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ABSTRACT
Recently the use of Radial Basis Functions (RBF) has been intro-
duced as an optional alternative to co-Kriging in the context of
multi-fidelity surrogate modeling. In this paper, we compare the
performance of Random Forest-based co-surrogates to the previ-
ously introduced co-Kriging and co-RBF using a set of bi-fidelity
benchmark problems in 2, 4 and 8 dimensions. Our results show
that there is a minimal overall difference between the different
co-surrogate models with regards to final performace, although the
training of Random Forests takes much less time compared to the
Kriging and RBF methods.
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1 INTRODUCTION
Optimization problems in engineering domains often rely on simu-
lations to determine the quality of candidate solutions. Numerical
optimization methods such as CMA-ES [5] allow automation of
such processes, but require many hundreds or thousands of evalua-
tions. As the required amount of runtime per simulation increases,
more advanced optimization methods are needed that can work
with fewer simulations.
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To this end, Surrogate-Assisted optimization methods such as
[3, 7] were developed that use surrogate models (also called meta-
models) as a less computationally expensive substitute for the sim-
ulations. Co-Kriging was created by combining surrogate modeling
with multi-fidelity simulations by [4], assuming that a lower fidelity
simulation contains some global fitness landscape information.

In this paper we introduce co-Random Forests to the set of
co-surrogates consisting only of co-Kriging and co-RBF [2]. We
compare the performance of these three co-surrogates on eight
benchmark functions as used in co-Surrogate-Assisted CMA-ES
(cSA-CMA-ES) optimization.

Algorithm 1 cSA-CMA-ES

1: t , λpre, x⃗ , x⃗best,ybest ← 0, 2λ, random individual, Null,∞
2: DoE← Design of Experiments sample
3: A← (DoE, fh (DoE), fl (DoE))
4: while not terminate do
5: ρ ← coefficient of linear regression on Ah ,Al
6: Sco ← train surrogate on Ah − ρAl
7: Ot

pre ← mutate(x⃗ , λpre)
8: y⃗l ← fl (O

t
pre)

9: ˆ⃗yh ← ρy⃗l + Sco.predict(Ot
pre)

10: Ot ← preselect(O ′t , ˆ⃗yh , λ)
11: if t mod дint = 0 then
12: y⃗ ← fh (O

t )
13: A← A ∪ (Ot , y⃗h , y⃗l ))
14: if min(y⃗) < ybest then
15: ybest, x⃗best ← min(y⃗),Ot

argmin(y⃗ )
16: end if
17: else
18: y⃗h ←

ˆ⃗yh
19: end if
20: P t ← select(Ot , y⃗h , µ)
21: x⃗ ← recombine(P t )
22: updateInternalParameters(); t ← t + 1
23: end while

2 CO-SURROGATE ASSISTED CMA-ES
Co-surrogates are based on the autoregressive model by [6] that
describes a high fidelity prediction as f̂h (x⃗ ) = ρ fl (x⃗ ) +δ (x⃗ ), where
fh and fl are the high and low fidelity evaluation functions, f̂h is
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Figure 1: Comparison of generational evolution control in-
tervals g_int in cSA-CMA-ES using Random Forests for two
example benchmark functions (2d and 8d).

the predicted value for fh based on the co-surrogate model, ρ is
a scaling parameter and δ (x⃗ ) is an error term for the difference
between the high and low fidelity results. Co-surrogates are used
to predict this δ , which is calculated as δ (x⃗ ) = fh (x⃗ ) − ρ fl (x⃗ ) to
create training data for the co-surrogate.

Algorithm 1 shows the cSA-CMA-ES that we use in this paper.
We compare it with a similar SA-CMA-ES, that mainly differs in
lines 5–9 where the low fidelity function fl is used for the high
fidelity surrogate predictions. They make use of both pre-selection
(line 10) and generational evolution control (lines 11–19).

3 EXPERIMENTS
For all experiments, an initial Latin-Hypercube-Sample of 20 points
was evaluated as DoE to be used as initial training set for the
surrogates. For pre-selection, λpre is fixed to 2λ. Each run has been
repeated ten times. For RBF, we use the multiquadric basis function,
and for Random Forests we create 100 trees. The used benchmark
functions were taken from [1, 8].

Figure 1 shows an example of the influence of generational con-
trol intervals, while Figure 2 shows the comparison between Krig-
ing, RBF and Random Forest surrogate models for both SA-CMA-ES
and cSA-CMA-ES, with a generational interval fixed to 10. In these
plots, the solid lines indicates the 50th percentile of the fitness val-
ues over 10 runs, while the shaded regions indicate the spread of
the fitness values between the 25th and 75th percentile. Only high
fidelity evaluations are counted.

4 CONCLUSIONS AND OUTLOOK
In this paper, we have compared (co-)surrogate-assisted optimiza-
tion performance on a collection of analytical multi-fidelity bench-
mark functions from literature, with surrogates based on Kriging,
RBF and Random Forests. Although Kriging is generally consid-
ered to be the most stable choice for a surrogate model, our results
show that the performance of the various co-surrogates is generally
similar, while any significant differences dependent on the target
problem specifically, as is already known in the surrogate-assisted
optimization literature.
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Figure 2: Comparison of Kriging, RBF and Random Forest
based cSA-CMA-ES for all benchmark functions.
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