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ABSTRACT
While many of real-world industrial design problems involve sev-
eral constraints, researches on multiobjective evolutionary algo-
rithms (MOEAs) for problems with many constraints or the bench-
mark problems themselves are limited. The novel constrainedmul-
tiobjective optimization benchmark problem based on a real-world
car structure design optimization problem, termedMazdaCdMOBP,
hasmore desirable characteristics as a constrained benchmark prob-
lem than the existing ones. The experimental results with 12 con-
strained MOEAs on this problem suggest the importance of bal-
ancing all of three factors of convergence, diversity, and feasibility
and knowledge of proper settings of not only MOEA and CHT but
also these parameters are imperative for application of MOEAs to
industrial design problems.
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1 INTRODUCTION
In recent years, the importance of creating high value-added prod-
ucts in industries is continuing to grow along with the increase of
the sophistication and diversity of social needs. Many of industrial
design problems involve multiple objectives and constraints and
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they are so-called constrained multiobjective optimization prob-
lems. Formultiobjective optimization problems,MOEAs have been
regarded as promising approaches. MOEAs are metaheuristic ap-
proaches and so the performance of MOEAs is usually assessed
by experiments using benchmark problems. However, as some re-
searchers point out[4, 10], many of the existing constrained bench-
mark problems have some undesirable characteristics as the prob-
lems used for development of MOEAs on the real-world industrial
design optimization problems.

Against such a background, Kohira et al. [8] proposed a novel
constrained benchmark problem termed Mazda discrete multiob-
jective optimization benchmark problem (Mazda CdMOBP). Ac-
cording to the authors, this problem has desirable characteristics
especially with regard to the constraints. This study reviews the
performance of some MOEAs and constraint handling techniques
(CHTs) on this novel benchmark problem.

2 Mazda CdMOBP AND EXPERIMENTS
Mazda CdMOBP derives from an actual vehicle structure design
optimization problem. The number of variables, objectives, and
constraints are 222, 2, and 54, respectively. The constraints com-
prises the requirements for crashworthiness, body torsional stiff-
ness, low frequency vibration modes and these are evaluated by
finite element simulations on a supercomputer in actual design
process. In the benchmark problem, these simulation results are
modeled with radial basis functions so as to shorten the evalua-
tion time while retaining the nonlinearity as much as possible. The
details are presented in their reference[8] and website[7].

Performance of 12 constrained MOEAs are examined on this
problem. NSGA-III[3], MOEA/D-AOOSTM[11], and IBEAϵ+ (IBEA
with additive ϵ indicator)[12] are employed as MOEAs and con-
straint domination principle (CDP)[2], improved ϵ-level compari-
son (denoted as iϵ)[5], multiple constraint ranking (MCR)[1], and
without-CHT case are employed as CHTs. Each CHT is incorpo-
rated into each MOEA using the recently proposed framework[6].
The population size is set as 100, 300, and 500 and the stopping
criterion is set by the number of solution evaluation of 30,000.

Figure 1 presents the representative cases’ non-dominated solu-
tions in the unbounded external archive. The representative case
here is the run whose hypervolume (HV) value at the final num-
ber of generations is the median of 31 independent runs for each
case. The optimization direction is bottom-rightward in each sub-
figure. Note that infeasible solutions are plotted under feasible so-
lutions and many of them are invisible although they are every-
where among feasible solutions.
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Figure 1: Distributions of all obtained solutions obtained in
the median run of each case with population size of 300.

The difference in the distributions of the solutions is signifi-
cant between MOEA/D-AOOSTM and the others. The distribution
of the solutions obtained with MOEA/D-AOOSTM is more wide-
spreading while these obtained with NSGA-III and IBEA evolve
directly toward the bottom-right with a long-tail-like distribution.
Here, MOEA/D-AOOSTM is an MOEA that is carefully dedicated
to balance convergence and diversity whereas NSGA-III and IBEA
are the MOEAs based on the “convergence first and diversity sec-
ond” principle[9]. These suggest that special care for diversity is
required to explore the wide area in the objective space on this
problem. Considering this and the large number of variables, this
problemmay be regarded as an imbalanced problem, whose PF (al-
though is unknown) offers different degrees of search difficulty in
different regions of the front[9].

As shown in Figure 1, the solutions of MOEA/D-AOOSTM with
any CHTs tested in this study evolves keeping heavy weight. This
result from the geometric distribution of constraints in the objec-
tive space: the evolution of the solutions is pushed toward the re-
gion where constraints are relatively easy to be met and the heavy
weight region corresponds to such a region (a car with thicker
parts, i.e., a heavy car would have good crashworthiness perfor-
mance). The results of MOEA/D-AOOSTM with CHTs indicates
that it is important to balance not only convergence and diversity
but also feasibility on some complexly constrained problems.

Figure 2 shows the evolution of mean HV values of 31 indepen-
dent runs using the unbounded external archive. This figure shows
that the outperforming MOEA or CHT is highly dependent on the
population size and/or the number of generations. This would hold
true for many of complexly constrained problems and knowledge
of proper settings of not only MOEA and CHT but also these pa-
rameters are imperative for application of MOEAs to industrial de-
sign problems. Note that the HV values of IBEA and NSGA-III are
higher than these of MOEA/D-AOOSTM because of the good con-
vergence of the solutions obtained by these two MOEAs, although

Figure 2: Evolution of HV values against number of genera-
tions for the cases with population size of 300.

the diversity of the solutions obtained by MOEA/D-AOOSTM is
better than that of IBEA and NSGA-III.
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