⌈n
2

⌉
− 2

) ⌊n
2

⌋ )
we (P)

If n is even, we get∑
P ′∈N (P )

we (P
′) =

(n2

4 − 2n + 2
)
we (P) + n − 2

otherwise,∑
P ′∈N (P )

we (P
′) =

(n2

4 − 2n + 11
4

)
we (P) + n − 2

≥

(n2

4 − 2n + 3
4

)
we (P) + n − 2

Since, funcut(P) =
∑
e ∈E(G)we (P),∑

P ′∈N (P )

funcut(P
′) =

∑
P ′∈N (P )

∑
e ∈E(G)

we (P
′)

If n is even,∑
P ′∈N (P )

funcut(P
′) =

∑
e ∈E(G)

(n2

4 − 2n + 2
)
we (P) + n − 2

=
(n2

4 − 2n + 2
)
funcut(P) + (n − 2)m

and if n is odd∑
P ′∈N (P )

funcut(P
′) ≥

(n2

4 − 2n + 3
4

)
funcut(P) + (n − 2)m

This completes the proof. □

Now, we show that Max Balanced 2-Uncut has elementary
landscape with respect to RLS1 when the number of vertices
in the graph is even. Towards this, we show that it satisfies
following linear difference equation which is also known as
Grover’s difference equation with respect to neighborhood
defined by RLS1.

∇2ϕ +
K

n
ϕ = 0 (1)

where ϕ is the cost function, K > 0, n is the problem size
and ∇2 is the average difference operator over a specified
neighborhood. We define normalized cost ofMax Balanced
2-Uncut as f̄uncut = funcut − funcutAV , where funcutAV is the
average cost of all possible partitions. Here, the cost is referred
as value of uncut.

Lemma 3.2. Max Balanced 2-Uncut with the normalized
cost f̄ uncut and the neighborhood defined by RLS1 satisfy the
following difference equation for graph G with even number of
vertices.

∇2 f̄uncut = −
8(n − 1)

n2 f̄uncut

Proof. The proof follows from Lemma 3.1 and the definition
of average difference operator. Using Lemma 3.1, we have∑
P ′∈N (P )

(funcut(P
′) − funcut(P)) =m(n − 2) − 2(n − 1)funcut(P)

By the definition of average difference operator, we have

∇2 funcut =
1

|N (P)|

∑
P ′∈N (P )

(funcut(P
′) − funcut(P))

Since |N (P)| = n2
4 when n is even,

∇2 funcut =
4
n2

(
m(n − 2) − 2(n − 1)funcut(P)

)
2018-02-07 15:39 page 3 (pp. 1-8) Submission ID: 123-A12-B3
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Observe that the fraction of the all partitions in which an edge
uv ∈ E(G) contributes to the cost is n−2

2(n−1) . This gives that the

average cost, funcutAV , over all partitions is
m(n−2)
2(n−1) . Defining

the normalized cost f̄uncut = funcut − funcutAV , we get

∇2 f̄uncut = −
8(n − 1)

n2 f̄uncut

This completes the proof. □

Grover [5] presented following result towards the significance
of difference equation for local optima.

Theorem 3.3. (Theorem 6 [5]) Let φ be the normalized cost. If
φ satisfies equation 1, then all local optima have a cost better
than or equal to the average cost of all configurations.

Lemma 3.2 and Theorem 3.3 gives that the cost of the solution
obtained by RLS1 for Max Balanced 2-Uncut is not arbi-
trarily poor. Equivalently, the landscape of Max Balanced
2-Uncut is elementary under RLS1 [1]. Now we prove that
RLS1 obtains solution of certain quality in O(mn2) time.

