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ABSTRACT
Machine learning algorithms have found to be useful for the solu-
tion of complex engineering problems. However, due to problem’s
characteristics, such as class imbalance, classical methods may not
be formidable. The authors believe that the application of multi-
objective optimization design can improve the results of machine
learning algorithms on such scenarios. Thus, this paper proposes a
novel methodology for the creation of ensembles of classifiers. To
do so, a multi-objective optimization design approach composed of
two steps is used. The first step focus on generating a set of diverse
classifiers, while the second step focus on the selection of such clas-
sifiers as ensemble members. The proposed method is tested on a
real-world competition data set, using both decision trees and logis-
tic regression classifiers. Results show that the ensembles created
with such technique outperform the best ensemble members.
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1 INTRODUCTION
Machine learning algorithms have been found to be useful when
dealing with complex engineering problems, such as the develop-
ment of soft sensors and fault detection systems [7]. However, clas-
sical machine learning methods are usually optimized by means of
its global accuracy, and there can be a lack of performance when ap-
plying such techniques to solve imbalanced classification problems,
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where we have a majority class, with a large number of examples,
and a minority class, with few examples [5]. In such scenario, the
global accuracy is not enough to indicate a good predictor, since
even considering all examples as the majority class, a high accuracy
is achieved.

Multi-objective machine learning [6] is a useful tool for solving
such complex problems. By approximating the trade-off between
the conflicting objectives of a problem, such as the majority and
minority class-specific accuracies, a preferable solution can be se-
lected based on the decision maker preferences. Diverse ensemble
generation, or multi-objective ensemble generation [3], is indicated
as one of the approaches for Pareto based supervised learning. Such
technique focuses on generating ensembles composed of the di-
verse models achieved using a multi-objective optimization design
(MOOD) approach.

Multi-objective ensemble generation has been the subject of
study by many authors, and much work has been done on the defi-
nition of objectives for optimization, such as the trade-off between:
accuracy and complexity [3, 6, 15]; mean squared error and the
number of connections of recurrent neural networks [16]; accuracy
and different diversity measures [4]. However, it is indicated in [3]
that the significance of the multi-objective approach for ensemble
generation will be considerably reduced without a clear idea of
how to select a subset of the Pareto optimal solutions, and much
work remains to be done along this line of research. The selection
of members close to the Pareto front’s "knee point" has been per-
formed in [3, 16], while different methods for member selection
have been tested in [14, 15].

Thus, this paper proposes a novel MOOD methodology for the
creation of such ensembles, where the problem is split into the
following two multi-objective problems (MOP): the first step focus
on creating a set of diverse non-dominated classifiers, by selecting
different features and model parameters; the second step is focused
on selecting the previous classifiers as ensemble members. Both
problems are optimized with a multi-objective optimization (MOO)
algorithm, and a multi-criteria decision making (MCDM) step is
applied in order to select a preferable final ensemble after the last
MOP.

The remainder of this paper is presented as follows: section 2
presents the background necessary for multi-objective ensemble
generation; section 3 presents the proposed methodology; section 4
presents the experiment and its results; and section 5 presents the
conclusion and final remarks on the subject.
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2 BACKGROUND
In order to create optimized classifiers for complex engineering
classification problems, a novel methodology for the generation of
ensembles of classifiers, using aMOOD approach, is proposed. Thus,
this topic presents a background on classification task, ensemble
methods and MOOD.

2.1 Classification
The classification task is an instance of supervised learning, where
a classifier must predict the category of a new observation, given
a training data of multiple observations with known categories.
It is typically composed of three components: a training set, an
inducer and a classifier, where the inducer is a learning algorithm
that creates a classifier for a specific training set [13]. Two learning
algorithms are used in this work, the logistic regression (LR) [8]
and the decision trees (DT) [11].

LR is a two-class linear separator, where the sigmoid function
is used to compute the probability of an observation belonging
to a certain category, given the model’s trained weights and the
observation’s features. Equation 1 shows such procedure, where
C1 represents the true class, σ the sigmoid function, θ the vector
of trained weights and X the observation’s vector of features.

p(C1 |X ) = σ (θTX ) =
1

1 + e−θTX
(1)

DT, on the other hand, are models that perform sequential de-
cision making, where a tree structure is created to subdivide the
variables space into separate regions, each one related to one cate-
gory. Figure 1 illustrates such structure.

