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ABSTRACT
In this work, we give some numerical investigations of the CMAES-
APOP on some multi-modal functions and introduce a relaxed ver-
sion of this algorithm to cope with the hard Schwefel function. The
numerical simulations will show the efficiency of our approach.
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1 INTRODUCTION
For adapting population size in the CMAES, in the literature there
are well-known and successful methods [1, 2]. In [4], we have
introduced the CMAES-APOP algorithm which is inspired from
a natural desire when solving an optimization problem as well
as one prospect when using larger population size (pop-size for
short) to search: we want to see the decrease of the objective function.
In this method, the non-decrease of objective function in a slot
of S = 5 successive iterations is tracked to adapt the pop-size
for next S successive iterations. Because the pop-size is adapted
in each slot of S iterations, its variation takes a staircase form in
iterations. In this work, we give some numerical investigations for
this method. Besides testing the performance of CMAES-APOP on
some multi-modal functions, we also study the effect of percentiles
on CMAES-APOP’s performance. Moreover, we present briefly a
relaxed version of the CMAES-APOP for solving efficiently the
Schwefel function with weak global structure.

2 NUMERICAL EXPERIMENT
In the following experiments, we run the CMAES-APOP with small
initial pop-size λ = λdefault (i.e, set kn = 1, see [4]); and except
for a case in section 2.2, there is no upper bound for pop-size. The
unconstrained multi-modal test problems [3] are summarized in
Table 1. The initial parameters for our algorithms and the IPOP-
CMAES algorithm are given in the Table 2. These functions have a
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high number of local optima, are scalable in the problem dimension,
and have aminimal function value of 0. The known global minimum
is located at x = 0, except for the Schwefel function, where the
global minimum within [−500, 500]n equals 420.96874636 in each
coordinate. The performance of algorithm is tested for dimensions
n = [5, 10, 20] on the Schwefel function, and for dimensions n =
[10, 20, 40] on the other functions. Also, the bound constraints for
the Ackley function in [−32.768, 32.768]n and Schwefel function
in [−500, 500]n are considered via quadratic penalty terms. That is,
the following functions fSchwefel (x )+104

∑n
i=1 θ ( |xi | −500).( |xi | −

500)2 and fAckley (x ) +
∑n
i=1 θ ( |xi | − 32.768).( |xi | − 32.768)2 will

be minimized, where θ (x ) = 1 if x > 0 and θ (x ) = 0 if x ≤ 0.

Name Function

Rastrigin fRastrigin (x ) = 10n +
∑n
i=1 (x

2
i − 10 cos(2πxi ))

Scale Rastrigin fRastScale (x ) = 10n +
∑n
i=1 ((10

i−1
n−1 xi )2 − 10 cos(2π 10

i−1
n−1 xi ))

Schaffer fSchaffer (x ) =
∑n−1
i=1 (x2i + x

2
i+1 )

0.25[sin2 (50(x2i + x
2
i+1 )

0.1 ) + 1]

Griewank fGriewank (x ) = 1
4000

∑n
i=1 x

2
i − Π

n
i=1 cos

(
xi√
i

)
+ 1

Ackley fAckley (x ) = 20 − 20 · exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
+ e − exp

( 1
n

∑n
i=1 cos(2πxi )

)
Bohachevsky fBohachevsky (x ) =

∑n−1
i=1 (x2i + 2x

2
i+1 − 0.3 cos(3πxi ) − 0.4 cos(4πxi+1 ) + 0.7)

Schwefel fSchwefel (x ) = 418.9828872724339 · n −
∑n
i=1 xi · sin(

√
|xi |)

Table 1: Test functions.

Function Initial point σ

Rastrigin x 0 = (5, . . ., 5) 2
Scale Rastrigin x 0 = (5, . . ., 5) 2
Schaffer x 0 = (55, . . ., 55) 20
Griewank x 0 = (305, . . ., 305) 100
Ackley x 0 = (15, . . ., 15) 5
Bohachevsky x 0 = (8, . . ., 8) 3
Schwefel x 0 = (0, . . ., 0) 500

Table 2: Initial conditions.

