
Specialization and Elitism in Lexicase and Tournament Selection
Edward Pantridge

MassMutual
epantridge@massmutual.com

Thomas Helmuth
Hamilton College

thelmuth@hamilton.edu

Nicholas Freitag McPhee
University of Minnesota Morris

mcphee@morris.umn.edu

Lee Spector
Hampshire College

lspector@hampshire.edu

ABSTRACT
Prior work has demonstrated that genetic programming systems
often maintain higher levels of population diversity when using
lexicase selection than when using other parent selection methods,
and that the use of lexicase selection improves problem-solving
performance in many circumstances. It has been suggested that it is
not only the maintenance of diversity that is responsible for the per-
formance of lexicase selection, but more specifically the production
and maintenance of “specialists” that matters, where specialists are
defined to be individuals with the lowest error, relative to the rest
of the population, on a small number of training cases regardless
of total error. Here we provide results of experiments that uphold
this suggestion by tracking the numbers of specialists selected by
lexicase selection and by tournament selection in a genetic pro-
gramming system solving software synthesis problems. Our results
also show that lexicase selection selects parents with poor total
error far more frequently than tournament selection, even near the
ends of successful runs, suggesting that such selections are integral
to the improved problem-solving performance of lexicase selection.

CCS CONCEPTS
• Software and its engineering → Automatic programming;
Genetic programming;

KEYWORDS
lexicase selection; tournament selection; genetic programming;
program synthesis;

ACM Reference Format:
Edward Pantridge, Thomas Helmuth, Nicholas Freitag McPhee, and Lee
Spector. 2018. Specialization and Elitism in Lexicase and Tournament Se-
lection. In GECCO ’18 Companion: Genetic and Evolutionary Computation
Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3205651.3208220

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208220

1 INTRODUCTION
Genetic programming proceeds through a cycle of selecting par-
ent programs, producing child programs from those parents, and
assessing those children with respect to their performance on a
target problem [6]. In the present paper we focus on the parent
selection step of the genetic programming algorithm, which deter-
mines which programs in the current population will be used as
the source material out of which the next generation’s programs
will be constructed.

The most commonly employed parent selection methods select
parents on the basis of the quality of potential parents, which is
assumed to be represented by a single numerical value for each
program, in combination with some form of randomization. One
such parent selection method is tournament selection, in which, for
each parent selection event, a small, constant number of potential
parents is chosen from the population with uniform probability,
and then the highest quality individual from that “tournament set”
is selected as the parent.

By contrast, in lexicase selection [5, 8] program errors on individ-
ual training cases all contribute to the selection of parents without
being aggregated. Prior research has demonstrated that lexicase
selection can significantly improve problem-solving performance
and the diversity of the populations on which it operates [4].

The specific hypothesis that we explore is that lexicase selection
not only promotes diversity in general, but that it more specifically
promotes the generation and maintenance of “specialists.” While
this might seem to follow naturally from the definition of lexi-
case selection (see below), it has never before been demonstrated
empirically.

In the following section we describe the lexicase selection algo-
rithm and some of the prior results on the interactions between
lexicase selection and population diversity. We then describe the
methods that we employed for our experiments, followed by our ex-
perimental results. We conclude with comments on the implications
of these results and suggestions for future research.

2 LEXICASE SELECTION
Unlike the majority of contemporary parent selection methods,
lexicase selection does not choose a parent individual based on an
aggregated error value. Instead lexicase selection considers an indi-
vidual’s error on each particular training case separately. Lexicase
selection considers training cases one at a time, in random order,
iteratively filtering the population down to just individuals with
the lowest error on the current training case. Once there is either a
single individual, or all training cases have been used to filter the

https://doi.org/10.1145/3205651.3208220
https://doi.org/10.1145/3205651.3208220

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Edward Pantridge, Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector

population, lexicase selection terminates by returning a random
individual from the filtered population.

The lexicase selection algorithm is described in detail by [8]
and [5]. Notice that after any number of training cases the collection
of candidatesmight contain a single individual which becomes the
selected parent. The error values of that individual on the remaining
training cases could be arbitrarily high without disqualifying the
individual for selection.

One important note about the implementation of lexicase selec-
tion is that the population generally undergoes a “pre-selection”
phase which filters the population down to one randomly chosen
individual for each distinct vector of errors in the population. This
implementation produces the same behavior, but removes the worst
case runtime situation and is why we do not see any lexicase selec-
tion events which utilize every training case in the results presented
in section 4.

We define a “specialist” as an individual with elite error values on
some relatively small subset of the training cases regardless of the
individual’s error values on the rest of the training set. Given the
lexicase selection algorithm described above, it is clear that there
is the possibility for lexicase selection to select specialists. This
paper presents empirical evidence that lexicase selects specialists
in practice, and it is suggested that these selections are beneficial
to evolution.