Lemma 3.4. RLS1 finds a solution P ′ after an expected O(mn2)
iterations such that

funcut(P
′) ≥

{m(n−2)
2(n−1) if n is even
m(n−2)

2n−1 if n is odd

Proof. We first prove that after polynomial number of steps,
RLS1 reaches to a state of local optima. Formally, RLS1 obtains
a solution P ′ such that for all partitionsZ ∈ N (P ′), funcut(Z ) ≤
funcut(P

′). Let P be the current solution generated by RLS1. If
there is no partitionZ in N (P) such that funcut(Z ) > funcut(P),
then P ′ = P . Otherwise, suppose that there exists at least
one partition Z ∈ N (P) such that funcut(Z ) > funcut(P). The
probability of generating a specific hamming neighbor in N (P)
is at least 4

n2 . Hence, the expected waiting time to make an
improvement from such a solution is at most O(n2). Since
there arem number of edges, RLS1 can obtain a solution P ′

such that there is no improving solution in N (P ′) in expected
time bounded by O(mn2). Hence,

1
|N (P ′)|

∑
Z ∈N (P ′)

funcut(Z ) ≤ funcut(P
′)

Now if n is even, using Lemma 3.1 and the fact that |N (P ′)| =
n2
4 , we get

funcut(P
′) ≥

m(n − 2)
2(n − 1)

and if n is odd, |N (P ′)| = n2−1
4 which gives that

funcut(P
′) ≥

m(n − 2)
2n − 1

This completes the proof. □

We can observe that starting with any random partition, RLS1
returns optimal partition for star graph in O(mn2) time.

Now we show that RLS1 is a fixed parameter algorithm with
respect to standard parameterization of Max Balanced 2-
Uncut. The parameterized version ofMaxBalanced 2-Uncut
is defined as follows.

Max Balanced 2-Uncut
Input: An undirected graph G and a non-negative integer
k
Parameter: k
Goal: Find a partition P = {A,B} of V (G) where | |A| −
|B | | ≤ 1 such that number of uncut edges in P is at least k

Theorem 3.5. RLS1 solves a parameterized instance (G,k) of
MaxBalanced 2-Uncut inO(max(mn2,kO(k))) expected time.
Futhermore, after O(max(mn3,nkO(k ))) iterations, RLS1 solves
parameterized instance ofMax Balanced 2-Uncut with con-
stant probability.

Proof. Let T denote the random variable that corresponds to
the first time RLS1 solves the standard parameterization of
Max Balanced 2-Uncut. If k ≤ m(n−2)

2n−1 , then using Lemma
3.4, RLS1 finds a partition P of V (G) such that funcut(P) ≥
m(n−2)

2n−1 ≥ k after an expected O(mn2) steps. Hence, E(T ) =
O(mn2) ifk ≤ m(n−2)

2n−1 . Now suppose thatk > m(n−2)
2n−1 .Without

loss of generality, we can assume that the graphG is connected.
Hence,m ≥ n − 1. This implies that k > n−4

2 . Since, number
of 2-hamming neighbors is n2−1

4 when n is odd and n2
4 when

n is even, the probability that RLS1 perform an optimal swap
in each iteration is at least 4

n2 . Since in each iteration, we
move two vertices in the partitions to which they belong in
the optimal partition, these vertices will not be moved in the
further iterations to generate an optimal partition. So, we
need to perform

⌊ n
2
⌋
successful swap operations. Hence, the

probability that RLS1 transforms an arbitrary partition into

an optimal partition is at least
(

4
n2

) ⌊ n2 ⌋ . We can assume that
k ≥ 5, otherwise k ≤ 4 is a trivial case. Since, n < 2(k + 2),( 4

n2

) n−1
2
≥ (2k)−(2k+3)

Hence, E(T ) = O(kO(k )), when k > m(n−2)
2n−1 .

Now we use Markov inequality to bound the time T . Markov
inequality states that Pr (T ≥ λE(T )) ≤ λ−1, for all λ ≥ 1.
Let c ≥ 1 be an arbitrary constant. Suppose that k ≤ m(n−2)

2n−1 .
Using Markov inequality, we get

Pr (T ≥ cmn3) ≤
1
cn

and when k > m(n−2)
2n−1 ,

Pr (T ≥ cnk2k+3) ≤
1
cn

Hence, RLS1 solves standard parameterization of Max Bal-
anced 2-Uncut in O(max(mn3,nkO(k))) time almost surely.