Figure 1: Decision Tree (DT) structure (left) creating rules to
divide the features space into separate categories (right) for
classification.

2.2 Ensemble Methods
The ensemble methodology consists on the combination of different
classifiers, resulting in a model that outperforms its members. A
rich review on the subject is presented in [13] for interested readers.
Additionally, a review on multi-objective ensemble generation is
presented in [3].

In order to build ensembles of classifiers, the following two steps
are necessary:
• Member generation: diverse classifiers are trained by ma-
nipulating the training data set and/or changing the struc-
ture of the inducers, by adjusting hyperparameters or using
different learning algorithms;

• Member combination: a technique, such as majority vot-
ing or average weight, is used to combine the members’
prediction outputs.

Figure 2 presents an ensemble, which is composed of diversely
generated classifiers and a combiner component.

Figure 2: Structure of an ensemble of classifiers.

Ensemble methods are known for improving the accuracy of
classifiers [13]. It has also been widely used in the literature [3, 4,
6, 14–16] to solve classification problems. Thus, such technique is
applied in the proposed work.

2.3 Multi-Objective Optimization Design
According to [10], the MOOD approach can be divided into three
steps:
• MOP definition: the problem’s objectives, decision vari-
ables and constraints are defined;
• MOO: a search algorithm is used to retrieve a Pareto front
approximation, a set composed of many non-dominated so-
lutions with conflicting objectives. Figure 3 illustrates the
Pareto front for a generic MOP.
• MCDM: visualization and ranking techniques are applied
to aid the decision maker in the task of finding a preferable
final solution among the Pareto front.

Figure 3: Representation of the decision variables (left) and
the objectives (right) for a multi-objective problem (MOP),
where the blue circles represent the dominated solutions
while the red stars represent the non-dominated solutions
that approximate a Pareto front (red traced curve).
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3 METHODOLOGY
In order to effectively build an ensemble of classifiers, the present
work separates the ensemble generation into two different steps:
• Member generation: the generation of a set of diverse
Pareto optimal classifiers as candidate ensemble members;
• Member selection: the selection of the classifiers that will
be part of the final ensemble.

For the member generation step, the following MOP is stated for
both classifiers1:

min
x

Jд(x) = [−J1(x),−J2(x),−J3(x),−J4(x), J5(x)] (2)

subject to:

xi ∈ {0, 1} , i = [1, . . . ,n] (3)
−20 < x j < 20, j = [n + 1, . . . , 2n] (4)

where the objectives are: global accuracy (J1(x) [dimensionless]);
true positive rate (J2(x) [dimensionless]); true negative rate (J3(x)
[dimensionless]); F1 score, or the harmonic mean of sensitivity
and precision (J4(x) [dimensionless]); and classifier’s complexity
(J5(x)), defined as absolute sum of weights for logistic regression
or number of features for decision tree. The decision variables are:
selection of each of the n features (xi ), both for LR and DT; and the
initial weight assigned to each of the n features (x j ), used only for
LR.

Next, the member selection stepMOP is defined for both learning
algorithms as follows:

min
x

Js (x) = [−J1(x),−J2(x),−J3(x),−J4(x), J6(x)] (5)

subject to:

xk ∈ {0, 1} ,k = [1, . . . ,m] (6)

where the new objective is the ensemble’s complexity (J6(x)), de-
fined as the sum of the members’ complexities. The decision vari-
ables (xk ) define the ensemble membership for each of them re-
sulting classifiers from the previous step.

The spherical pruning multi-objective differential evolution (sp-
MODE) [12] is used for both the member generation and member
selection steps. The algorithm is configured with a scaling factor
of 0.5, a crossover probability of 0.5, a population of 50 individu-
als, and a maximum number of 200 generations or 10000 function
evaluations.

Finally, in order to select a preferable ensemble, physical pro-
gramming [9] is used in order to rank the ensembles based on the
preferences listed in Table 1.