2.1 Previous Results
Since its initial proposal, lexicase selection has proven to be useful
in genetic programming systems designed for software synthesis
tasks. The reason for lexicase selection’s use in this domain is
the higher success rate observed in many problems across multiple
genetic programming techniques [1, 5]. Since the discovery of these
results in favor of lexicase selection there has been an ongoing effort
to better understand the behavior of lexicase selection in order to
determine what makes it so effective at finding solutions.

One important finding about lexicase selection is that it main-
tains a higher diversity in the population throughout an evolu-
tionary run compared to other selection methods [3]. Furthermore,
lexicase selection has been shown to be much better at recovering
diversity than tournament selection after a diversity crash [2].

3 METHODS
Data on lexicase selection was gathered on a suite of 5 problems, all
of which were taken from the General Program Synthesis Bench-
mark Suite [4]. Lexicase selection has been shown to produce more
solutions to these problems and maintain higher diversity than
tournament selection, with or without implicit fitness sharing, as
discussed in Section 2.1. All experimental runs were done using
the Clojush genetic programming framework.1 A summary of the
hyperparameter configuration of the Clojush system used for every
experimental run is given in [4].

The parent selection algorithm was varied across experimen-
tal runs for each problem. The empirical results presented in this
paper were gathered from three genetic programming runs per
selection method per problem. While this is clearly not enough
runs to demonstrate the superiority of one setting over another,
1https://github.com/lspector/Clojush

that is not our aim here; it is, however, sufficient to gather data that
characterizes the behavior of the selection algorithms when applied
to these problems. The two parent selection methods included in
the comparison are lexicase selection and tournament selection.
These runs produced a mean number of selection events per con-
figuration of 699,278. The range of number of selection events for
each experimental configuration is 124,087 to 1,529,694.

4 RESULTS
4.1 Cases Utilized for Selection
The first set of results, shown in Figure 1, presents the distribution
of number of training cases utilized by lexicase selection. It is clear
that in all problems the majority of selection events are concluded
using less than 25% of the training cases, and very few selection
events utilize more than 50% of the training cases.

The “mirror image” problem shows a slightly different trend
than the other problems in that it has a peak centered around 12
training cases where other problems peak at 1 or 2 training cases.
The “mirror image” problem is also the only problem that has more
selection events that use 75+ training cases than 50 to 75 training
cases. These unique qualities of the mirror image problem may
indicate some interesting dynamics of lexicase selection, but they
do not disagree with the hypothesis regarding specialists because
the vast majority of the selection events still utilize fewer than 50%
of the training cases.

Every time lexicase selection utilizes a small subset of training
cases, it might be selecting an individual with a very high total error
relative to the rest of the population. If only 50% of the training
cases were considered when selecting an individual it is possible
that some, or all, of the unseen training cases produced very high
errors. These high errors could come from particularly inaccurate
predictions or even penalties. Under other selection methods, such
as tournament selection, the errors from these training cases would
be aggregated into an exceptionally high total error and thus virtu-
ally disqualify the specialist from selection.

4.2 Total Error Rank of Selections
It is clear that lexicase selection provides the opportunity for se-
lection of individuals with relatively high total error. However, it
has only anecdotally been shown that lexicase selection selects
individuals with high total error in practice [7].

To better illustrate the degree to which lexicase selection is elitist
with respect to total error, we instrumented the total error rank of
each individual selected during a selection event for both lexicase
selection and tournament selection. As mentioned previously, the
individual with the lowest total error in the population at the cur-
rent generation will have a rank of 1, the second lowest total error
will have a rank of 2, and so on.

Figure 2 shows a histogram depicting the distribution of total
error rank for selected individuals. Both lexicase selection and
tournament selection are strongly right tailed, suggesting that indi-
viduals with a low total error relative to the rest of the population
have a higher chance of being selected under both algorithms. How-
ever, lexicase selection clearly selects individuals with a high total
error rank more frequently.

Specialization and Elitism in Lexicase and Tournament Selection GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Figure 1: The distribution of number of test cases utilized by lexicase selection across all runs.

Figure 2: Histograms showing the number of selection events of individuals with each total error rank, for each of the studied
problems under lexicase and tournament selection.

Figure 3: The average rank of selected individuals at each generation for each run. All lexicase selection runs, except for “small
or large”, found solutions before the maximum number of generations, which is why there is no data for later generations.

Figure 3 shows the average rank of selected individuals at each
generation of each run. Lexicase selection’s tolerance of individuals
with relatively high total error is clear in this chart, because at all
generations of all runs on all problems lexicase selection appears to
select individuals with a higher total error rank than tournament
selection.

4.3 Selection of Specialists
To show that lexicase selection makes frequent selections of spe-
cialists Figure 4 plots the proportion of training cases utilized by
lexicase selection versus the total error rank of the selected individ-
uals. It is evident that the selection events which select individuals
with high total error rank tend to also utilize fewer training cases.
The individuals selected by lexicase selection at these events are
specialists. The data presented in section 4.2 distinctly conveys that
tournament selection will rarely select individuals with high total
error ranks. Thus, it must be the case that tournament selection

would almost never select the specialists seen in the data of lexicase
selection events.