□
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3.1 Modified FPT forMax Balanced 2-Uncut

When the number of vertices are bounded by д(k), where д(k)
is a linear function of k , then the algorithm can perform better
without the swap operator. For Max Balanced 2-Uncut, if
n ≥ 2(k + 2), RLS1 generates a solution such that funcut ≥ k
in polynomial time. When n < 2(k + 2), we can choose a
balanced partition P uniformly at random. Since, n < 2(k + 2),
total number of possible balanced partitions is

(2k+4
k+2

)
≤ 4k+2.

Therefore, the probability that P is an optimal partition is at
least 1

4k+2 . Hence, after O(4k ) trials, we choose an optimal
partition with constant probability.

4 MAX BALANCED l-UNCUT

In this section, we present a randomized local search for Max
Balanced l-Uncut when l is fixed and analyse its param-
eterized running time. Before going into the details of al-
gorithm, we prove a lower bound on the number of uncut
edges. We first define the notion of 2-hamming neighbor in
l-partition of vertices. Given a partition P = {A1, · · · ,Al }

where |Ai | =
⌊ n
l
⌋ (

or
⌈n
l
⌉)
, for all i ∈ [l], P ′ = {A′1, · · · ,A

′
l }

is a 2-hamming neighbor of P if there exists i, j ∈ [l] such
that |A′i \ Ai | = 1, |A′j \ Aj | = 1 and A′q = Aq , for all
q ∈ [l] \ {i, j}. Let N (P) denote the set of all 2-hamming
neighbors of P . Let S1 =

{
Ai : |Ai | =

⌊ n
l
⌋
, i ∈ [l]

}
and

S2 =
{
Ai : |Ai | =

⌈n
l
⌉
, i ∈ [l]

}
. Let x = n mod l . Clearly,

|S2 | = x . Suppose that P ′ = {A′1, · · · ,A
′
l } ∈ N (P), where

|A′i \ Ai | = 1, |A′j \ Aj | = 1, then either Ai ,Aj ∈ S1 or
Ai ,Aj ∈ S2 or Ai ∈ S1 and Aj ∈ S2. It can be observed that

|N (P)| =

(
x

2

) (⌈n
l

⌉)2
+

(
l − x

2

) (⌊n
l

⌋ )2
+ x(l − x)

⌈n
l

⌉⌊n
l

⌋
=

n2(l − 1) − x(l − x)
2l

Now, we prove the following lower bound forMax Balanced
l-Uncut.

Lemma 4.1. Let P be a partition of V (G) into l parts, where l is
fixed. If there does not exist a 2-hamming neighbor P ′ of P such
that funcut(P ′) > funcut(P), then funcut(P) ≥

m(n−x−l )
(n−1)l .

Proof. Let P = {A1, · · · ,Al } be a partition of V (G). We first
compute the number of 2-hamming neighbors of P in whichuv
is an uncut edge. Let N (P) denote the set of these neighbors.

(1) Suppose uv is an uncut edge in P . Let u,v ∈ Ai , for
some i ∈ [l]. It is clear that we cannot move u orv from
Ai to some other set.

(a) If Ai ∈ S1, then

|N (P)| =
n2(l − 1) − x(l − x)

2l − 2
(
n −

⌊n
l

⌋ )

(b) If Ai ∈ S2, then

|N (P)| =
n2(l − 1) − x(l − x)

2l − 2
(
n −

⌈n
l

⌉)
≥

n2(l − 1) − x(l − x)
2l − 2

(
n −

⌊n
l

⌋ )
(2) Suppose uv is not an uncut edge in P . Let u ∈ Ai and

v ∈ Aj .

