
The influence of fitness caching on modern evolutionary
methods and fair computation load measurement

Michal W. Przewozniczek
Department of Computational Intelligence

Wroclaw University of Science and Technology
Wroclaw, Poland

michal.przewozniczek@pwr.edu.pl

Marcin M. Komarnicki
Department of Computational Intelligence

Wroclaw University of Science and Technology
Wroclaw, Poland

marcin.komarnicki@pwr.edu.pl

ABSTRACT
Any evolutionary method may store the �tness values for the geno-
types it has already rated. Any time the �tness is to be computed,
the check may be made if the �tness for the same genotype was
not computed earlier. If so, then instead of re-evaluating the same
genotype, the stored value from the repository may be returned.
Such technique will be denoted as �tness caching. It is easy to im-
plement in any evolutionary method, and it minimizes the number
of �tness function evaluations (FFE), which is desirable. Despite its
simplicity �tness caching may signi�cantly a�ect the computation
load spent on �tness computation. Moreover, it may cause that the
FFE will not be a reliable computation load measure.

CCS CONCEPTS
•Computing methodologies→ Arti�cial intelligence;

KEYWORDS
Fitness Function Evaluations Number Minimization, Genetic Algo-
rithms, Computation Load Measurement
ACM Reference format:
Michal W. Przewozniczek and Marcin M. Komarnicki. 2018. The in�uence of
�tness caching on modern evolutionary methods and fair computation load
measurement. In Proceedings of Genetic and Evolutionary Computation Con-
ference Companion, Kyoto, Japan, July 15–19, 2018 (GECCO ’18 Companion),
2 pages.
DOI: 10.1145/3205651.3205788

1 INTRODUCTION
The computation load used by Evolutionary Algorithm (EA) is
spent on two components - the computation of �tness value and
other method activities. It is frequent to assume that the overall
computation load used by EA is linearly dependent on Fitness
Function Evaluations number (FFE). Such assumption is not correct
for a general case, the examples with detailed justi�cation may
be found in [5, 6]. Nevertheless, the expenses on �tness value
computation are frequently the main computational cost of any
EA. Their minimization shall be pro�table for every evolutionary
method. Fitness caching is one of the techniques that allow reaching
this objective by storing the information about �tness values of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). 978-1-4503-5764-7/18/07. . . $15.00
DOI: 10.1145/3205651.3205788

already rated genotypes. If the �tness for the same genotype is to
be re-computed, the value from the repository is returned. Thus,
the FFE is minimized, and the overall computation load used by a
method may (but does not have to) decrease.

We consider two �tness caching techniques - the population
�tness caching and the brutal �tness caching. When the population
�tness caching is used, before computing the �tness, the method
checks if the population does not contain an individual with the
same genotype. If so then the �tness of an individual is returned.
When the brutal �tness caching is used, every genotype is stored
with �tness value that refers to it. Before computing the value of
any genotype, the method checks if the genotype is not already a
known one. If so then the stored �tness value is returned.

2 THE RESULTS
The objective of the presented research is to show what may (but
does not have to) happen when �tness caching is used. For instance,
we show that an evolutionary method may compute �tness rarely,
or may not require even a single �tness function evaluation during
hours of computation. Thus, FFE may not be a reasonable compu-
tation load measure when �tness caching limits the value of FFE
per iteration is zero or is close to zero.

The methods, taken into consideration were LTGA, P3, DSMGA-
II, and DSMGA-IIe [1–3]. All methods were coded in C++ and were
joined in one programmistic project. All the experiments were
executed on PowerEdge R430 Dell server Intel Xeon E5-2670 2.3
GHz 64GB RAM with Windows 2012 Server 64-bit installed. We use
the concatenations of standard and bimodal deceptive functions.
The same or similar problems were used in [1–4]. The full repository
with detailed results and source codes may be downloaded from
https://github.com/przewooz/�e_cache.

Below, we present the behavior of methods which are stuck at
the beginning of the run. All methods except P3 that is parameter-
less were using the population of size 1000. The computation time
was on 10 minutes. Each experiment was repeated 100 times. The
�rst problem was a single standard order-16 deceptive function.
For such problem the population of 1000 individuals is usually too
small to �nd a global optimum (built only from ’1’s). Therefore,
all methods get almost immediately stuck (usually after the �rst
iteration). DSMGA-II, DSMGA-IIe, and LTGA were able to �nd an
optimal solution only in a small part of the runs. These runs were
ignored since they contained only a single method iteration and
were not interesting. All other results are presented in Table 1.

As shown in Table 1, in almost all iterations of DSMGA-II and
DSMGA-IIe have not used even a single FFE. The reason is as follows.
At the beginning of the method, each individual is optimized with

https://github.com/przewooz/ffe_cache

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Michal W. Przewozniczek and Marcin M. Komarnicki

Table 1: FFE and cache - the results for a single order-16 bi-
modal deceptive function and a single order-16 bimodal de-
ceptive function

Standard deceptive Bimodal deceptive

FFE
cache

Pop.
cache

No
FFE
iter.

FFE
cache

Pop.
cache

No
FFE
iter.