For each function, 51 runs are conducted. Each run is stopped
and regarded as successful, when the function value is smaller than
fstop = 10−10 (fstop = 10−8 for the Schaffer function). Some addi-
tional stopping conditions that are added to the Schaffer function
are: TolX = 10−30, TolFun = 10−20, TolHistFun = 10−20. We used
the matlab implementation of CMA-ES, version 3.40.beta to make
CMAES-APOP and its variants.

2.1 CMAES-APOP on the first six functions
From table 3 we can see that CMAES-APOP provides high success
rates (more than 80%) for the first six functions. CMAES-APOP
is worse than IPOP-CMAES on the Griewank and Bohachevsky
functions. It is because they are quite easy multi-modal functions,
and we have wasted a lot of populations at the beginning. Never-
theless, CMAES-APOP is better than IPOP-CMAES on Rastrigin,
Scale Rastrigin, Schaffer and Ackley functions. It runs faster than
IPOP-CMAES does about 2-3 times on the Rastrigin, Scale Rastri-
gin (well-structured) functions in all dimensions; 1.5 times on the
Schaffer function in all dimensions. On the Ackley function, it also
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runs faster 1.3 times in dimension 10, 4 times in dimension 20, and
16.5 times in dimension 40. This is because whenever the global
solution is located, CMAES-APOP gradually reduces the pop-size
and profits from the robustness of CMA-ES to find it.

Function CMAES-APOP IPOP-CMAES
n SR Feval Feval/SR aRT aRT
10 0.86 2.797e+04 3.242e+04 3.317e+04 7.471e+04

Rastrigin 20 0.94 8.491e+04 9.022e+04 9.077e+04 2.594e+05
40 1.00 2.981e+05 2.981e+05 2.981e+05 7.744e+05

10 0.80 2.758e+04 3.431e+04 3.527e+04 8.498e+04
Scale Rastrigin 20 0.80 8.994e+04 1.118e+05 1.111e+05 2.794e+05

40 0.90 3.056e+05 3.388e+05 3.427e+05 9.179e+05

10 0.96 2.945e+04 3.065e+04 3.098e+04 4.801e+04
Schaffer 20 0.94 7.660e+04 8.138e+04 8.175e+04 1.285e+05

40 0.90 2.016e+05 2.235e+05 2.255e+05 3.206e+05

10 0.98 1.183e+04 1.206e+04 1.215e+04 7.192e+03
Griewank 20 0.98 2.419e+04 2.468e+04 2.479e+04 7.170e+03

40 1.00 5.769e+04 5.769e+04 5.769e+04 1.186e+04

10 1.00 1.403e+04 1.403e+04 1.403e+04 1.890e+04
Ackley 20 0.98 3.055e+04 3.116e+04 3.105e+04 1.249e+05

40 0.92 6.756e+04 7.331e+04 7.204e+04 1.162e+06

10 1.00 1.002e+04 1.002e+04 1.002e+04 5.947e+03
Bohachevsky 20 1.00 2.397e+04 2.397e+04 2.397e+04 1.813e+04

40 0.98 5.424e+04 5.533e+04 5.536e+04 4.537e+04

Table 3: CMAES-APOP vs IPOP-CMAES (n: dimension, SR:
success rate, Feval: number of functions evaluations, aRT
(average Running Time) = number of function evaluations
divided by the number of successful trials).

Figure 1: Adapting population size of CMAES-APOP in 40-D
(Left: Rastrigin function, Center: Scale Rastrigin function,
Right: Schaffer function).

Function n 25% 10% 50% 75% 90%
10 3.317e+04 3.527e+04 3.160e+04 3.069e+04 3.250e+04

Rastrigin 20 9.077e+04 9.254e+04 9.212e+04 9.038e+04 9.286e+04
40 2.981e+05 3.163e+05 3.006e+05 3.034e+05 3.133e+05

10 3.527e+04 4.044e+04 3.638e+04 3.609e+04 3.818e+04
Scale Rastrigin 20 1.111e+05 1.040e+05 1.141e+05 1.053e+05 1.083e+05

40 3.427e+05 3.486e+05 3.579e+05 3.367e+05 3.594e+05

10 3.098e+04 3.334e+04 3.051e+04 3.012e+04 3.147e+04
Schaffer 20 8.175e+04 8.833e+04 8.024e+04 8.233e+04 8.646e+04