(a) If Ai ,Aj ∈ S1, then

|N (P)| = 2
( ⌊n

l

⌋
− 1

)
= 2

(n − x
l
− 1

)
(b) If Ai ,Aj ∈ S2, then

|N (P)| = 2
(⌈n
l

⌉
− 1

)
≥ 2

( ⌊n
l

⌋
− 1

)
(c) Ai ∈ S1 and Aj ∈ S2

|N (P)| =
⌈n
l

⌉
+
⌊n
l

⌋
− 2 ≥ 2

( ⌊n
l

⌋
− 1

)
Now, the number of partitions inN (P) corresponding to which
uv is an uncut edge is∑
P ′∈N (P )

we (P) ≥
(n2(l − 1) − x(l − x)

2l − 2
(
n −

⌊n
l

⌋ ))
we (P)

+
(
2
( ⌊n

l

⌋
− 1

))
(1 −we (P))

≥ 2
(n − x

l
− 1

)
+
(n2(l − 1) − x(l − x)

2l − 2n + 2
)
we (P)

Since, funcut(P) =
∑
e ∈E(G)we (P)∑

P ′∈N (P )

funcut(P
′) =

∑
P ′∈N (P )

∑
e ∈E(G)

we (P)

≥ 2
(n − x

l
− 1

)
m

+
(n2(l − 1) − x(l − x)

2l − 2n + 2
)
funcut(P)

Let P be a partition such that there is no 2-hamming neighbor
P ′ of P for which funcut(P

′) > funcut(P). Hence,
1

|N (P)|

∑
P ′∈N (P )

funcut(P
′) ≤ funcut(P)

Since, |N (P)| = n2(l−1)−x (l−x )
2l , we get

funcut(P) ≥
m(n − x − l)

(n − 1)l
□

Now we give a randomized local search algorithm, RLS2, for
Max Balanced l-Uncut. Algorithm 2 outlines this algorithm.
Now, we prove that Algorithm 2 generates a neighbor of spe-
cific fitness in polynomial time.

Lemma 4.2. Given any random partition of vertices of G into
l parts where l is fixed, RLS2 generates a solution P ′ such that
there is no neighborZ ∈ N (P ′) such that funcut(P ′) < funcut(Z )
in O(mn2) time.
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Algorithm 2: Randomized Local Search for Max Bal-
anced l-Uncut (RLS2)

Input: An undirected graph G
1: choose a random partition P = (A1, · · · ,Al ) of V (G) such

that | |Ai | − |Aj | | ≤ 1 for any i, j ∈ [l]
2: choose i, j ∈ [l] randomly
3: choose u ∈ Ai and v ∈ Aj uniformly at random.
4: generate a new partition P ′ = (A′1, · · · ,A

′
l ), where

A′i = Ai \ {u} ∪ {v} and A′j = Aj \ {v} ∪ {u}

5: if funcut(P) < funcut(P
′) then

P ← P ′

end
6: Repeat Step 3 to 5

Proof. Let P = (A1, · · · ,Al ) be a partition ofV (G) into l parts.
Clearly, neighbor of P generated by RLS2 is a 2-hamming
neighbor of P . If there is no neighbor Z ∈ N (P) such that
funcut(Z ) > funcut(P), then P ′ = P , otherwise let Z be a parti-
tion in N (P) such that funcut(Z ) > funcut(P). The probability
of generating this particular neighbor is 2l

n2(l−1)−x (l−x ) ≥
2
n2 .

Hence, the expected waiting time to generate such a neighbor
is O(n2). Since, there arem number of edges, the waiting time
to generate P ′ is O(mn2). □

Now, we analyse the parameterized running time of RLS2 for
Max Balanced l-Uncut. We define the parameterized version
ofMax Balanced l-Uncut as follows.