4.4 Do Specialists Produce Solutions?
Lexicase selection has been shown to have a higher solution rate
than tournament selection for software synthesis problems. As seen
in section 4.1 through 4.3, lexicase selection selects specialist indi-
viduals with relatively high total error, while tournament selection
does not. Thus it can be shown that there is a correlation between
selecting specialist individuals and higher solution rates.

But is there a causal connection here, beyond the correlation?
To examine the link between selecting specialists with higher total
error and improved solution rates, figure 5 plots data from the final
8 generations of runs which found solution programs in a similar
fashion to figure 4. The “small or large” problem is the only problem
which experiences almost no selections of specialists in the final
generations leading to a solution. This finding merits future study.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Edward Pantridge, Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector

Figure 4: The proportion of training cases utilized by lexicase selection versus the total error rank of the selected individuals
across all generations of all runs.

Figure 5: The proportion of training cases utilized by lexicase selection versus the total error rank of the selected individuals
in the final 8 generations of runs which resulted in find a solution.

5 CONCLUSION
This paper presents empirical evidence that suggests lexicase selec-
tion selects “specialist” individuals. The results in this paper also
show that lexicase selection is far less elitist with respect to total
error than tournament selection, both throughout an evolutionary
run and directly before finding solution programs. This may ex-
plain the higher levels of diversity seen throughout evolution when
using lexicase selection, and it may also help to explain the strong
problem-solving performance of lexicase selection.

In the future it would be informative to include more selection
methods in the comparison. We feel that instrumenting implicit
fitness sharing and novelty selection using the methods utilized in
this paper could provide a more interesting comparison of selection
methods. This would come at a greatly increased computational
and storage cost, as all selection methods produce a large number
of selection events per run.

It would also be informative to see if the behaviors demonstrated
in this paper generalize to other problem domains. This would likely
involve the use of variants of lexicase selection, such as ϵ-lexicase
selection.

ACKNOWLEDGEMENTS
Data storage and some compute infrastructure provided byMassMu-
tual. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
necessarily reflect the views of MassMutual.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1617087. Any opinions, findings,
and conclusions or recommendations expressed in this publication

are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. 2017. A

Grammar Design Pattern for Arbitrary Program Synthesis Problems in Genetic
Programming. In Genetic Programming. Springer International Publishing, Cham,
262–277.

[2] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2016. Effects of
Lexicase and Tournament Selection on Diversity Recovery and Maintenance.
In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
Companion (GECCO ’16 Companion). ACM, New York, NY, USA, 983–990. http:
//doi.acm.org/10.1145/2908961.2931657

[3] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2016. Lexicase Selec-
tion for Program Synthesis: A Diversity Analysis. Springer International Publishing,
Cham, 151–167. https://doi.org/10.1007/978-3-319-34223-8_9

[4] Thomas Helmuth and Lee Spector. 2015. General Program Synthesis Benchmark
Suite. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation (GECCO ’15). ACM, New York, NY, USA, 1039–1046. http://doi.acm.
org/10.1145/2739480.2754769

[5] T. Helmuth, L. Spector, and J. Matheson. 2015. Solving Uncompromising Problems
With Lexicase Selection. IEEE Transactions on Evolutionary Computation 19, 5 (Oct
2015), 630–643.

[6] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[7] Nicholas Freitag McPhee, David Donatucci, and Thomas Helmuth. 2016. Us-
ing Graph Databases to Explore the Dynamics of Genetic Programming Runs.
Springer International Publishing, Cham, 185–201. https://doi.org/10.1007/
978-3-319-34223-8_11

[8] Lee Spector. 2012. Assessment of Problem Modality by Differential Performance of
Lexicase Selection in Genetic Programming: A Preliminary Report. In Proceedings
of the 14th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO ’12). ACM, New York, NY, USA, 401–408. http://doi.acm.org/10.1145/
2330784.2330846

http://doi.acm.org/10.1145/2908961.2931657
http://doi.acm.org/10.1145/2908961.2931657
https://doi.org/10.1007/978-3-319-34223-8_9
http://doi.acm.org/10.1145/2739480.2754769
http://doi.acm.org/10.1145/2739480.2754769
https://doi.org/10.1007/978-3-319-34223-8_11
https://doi.org/10.1007/978-3-319-34223-8_11
http://doi.acm.org/10.1145/2330784.2330846
http://doi.acm.org/10.1145/2330784.2330846

	Abstract
	1 Introduction
	2 Lexicase Selection
	2.1 Previous Results

	3 Methods
	4 Results
	4.1 Cases Utilized for Selection
	4.2 Total Error Rank of Selections
	4.3 Selection of Specialists
	4.4 Do Specialists Produce Solutions?

	5 Conclusion
	References