40 2.255e+05 2.266e+05 2.224e+05 2.348e+05 2.325e+05

10 1.215e+04 1.298e+04 1.198e+04 1.480e+04 1.740e+04
Griewank 20 2.479e+04 2.601e+04 2.498e+04 2.569e+04 2.891e+04

40 5.769e+04 5.948e+04 5.614e+04 5.843e+04 6.327e+04

10 1.403e+04 1.481e+04 1.369e+04 1.429e+04 1.498e+04
Ackley 20 3.105e+04 3.263e+04 3.024e+04 3.144e+04 3.326e+04

40 7.204e+04 7.379e+04 6.761e+04 7.164e+04 7.617e+04

10 1.002e+04 1.052e+04 1.015e+04 1.064e+04 1.085e+04
Bohachevsky 20 2.397e+04 2.533e+04 2.366e+04 2.378e+04 2.494e+04

40 5.536e+04 5.781e+04 5.627e+04 5.810e+04 6.101e+04

Table 4: The aRT of some variants of CMAES-APOP.
Figures 1 shows the variation of pop-size in iterations (in average

over successful runs) on the Rastrigin, Scale Rastrigin, and Schaffer
functions in the 40-D. For the Rastrigin function, the pop-size in-
creases to about 3600 in 130 iterations to locate the optimal solution.
Then it decreases to about 80-90 at iteration 190. Since then the
pop-size becomes quite stable until the convergence. On the Scale
Rastrigin function, the variation of pop-size is more complicated
than on the Rastrigin function. Firstly, the pop-size increases to 900

after 40 iterations, then decreases until iteration 80. This is because
the effect of scale operator, and the algorithm does not learn so
much about this operator. But when re-detecting the ruggedness of
function, the algorithm one more time has to increase pop-size to
escape the local attraction zone to find out the global one. After that,
the pop-size adaptation process is quite similar to on the normal
Rastrigin function. On the Schaffer function, the pop-size must be
adapted many times to approach the global solution. It is not stable
during the searching process, even when the algorithm moves the
distribution close to global solution, the adaptation is still going on.

In the CMAES-APOP we compare f med
prev with f med

cur to consider a
“going up” time. This quantity f med could be seen as 25th percentile
of all objective values (denoted by f 25%) in one iteration. Table 4
shows performance of CMAES-APOP when we replace the 25th
percentile of objective function values with the other percentiles.
We can see that for these functions, the aRT of CMAES-APOP does
not change so much. It is because these considered functions are
not too complicated or are well-structured.

2.2 On the Schwefel function
For the hard Schwefel function, tracking the change of f 25% to
adapt the pop-size seems not to be useful. Therefore, we propose
a relaxed version of CMAES-APOP in which we try to change the
condition “f 25%cur − f 25%prev > 0” to the condition “f pcur − f 25%prev > 0”,
where p is 30% or 50% to relax the condition for a “going up” time.
This modification still keeps the relaxed version invariant to scaling
and shifting operator on the objective function. Additionally, we
set an upper bound on pop-size, say λmax = (20n + 30)λdefault, to
the relaxed version. A version of CMAES-APOP using this upper
bound for pop-size is also tested. Note that the step-size σ probably
increases although the upper bound for pop-size is set.

n CMAES-APOP Relaxed-CMAES-APOP IPOP-CMAES
no UB UB p = 30% p = 50%

SR aRT SR aRT SR aRT SR aRT aRT
5 0.43 5.97e+04 0.41 5.68e+04 0.60 1.01e+05 0.78 1.01e+05 8.49e+04
10 0.13 5.68e+05 0.11 7.52e+05 0.80 4.14e+05 0.90 4.24e+05 5.55e+05
20 0.00 NA 0.00 NA 0.74 2.59e+06 0.90 2.30e+06 3.55e+06

Table 5: On the Schwefel function.
From table 5 we see that CMAES-APOP with/without upper

bound for population size has low success rates, can not reach the
target in dimension 20, and gives large aRT in dimensions 5 and
10. However, the relaxed versions show quite good performance.
Especially, the version with p = 50% provides a high success rate
even in dimension 20, and runs faster than IPOP-CMAES does about
1.3 times in dimension 10, and about 1.5 times in dimension 20.
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