Max Balanced l-Uncut
Input: An undirected graph G and a non-negative integer
k
Parameter: k
Goal: Find a partition P = {A1, · · · ,Al } of V (G), where
| |Ai | − |Aj | | ≤ 1 for all i, j ∈ [l] such that number of uncut
edges in P is at least k

Theorem 4.3. RLS2 solves a parameterized instance (G,k) of
Max Balanced l-Uncut inO(max(mn2,kO(k ))) expected time.
Futhermore, after O(max(mn3,nkO(k))) iterations, RLS2 solves
parameterized instance ofMax Balanced l-Uncut with con-
stant probability.

Proof. Let T be a random variable which denotes the first
time RLS2 solves the parameterized instance of Max Bal-
anced l-Uncut. If k ≤ m(n−x−l )

(n−1)l , then using Lemma 4.1 and
4.2, RLS2 solves the instance (G,k) ofMax Balanced l-Uncut
inO(mn2) expected time. Suppose thatk > m(n−x−l )

(n−1)l .Without
loss of generality, we can assume that the graph is connected.
Hence,m ≥ n − 1. This gives, n < l(k + 2). Since, number of
2-hamming neighbors of a partition P is n2(l−1)−x (l−x )

2l , the
probability of performing an optimal swap in each iteration
is at least 2l

n2(l−1)−x (l−x ) . Since in each iteration, two vertices
are moved in the partitions to which they belong in the opti-
mal partition, these vertices will not be moved in the further
iterations to generate an optimal partition. So, we need to

perform n
2 successful swap operations. Hence, the probability

that RLS2 transforms an arbitrary assignment into an opti-

mal assignment is at least
(

2l
n2(l−1)−x (l−x )

) n
2
≥

(
2
n2

) n
2 . Since,

n < l(k + 2), the waiting expected time to generate an optimal
assignment is O(kO(k )).

Let c ≥ 1 be an arbitrary constant. Using Markov inequality,
if k ≤ m(n−x−l )

(n−1)l ,

Pr (T ≥ cmn3) ≤
1
cn

and when k > m(n−x−l )
(n−1)l ,

Pr (T ≥ cnk2l (k+2)) ≤
1
cn

Hence, RLS2 solves standard parameterization of Max Bal-
anced l-Uncut in O(max(mn3,nkO(k ))) expected time almost
surely. □

Theorem 4.4. There exists a randomized FPT algorithm for
Max Balanced l-Uncut with running time O(l lk ) when the
number of vertices in the graph G is less than l(k + 2).

Proof. The algorithm and running time analysis is similar to
the one presented in section 3.1. □

5 MAX MULTIPARTITE UNCUT

Max MultiPartite Uncut deals with partitioning the vertex
set of graph G into l parts where l is given as input. In this
section, we present a randomized local search and a simple
evolutionary algorithm for Max MultiPartite Uncut and
analyse their parameterized running time. We first prove the
following lower bound forMax MultiPartite Uncut. Fur-
ther, we prove that such a lower bound can be obtained in
polynomial time.

Lemma 5.1. Let P be a partition ofV (G) into l parts. If there does
not exist a hamming neighbor P ′ of P such that funcut(P ′) >
funcut(P), then funcut(P) ≥

m
l , wherem is the number of edges

in the graph G.

Proof. Suppose that P = (A1, · · · ,Al ) be a partition of
V (G). Let H be the set of hamming neighbors of P , i.e.,
P ′ = {A′1, · · · ,A

′
l } ∈ H if |A′i \ Ai | = 1 for some i ∈ [l]

and A′j = Aj for all j ∈ [l] \ {i}. If an edge uv ∈ E(G) is an
uncut edge, then there are (n − 2)(l − 1) partitions inH cor-
responding to which uv is an uncut edge because we cannot
move u or v to any other partition. Now, suppose that uv is
not an uncut edge. Let u ∈ Ai and v ∈ Aj for some i, j ∈ [l],
i , j . Now uv is an uncut edge only if either u is moved to Aj
or v is moved to Ai . Hence, there are only two partitions in
H corresponding to which uv is an uncut edge. Therefore,

