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ABSTRACT
The road to a better design of multi- and many-objective evolution-
ary algorithms requires a deeper understanding of their behavior.
A step on this road has recently been taken with the proposal
of compartmental models to study population dynamics. In this
work, we push this step further by introducing a new set of fea-
tures that we link with algorithm performance. By tracking the
number of newly discovered Pareto Optimal (PO) solutions, the
previously-found PO solutions and the remaining non-PO solu-
tions, we can track the algorithm progression. By relating these
features with a performance measure, such as the hypervolume, we
can analyze their relevance for algorithm comparison. This study
considers out-of-the-box implementations of recognized multi- and
many-objective optimizers belonging to popular classes such as
conventional Pareto dominance, extensions of dominance, indicator,
and decomposition based approaches. In order to generate training
data for the compartmental models, we consider multiple instances
of MNK-landscapes with different numbers of objectives.
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1 INTRODUCTION
In this work we focus on a modeling tool that tracks the popula-
tional dynamics of MOEAs proposed in [4]. We use a three compart-
ments configuration, with features related to performance taken
from the generational search assessment indices in [1, 3]. Our aim
is to introduce a new set of features that can be link to algorithm
performance, so that we can make an estimate of how well it will
perform by running the model instead of the full algorithm. We
track the relationship between newly discovered Pareto Optimal
(PO) solutions, PO solutions that have been seen before, and the
remaining non-PO solutions, including currently non-dominated
ones, per generation. Themodel usage is exemplified using represen-
tative optimizers with different approaches on problem instances
generated using enumerable MNK-landscapes.

2 METHODOLOGY
2.1 Compartmental Model
The model splits the population into three non-overlapping groups,
or compartments. At each generation t , xt , yt and zt represent the
proportion of the population that belongs to each compartment,
which at all times fulfills 1 = xt + yt + zt . Representing the model
in a time discrete manner would give the following equation:




xt+1 = (1 − (α + β ))xt + ᾱyt + β̄zt

yt+1 = αxt + (1 − (ᾱ + γ ))yt + γ̄zt

zt+1 = βxt + γyt + (1 − (β̄ + γ̄ ))zt

1 = xt + yt + zt

(1)

where α and β are coefficients that represent the loss in xt which
becomes a gain for yt and zt , respectively. ᾱ and γ represent the
loss in yt which becomes a gain for xt and zt , respectively. Finally,
β̄ and γ̄ represent the loss in zt .

2.2 Model Fitting
We define the problem of finding a good set of parameters that
gives an optimal fit between the model estimate X̄ and the real
data X as an optimization problem, where we minimize the mean
square errormse = 1

n
∑n
i=1 (X̄ −X )2 between these values. To do so,

we use the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES), a single-objective numerical optimizer, and set the mse
between X̄ and X as the function to be minimized.
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Table 1: Algorithm comparison by Acc. PO Solutions (model
feature) and Hypervolume (performance metric)

Algorithm Found PO Predicted PO HV RankPO RankHV
NSGA-II 148.033 142.500 0.375640 3 3
AϵSϵH 148.667 150.651 0.375904 1 1
IBEAHV 136.567 134.788 0.375140 4 4
MOEA/D 144.667 145.473 0.375757 2 2
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Figure 1:Model estimation vs
real PO Accumulated data.
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Figure 2: Accumulated joint
non-dominated sets HV.

2.3 Algorithms and Test Problem
The test problems used are MNK-landscapes [2], a multi-objective
problem generator, where the parameter K controls the ruggedness
of the landscape, M is the number of objectives, and N the number
of variables. In this study, we randomly generate instances with
K = 1 bit, N = 20 bits and M = 3, 4, 5, 6 objectives.

Models are created over data collected from five different rep-
resentative multi- and many-objective optimization algorithms,
Non-dominated Sorting Genetic Algorithm-II (NSGA-II), Adaptive
ϵ-Sampling ϵ-Hood (AϵSϵH), Indicator Based EA (IBEA) with the
ϵ-indicator and hypervolume (HV) indicator, and MOEA based on
Decomposition (MOEA/D).

Each algorithm was run 30 times setting the number of gener-
ations to 100. The number of solutions belonging to each tracked
feature were collected, including during the initial population. For
each number of objectives, we also consider various population
sizes between 50 and 5600. We build a model, per configuration, for
each algorithm.

3 FEATURES VS PERFORMANCE METRICS
Once the fitting process is done (omitted here due space restrictions),
the obtained parameters in conjunction with the model can be
employed in order to have an overall idea of algorithm performance.
While this can be done in a sense by using only the Accumulated
PO solutions as a performance measure, for which an example
of the prediction made by our model is seen in Figure 1, we also
relate it to the hypervolume, a commonly-used performance metric
that gives the multi-dimensional area of the objective space that
is dominated by a non-dominated set and enclosed by a reference
point set to all zeros. To do so, we first compute the accumulated
set of non-dominated solutions found until each generation, for
each given run, followed by the computation of the hypervolume
for each of these sets. The results for the 3-objective and population
200 case are reported in Figure 2.

Comparing Figures 1 and 2, we can see that the trend and growth
rate in both seems similar for each algorithm. From generation 1
to 30, we see an exponential growth and then a slowdown from
this point on of the hypervolume-value and the number of true PO
solutions found. Although we cannot directly say how much the
value of the hypervolume will go up with each newly-found PO
solution, since this model only focuses on their numbers, we still
can grasp the link between these two measures, that seem to scale
together at least for some generations.

We also calculate the correlation between the hypervolume-
values for each configuration and the number of PO solutions found
until a given generation using Spearman’s correlation coefficient.
For the example shown, the coefficients are 0.897, 0.786, 0.844,
0.795 with p < 2.2 × 10−16 for NSGA-II, AϵSϵH, IBEAHV and
MOEA/D, respectively, which supports our initial assumptions.
These results illustrates the usefulness of our model to estimate
the accumulated number of PO solutions in order to have an idea
of the overall hypervolume convergence profile, and whether it
will keep improving or will start to slow down. Table 1 shows the
ranking of the algorithms according to the predicted Accumulated
PO solutions and the hypervolume. Here is represented only one
case of 13 configurations (population size, number of objectives).
For seven out 13 cases the rank coincides, while in other four cases
there is a partial coincidence.

From the results, althoughwe cannot strongly affirm that the Acc.
PO feature has the same weight as a comparison done with the HV
values, the partial orderings given by this feature still prove useful,
because it can provide us a good idea of the algorithm performance
before actually running it.

4 CONCLUSION
In this work, we extended the model proposed in [4] by considering
another set of features and by successfully relating them with al-
gorithm performance. The proposed model divides the population
into newly-discovered Pareto optimal solutions, Pareto optimal dis-
covered at previous generation, and non-Pareto optimal solutions.
Since it tracks absolutely new solutions, the model is aware of the
accumulated Pareto optimal solutions at each generation, which
can be used as a progress indicator. By relating our features with
algorithm performance, we were able to show a high correlation
between the predicted accumulated number of Pareto optimal so-
lutions and the hypervolume of the joint set of non-dominated
solutions identified at each given generation.
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