DSMGA-II
mean 46.29% 0.00% 99.98% 99.83% 47.85% 99.97%
min 45.14% 0.00% 99.97% 99.58% 24.48% 99.97%
max 47.24% 0.00% 99.98% 99.89% 65.58% 99.98%

DSMGA-IIe
mean 46.06% 0.00% 99.95% 99.70% 48.65% 99.98%
min 44.85% 0.00% 0.00% 99.52% 33.15% 99.96%
max 47.47% 0.01% 99.96% 99.80% 54.63% 99.99%

LTGA
mean 99.98% 85.27% 74.92% 99.99% 39.22% 87.02%
min 99.98% 84.83% 63.25% 99.98% 37.86% 80.03%
max 99.98% 85.57% 91.90% 99.99% 39.56% 92.65%

P3
mean 89.28% 9.32% 7.98% 74.08% 38.56% 0.00%
min 85.43% 0.00% 5.85% 61.08% 28.53% 0.00%
max 93.86% 30.26% 31.69% 97.93% 57.17% 74.05%

the First Improvement Hill Climber (FIHC) [2]. Therefore, after
FIHC, genotypes of all individuals contain only ’0’s and no linkage is
detected (all individuals are the same). Thus, after the �rst iteration,
FFE is not computed any more and the percentage of successful
population cache uses is zero.

LTGA does not employ FIHC, so during the �rst iteration individ-
uals are optimized by the evolutionary process and reach the state
in which they are built only from ’0’s. After this iteration, neither
�tness is computed, nor cache is used because all individuals are
the same (built only from ’0’s). Thus, after the �rst iteration, no
new genotypes are found, and no �tness needs to be computed. In
P3 new individuals are added during its run. Thus, the number of
iterations without FFE computation is signi�cantly lower. However,
the amount of cached FFE remains high - over 85% in all runs.

The second considered test case is a single bimodal order-16
deceptive function. Similarly as in the previous case, for such a
problem the population of 1000 individuals is usually too small to
�nd the optimal solution (built only from ’0’s or only from ’1’s).
Therefore, all methods are caught in the local optima containing
8 ’0’s and 8 ’1’s. However, since the number of local optima is(8
8/2

)
, the population is not homogeneous as in the previous case.

Similarly, DSMGA-II, DSMGA-IIe, and LTGA were usually unable
to �nd the global optimum. The runs in which they succeeded
were ignored because they were not interesting. The percentage
of iterations without any �tness evaluation is high for DSMGA-
II and DSMGA-IIe. It shows that if any of these two methods is
stuck then it is hardly capable of searching for new solutions. The
similar observation applies to LTGA. For P3 the above observation
is not true. Since P3 dynamically adds new individuals during the

method run, it is more likely to jump out from the local optimum.
Nevertheless, the percentage of cached FFE is high for all considered
methods - close to 100% for DSMGA-II, DSMGA-IIe, LTGA, and no
less than 61% for P3 in all runs. The percentage of population cache
use was similar for all of the considered methods. Usually, it was
about 40% (LTGA and P3) or 50% (DSMGA-II and DSMGA-IIe). It is
an important observation since population cache is easier to use
and requires signi�cantly less memory.

For the two considered test cases for the evolutionary methods
are almost immediately stuck. For the �rst test case it is possible
that from some moment method does not generate any �tness com-
putation requests at all. For the second test case all methods except
P3, are unable to generate any new genotypes. In such situation,
the use of �tness caching signi�cantly reduces the necessary FFE.
For DSMGA-II and DSMGA-IIe the percentage of method iterations
without any new �tness computation is almost 100%, for LTGA it
is over 80%. Thus, it is allowed to state that �tness caching signi�-
cantly optimizes the FFE used by these three methods. However,
for both of the considered test cases, after the �rst few iterations
DSMGA-II, DSMGA-IIe, and LTGA are stuck and do not require
any FFE. Thus, FFE is not a reliable stop condition in these cases.
Similar results were obtained for test problems using up to 2000
bits, due to the space limitations they can not be presented here.

3 CONCLUSIONS
In this paper, we present that a small technical issue, namely the
�tness caching, may signi�cantly a�ect the behavior of evolution-
ary methods. The main conclusions are as follows. The source
code quality may signi�cantly a�ect the number of FFE used by
a method - if the method uses �tness caching then, the FFE may
be signi�cantly lower than without it. In general, FFE shall not be
used as a stop condition without justi�cation. For instance, FFE
may be unfair if �tness caching is used. When FFE is used as a
computation load measure, and �tness caching is employed, then
it seems reasonable to use time as an additional stop condition, to
assure that the method at least will stop after being stuck.

ACKNOWLEDGMENTS
This work was supported by the Polish National Science Centre
(NCN) under Grant 2015/19/D/ST6/03115.

REFERENCES
[1] Ping-Lin Chen, Chun-Jen Peng, Chang-Yi Lu, and Tian-Li Yu. 2017. Two-edge

Graphical Linkage Model for DSMGA-II. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’17). ACM, 745–752.

[2] Brian W. Goldman and William F. Punch. 2014. Parameter-less Population Pyra-
mid. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation (GECCO ’14). ACM, 785–792.

[3] Shih-Huan Hsu and Tian-Li Yu. 2015. Optimization by Pairwise Linkage Detection,
Incremental Linkage Set, and Restricted / Back Mixing: DSMGA-II. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO
’15). ACM, 519–526.

[4] Marcin M. Komarnicki and Michal W. Przewozniczek. 2017. Parameter-less Pop-
ulation Pyramid with Feedback. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO ’17). ACM, 109–110.

[5] Halina Kwasnicka and Michal Przewozniczek. 2011. Multi Population Pattern
Searching Algorithm: A New Evolutionary Method Based on the Idea of Messy
Genetic Algorithm. IEEE Trans. Evolutionary Computation 15 (2011), 715–734.

[6] M. W. Przewozniczek. 2017. Problem Encoding Allowing Cheap Fitness Computa-
tion of Mutated Individuals. In 2017 IEEE Congress on Evolutionary Computation
(CEC). 308–316.

	Abstract
	1 Introduction
	2 The Results
	3 Conclusions
	Acknowledgments
	References