∑
P ′∈P

we (P
′) =(n − 2)(l − 1)we (P) + 2(1 −we (P))

= 2 + (nl − n − 2l)we (P)
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Since,
funcut(P) =

∑
e ∈E(G)

we (P)

we have ∑
P ′∈N (P )

funcut(P) = 2m + (nl − n − 2l)funcut(P)

Let P be a partition such that there is no hamming neighbor
P ′ of P for which funcut(P

′) > funcut(P). Hence,
1

|N (P)|

∑
P ′∈N (P )

funcut(P
′) ≤ funcut(P)

Since, |N (P)| = n(l − 1),
1

n(l − 1) (2m + (nl − n − 2l)funcut(P)) ≤ funcut(P)

Hence, we get following bound on funcut(P)

funcut(P) ≥
m

l
□

5.1 Randomized Local Search for Max
MultiPartite Uncut

In this section, we present a randomized local search algo-
rithm, RLS3, forMax MultiPartite Uncut and analyse its
parameterized running time. Towards this, we first select a
vertex v uniformly at random and then choose a partition Ai
to movev . Algorithm 3 outlines this algorithm. Now, we prove

Algorithm 3: Randomized Local Search for Max Multi-
Partite Uncut (RLS3)

Input: An undirected graph G and number of partitions l
1: choose a random partition P = (A1, · · · ,Al ) of V (G).
2: choose a vertex v uniformly at random from V(G)
3: Let v ∈ Aj . choose a partition Ai ∈ P randomly, where

i ∈ [l] and i , j
4: generate a new partition P ′ = (A′1, · · · ,A

′
l ) such that

A′j = Aj \ {v}, A′i = Ai ∪ {v} and A′k = Ak ,
∀k ∈ [l] \ {i, j}

5: if funcut(P) < funcut(P
′) then

P ← P ′

end
6: Repeat Step 2 to 5

that RLS3 reaches to a solution of certain quality in polynomial
time.

Lemma 5.2. Given any random partition P , RLS3 generates a
partition P ′ for which there is no partition Z ∈ N (P ′) such that
funcut(Z ) > funcut(P

′) in O(nml) time.

Proof. Let P be a current partition. Clearly, RLS3 gener-
ates a hamming neighbor of a partiotion in each iteration.
If there does not exist any hamming neighbor Z of P such
that funcut(Z ) > funcut(P), then P ′ = P . Suppose that there
exists a partition Z ∈ N (P) such that funcut(Z ) > funcut(P).
The probability of generating this particular neighbor is 1

n(l−1) .

Hence, the expected waiting time to generate this partition
that improvs the solution is O(nl). Since, there arem edges
in the graph G, the waiting time to generate a partition P ′ is
O(nml). This completes the proof.

□

Theorem 5.3. RLS3 generates a partition P in O(nml) time such
that funcut(P) ≥ m

l .

Proof. The proof follows from Lemma 5.1 and 5.2. □

Now, we analyse the parameterized running time of RLS3
for Max MultiPartite Uncut. We define the parameterized
version ofMax MultiPartite Uncut as follows.

Max MultiPartite Uncut
Input: An undirected graph G = (V ,E), number of parti-
tions l and a non-negative integer k
Parameter: l ,k
Goal: Find a partition P ofV (G) into l parts such that num-
ber of uncut edges in P is at least k

Theorem 5.4. RLS3 is an FPT algorithm which solves
an instance (G, l ,k) of Max MultiPartite Uncut in
O(max(mnl , (kl2)O(kl ))) expected time. Futhermore, RLS3
solves parameterized instance of Max MultiPartite Uncut
with constant probability after O(max(mn2l ,n(kl2)O(kl ))) iter-
ations.

