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ABSTRACT
In parallel and distributed environments, generational evolutionary
algorithms often do not exploit the full potential of the computa-
tion system since they have to wait until the entire population is
evaluated before starting selection procedures. Steady-state algo-
rithms can perform fitness evaluations asynchronously, however,
if the algorithm updates its state in a complicated way – which is
common in multiobjective evolutionary algorithms – the threads
will eventually have to wait until this update finishes.

The most expensive part of the update procedure in NSGA-II is
non-dominated sorting. We turned the existing incremental non-
dominated sorting algorithm into an asynchronous one using sev-
eral concurrency techniques: a single entry-level lock, finer-grained
locks on non-domination levels, and a non-blocking approach us-
ing compare-and-set operations. Our experimental results reveal
the trade-off between the work-efficiency of the algorithm and the
achieved amount of parallelism.
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1 INTRODUCTION
Without loss of generality, we consider multiobjective minimization
problems. Due to the topic of the paper, we always treat individuals
as points in the k-dimensional objective space.

A point p is said to (strictly) dominate a point q, denoted as p ≺ q,
if in every coordinate p is not greater than q, and there exists a
coordinate where it is strictly smaller. Non-dominated sorting is a
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procedure that takes a set of points and assigns each point a rank.
The points that are not dominated by any other points get rank
0. All points that are dominated only by points of rank ≤ i get
rank i + 1. A set of points with the same rank is called a level. The
procedure was defined in [5], an Θ(n2k) algorithm for n points
was proposed in [2] along with NSGA-II. Our work is based on a
divide-and-conquer algorithm [1].

Incremental non-dominated sorting is a procedure that updates
ranks of a set of points when a new point is inserted or deleted.
There are several algorithms to perform incremental non-dominated
sorting [4, 6], of which the one from [6] currently has the best per-
formance among the ones for arbitrary dimension k . This algorithm
maintains the levels in separate lists. On insertion of a point p, first
the maximum number of level ℓ is found which contains a point
that dominates p. Then, a set of moving pointsM is formed, initially
M = {p}. An algorithm from [1] is then run on Lℓ+1 ∪ M . Since
bothM and Lℓ+1 are both non-dominating sets, and no point from
Lℓ+1 can dominate a point fromM , the rank of each point will be
either 0 or 1. The points of rank 0 form the new level Lℓ+1, rank 1
forms the newM , and then the process continues with ℓ ← ℓ + 1.
The existence of only two ranks, 0 or 1, improves the performance
of the algorithm from [1] by roughly O(logn). The fact that points
from Lℓ+1 can never dominate points fromM also saves some work.

We use locks and the compare-and-set concurrency primitive.

2 THE ALGORITHMS
In this section we describe the ways to introduce concurrency into
the incremental non-dominated sorting (INDS).

The baseline method, which we denote as Sync, is to put a
global lock on the entire state of the algorithm.

In the basic compare-and-set approach, which we denote as
CAS1, we let the threads perform level updates locally and publish
the results in the case no other thread had updated this level before.
Each level is updated atomically. As we cannot ensure anymore
that no point p ∈ Lℓ can dominate any pointm ∈ M from the set
of moving pointsM , we use the full-blown offline non-dominated
sorting to determine the new contents of Lℓ . Once the thread is
done, it performs the compare-and-set with the current state of Lℓ .
If it fails, it performs insertion again, otherwise it continues.

The time-stamping modification, which we denote as CAS2,
tries to use the benefits offered by a faster merging of levels in [6]
whenever possible.Wemaintain a global atomic integer timerwhich
is incremented at the beginning of each point insertion, and also
on creation of a new version of a level. Each level contains a time-
stamp of its last modification. Before inserting a point, we save the
timer value τ . If the setM is about to be merged with the level Lℓ ,
and the time-stampT (Lℓ) is still less than τ , then this level was not
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Figure 1: Experiments with ZDT problems. For all the problems, k = 2. For every asynchronous algorithm the columns corre-
spond to the number of threads. They are, left-to-right, 3, 6, 12, 24. Times are given in microseconds.
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Figure 2: Experiments with DTLZ1 problem with varying k .

modified by any thread, so no point p ∈ Lℓ can dominate any point
m ∈ M and the faster merge is possible.

Finally, the fine-grained lock approach, which we denote as
Lock, associates a lock with each level. When performing an update
of the level Lℓ by a set of moving pointsM , the thread acquires a
lock Kℓ associated with the updated level, so no other thread can
modify the level Lℓ . Just before the lock Kℓ is released, the thread
acquires a lock Kℓ+1 associated with the next level Lℓ+1 if the new
set of moving pointsM is not empty. This ensures that no thread
can surpass another one. This also ensures that points from Lℓ+1
cannot dominate points from the new version ofM .

3 EXPERIMENTS
We evaluated the algorithms on the well-known benchmark prob-
lems DTLZ1 [3], ZDT1–ZDT4 and ZDT6 [7]. For the ZDT problems,
we kept k = 2. For the DTLZ1 problem, k ∈ {3, 4, 6, 8, 10}.

The datasets were synthesized for each problem by creating a
random population of size 5000, running a steady-state NSGA-II for
1000 iterations and recording the points to be inserted. Each of the
algorithms was run on these datasets, and times for point insertions,
each followed by deletion of the worst point, were measured. For all
algorithms except the sequential INDS, t threads, t ∈ {3, 6, 12, 24},
were used to insert the points.

The results on the ZDT problems (Figure 1) reveal that there is no
benefit in asynchronous algorithmswhen the insertion time is small.
Thread contention in the Sync algorithm introduces slowdowns
of orders of magnitude. The algorithms based on the compare-
and-set mechanism scale rather well in these conditions, as CAS1
performs better with more threads. CAS2 is initially rather fast and
is competitive with INDS. The Lock algorithm degrades with more
threads, but it is better than Sync and can be on par with INDS.

With more than two dimensions, the cost of a single insertion
increases (Figure 2). In these settings, the performance of Sync, is

still much worse compared to INDS, but not to the scale observed on
the ZDT problems. The performance of CAS1 becomes much worse
even compared to Sync. We explain this by increased complexity
of non-dominated sorting, the results of which are often wasted
due to compare-and-sets. CAS2 is relatively efficient, however, still
worse than INDS. The biggest surprise is the Lock algorithm, which
demonstrates roughly the same performance as in two dimensions
and thus overcomes INDS in the performance. A possible expla-
nation for such a good behavior of Lock can be that, after a short
initial phase, the threads follow each other in a fixed order.

This research was supported by the Russian Scientific Founda-
tion, agreement No. 17-71-20178. The full text is available at arXiv1.
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