As a conclusion, the methodology, illustrated in Figure 4, consists
in: a member generation step, where training data and an inducer
are used to create a set of Pareto optimal classifiers; and the member
selection step, where the resulting classifiers are used to create a
set of non-dominated ensembles, and a MCDM step selects the
preferable final solution.

1The constraints from Equation 4 are not used for the creation of decision trees.

Table 1: Preference matrix for the member selection prob-
lem. Five scaled preference ranges have been defined: highly
desirable (HD), desirable (D), tolerable (T) undesirable (U)
and highly undesirable (HU).

Preference Matrix

← HD →← D →← T →← U →← HU →

Objective S0i S1i S2i S3i S4i S5i
J1(x) 0.00 0.10 0.20 0.40 0.60 1.00
J4(x) 0.00 0.10 0.20 0.40 0.60 1.00
J6(x) 0.00 0.10 0.20 0.40 0.60 1.00

Figure 4: The proposed multi-objective optimization design
(MOOD) framework for ensemble generation.

4 EXPERIMENT AND RESULTS
The data sets provided in SPOTSeven’s GECCO challenge 2017
[1] have been used for training and testing the ensembles created
with the proposed methodology. The training data set is split into
training (70%) and validation (30%) sets for hold-out validation
during the multi-objective optimization stage, while the test data
set is used for analyzing final results. In total, 81 runs were executed
to analyze the creation of ensembles of LR and DT classifiers.

The distribution plot of the F1 score for each classifier is shown
in Figure 5. The first column presents the results for the best LR
model for each run, where we can see a distribution with median
value close to 0.3, maximum value of more than 0.4 and minimum
value of less than 0.1. The second column presents the results for
the selected ensembles of LR classifiers (MOEG-LR) for each run,
where we can see a distribution with median value close to 0.45,
maximum value of more than 0.5 and minimum value close to 0.2.
The third column presents the results for the best DT for each run,
where we can see a distribution with median value close to 0.45,
maximum value of more than 0.55 and minimum value close to
0.45. The last column presents the results for the selected ensemble
of DT (MOEG-DT) for each run, where we can see a distribution
with median value close to 0.5, maximum value close to 0.55 and
minimum value close to 0.45.
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Figure 5: Distribution plot of the four classifiers.

The Friedman’s test [2] is performed with such data, resulting
on the mean ranks presented in Table 2. A small p–value of 3.2e−44
indicates that each model presents different results, while the classi-
fier’s mean ranks indicate that MOEG-DT achieved the best result,
followed by DT, MOEG-LR and LR.

Table 2: Mean ranks result from the Friedman’s test.

Classifier Mean rank
Logistic Regression 3.9012
Multi-objective Ensemble Generation
with Logistic Regression 2.9383

Decision Tree 2.0123
Multi-objective Ensemble Generation
with Decision Tree 1.1481

The results can also be compared to the competition winner’s
results [1], where a F1 score of 0.44 has been achieved. The proposed
framework is capable of outperform such results, having the MOEG-
LR and the MOEG-DT classifiers a median F1 score of 0.45 and 0.5,
respectively.

Such results indicate that the proposed MOOD framework for
ensemble generation grants a performance improvement for both
the LR and DT classifiers. Also, it presents a competitive algorithm
to be used in real-world applications and benchmark problems.

5 CONCLUSIONS
In order to improve classification performance of learning algo-
rithms, this paper presents a methodology for the automatic cre-
ation of classification ensembles. The proposedmethod is composed
of two MOO stages: creation of a Pareto optimal set of ensemble
candidate members; and, selection of such candidates to create an
optimal final ensemble. As a solution to the problem indicated by
[3], such methodology can improve the significance of the multi-
objective approach for the creation of ensembles.

Results show that the proposed methodology improves the per-
formance of LR and DT classifiers. Also, suchmethodology has been
applied to a challenge data set, achieving results that outperforms
the challenge’s winner. Thus, multi-objective ensemble generation
is indicated to solve complex real-world classification problems.

Future work can focus on: the application of different learning
algorithms; different MOO algorithms; and different MCDM tech-
niques to find a preferable ensemble. It is also recommended to test
different ensemble combination techniques. Finally, the authors in-
tend to compare such methodology with other ensemble generation
techniques in the future, using benchmark data sets.
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