Proof. Let T be a random variable which denotes the first
time when RLS3 solves the instance (G, l ,k) of Max Multi-
Partite Uncut. If k ≤ m

l , then using Lemma 5.1 and 5.2,
parameterized instance of Max MultiPartite Uncut can be
solved in O(nml) expected stime. Now, suppose that k > m

l .
Since, number of vertices in any graph G is at most 2m, we
have n < 2kl . In each iteration of RLS3, a vertexv which needs
to move to some other partition to generate an optimal parti-
tion is selected with probability at least 1

n and the probability
that v is moved to the partition to which it belongs in the op-
timal partition is at least 1

l−1 . Hence, in each iteration a vertex
moves to its correct partition with probability at least 1

n(l−1) .
Since, at most n successful moves are required to generate
an optimal partition, the probability that RLS3 generates an
optimal assignment starting with any random assignment is
at least

(
1

n(l−1)

)n
≥ (2kl2)−2kl . Hence, E(T ) = O(kl2)O(kl ).

Now, using Markov inequalty, if k ≤ m
l then the probabil-

ity that T ≥ cn2ml is at most 1
cn and if k > m

l , Pr (T ≥
(ckl2)2kl ) ≤ 1

cn for some constant c > 1. Hence, RLS3 solves
the parameterized instance ofMax MultiPartite Uncut in
O(max(mn2l ,n(kl2)O(kl ))) time almost surely.

□
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5.2 (1 + 1) EA for Max MultiPartite Uncut

In this section, we present a (1+ 1) EA forMax MultiPartite
Uncut. In this algorithm, every vertex has equal probability
to move in some other partition. We show that performance
of RLS3 and (1+ 1) EA is same forMax MultiPartite Uncut.
Algrithm 4 outlines this procedure.

Algorithm 4: 1 + 1 EA for Max MultiPartite Uncut
Input: An undirected graph G and number of partitions l

1: choose a random partition P = (A1, · · · ,Al ) of V (G).
2: move every vertex v ∈ V (G) to some other partition with

probability 1
n to generate a new partition P ′

3: if funcut(P) < funcut(P
′) then

P ← P ′

end
4: Repeat Step 2 to 3

Now, we prove that (1 + 1) EA also generates a solution of
specific fitness in O(nml) time.

Theorem 5.5. (1 + 1) EA generates a partition P ′ of V (G) such
that funcut(P ′) ≥ m

l after an expected O(nml) iterations.

Proof. Given a partition P , (1 + 1) EA generates a specific
hamming neighbor of P with probability at least 1

n(l−1)

(
1 −

1
n

)n−1
≥ 1

en(l−1) = Ω( 1
n(l−1) ). The rest of the proof is similar

to Lemma 5.2. □

Hence, RLS3 and (1 + 1) EA both generates a partition P such
that funcut(P) ≥ m

l in O(nml) expected time. Now, we can
show that (1+1) EA is also FPT forMaxMultiPartite Uncut.

Theorem 5.6. (1+1) EA solves a parameterized instance (G, l ,k)
of Max MultiPartite Uncut in O(max(mnl , (kl2)O(kl ))) ex-
pected time. Futhermore, (1+1) EA solves parameterized instance
ofMax MultiPartite Uncut with constant probability after
O(max(mn2l ,n(kl2)O(kl ))) iterations.

Proof. The proof is similar to Theorem 5.4. □

6 CONCLUSION

In this paper, the running time analysis of randomized local
search forMax Balanced l-Uncut andMax MultiPartite
Uncut has been presented. We showed that the fitness land-
scape of Max Balanced 2-Uncut is elementary under the
neighborhood operator defined by RLS2. The lower bounds for
these problems have been proved and showed that there exists
algorithms that are able to achieve these bounds in polynomial
time. We also showed that these algorithms are fixed param-
eter tractable when parameterized by the solution size, i.e.,
the number of uncut edges. Furthermore, the parameterized
running time analysis of (1+1) EA forMaxMultiPartite Un-
cut has been carried out and obtained that the performance
of randomized local search and (1 + 1) EA is same for Max
MultiPartite Uncut.
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