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ABSTRACT
Recently, it was shown that Many-Objective Evolutionary Algo-
rithms (MaOEAs) that employ a set of convex weight vectors are
overspecialized in solving certain benchmark problems. This over-
specialization is due to a high correlation between the Pareto fronts
of the test problems and the simplex formed by the weight vectors.
In furtherance of avoiding this issue, we propose a novel steady-
state MaOEA that does not require weight vectors and adaptively
chooses between two density estimators: one based on the IGD+
indicador that strengthens convergence to the Pareto front and
another one, based on the s-energy indicator, which improves the
diversity of the solutions. This approach, called sIGD+-MOEA, is
compared with respect to NSGA-III, MOEA/D, IGD+-EMOA and
MOMBI2 (which are MaOEAs that employ convex weight vectors)
on the test suites WFG and WFG−1, using the hypervolume indica-
tor. Experimental results show that sIGD+-MOEA is a promising
alternative that can solve many-objective optimization problems
whose Pareto fronts present different geometries.
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1 INTRODUCTION
In this work, we focus on multi-objective optimization problems
(MOPs) which involve the simultaneous optimization of several,
often conflicting, objective functions of the form:

min
x⃗ ∈Ω

F⃗ (x⃗ ) = ( f1 (x⃗ ), f2 (x⃗ ), . . . , fm (x⃗ ))T , (1)

where x⃗ is the vector of decision variables, Ω ⊆ Rn is the decision
variable space and F⃗ (x⃗ ) is the vector of m (≥ 2) objective func-
tions (fi : Rn 7→ R) that belongs to the feasible objective space
Ψ ⊆ Rm . MOPs having four or more objective functions are called
many-objective optimization problems (MaOPs) [9]. Solving a MOP
involves finding the best possible trade-offs among its objectives.
The particular set that yields the optimum values is known as the
Pareto Optimal Set (P∗) and its image in objective space is known
as the Pareto Optimal Front (PF ∗).

Multi-Objective Evolutionary Algorithms (MOEAs) are meta-
heuristics based on the principles of natural selection. They are
population-based and gradient-free search methods that have been
successfully applied to solve complexMOPs [1]. Commonly,MOEAs
have employed the Pareto dominance relation1 as their main se-
lection mechanism and a density estimator as secondary selec-
tion criterion in order to improve diversity. However, Pareto-based
MOEAs do not perform properly when solving MaOPs due to the
exponential increase of solutions preferred by the Pareto domi-
nance relation which implies a dilution of the selection pressure [9].
Consequently, three main approaches have been proposed in order
to design Many-Objective Evolutionary Algorithms (MaOEAs): (1)
to use a set of reference points to guide the selection process, (2)
decomposition of the MOP, and (3) the use of an indicator-based
selection mechanism.

Most state-of-the-art MaOEAs employ a set of convex weight
vectors. A vector w⃗ ∈ Rm is a convex weight vector if ∑mi=1wi = 1
and wi ≥ 0 for all i = 1, . . . ,m. These weight vectors lie on an
(m − 1)-simplex and are used by MaOEAs as search directions
[11], reference points [2, 10] and as part of a quality indicator [5].
However, Ishibuchi et al. [8] empirically showed that the use of
convex weight vectors overspecializes MaOEAs on MOPs whose
Pareto fronts are strongly correlated to the simplex formed by
such weight vectors. In other words, such MaOEAs are unable to
produce good results when tackling MOPs whose Pareto fronts are
not highly coupled with the (m − 1)-simplex.

1A solution x⃗ ∈ Ω Pareto-dominates a solution y⃗ ∈ Ω (denoted as x⃗ ≺ y⃗), if and
only if ∀i ∈ {1, . . . ,m }, fi (x⃗ ) ≤ fi (y⃗ ) and ∃j ∈ {1, . . . ,m } : fj (x⃗ ) < fj (y⃗ ). In
case, fi (x⃗ ) ≤ fi (y⃗ ) for all i ∈ {1, . . . ,m }, x⃗ is said to weakly dominate y⃗ and it is
denoted as x⃗ ⪯ y⃗ .
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In this work, we focus on tackling this overspecialization by
proposing a MaOEA that benefits from the interaction/synergy
between two indicator-based density estimators: one based on the
IGD+ indicator [7] which aims to drive the population to PF ∗ and
another one, based on the s-energy indicator [4], which promotes
the generation of uniformly distributed solutions. The proposed
approach, called sIGD+-MOEA, does not require a set of convex
weight vectors in any of its mechanisms. Thus, it is a more gen-
eral optimizer that can solve MOPs having different Pareto front
geometries.

Quality indicators (QIs) are real-value functions that numerically
assess aspects such as convergence, distribution and spread of an
approximation to the Pareto front (denoted as A) produced by
an MOEA [13]. Regarding convergence QIs, a valuable property
is Pareto-compliance. A (weakly) Pareto-compliant QI guarantees
that one algorithm’s indicator values are better (or at least not
worse) than another in case the approximation sets of the former
(weakly) dominates the other’s. Hence, it is straightforward to
think that if the indicator is optimized, we will obtain a better A.
Typically, Indicator-based MOEAs (IB-MOEAs) have been designed
by a single QI. In consequence, their search behavior and produced
approximation sets show characteristics related to the QI being
used. However, an open research field is to determine which is
the effect of a multi-indicator selection mechanism. sIGD+-MOEA
exploits this idea by combining two QIs. On the one hand, IGD+,
proposed by Ishibuchi et al. [7], is a convergence indicator that is
weakly Pareto compliant. Mathematically, given an approximation
set A and a reference setZ, IGD+ is defined as follows (assuming
minimization):

IGD+ (A,Z) =
1
|Z|

∑
z⃗∈Z

min
a⃗∈A

d+ (a⃗, z⃗) (2)

where d+ (a⃗, z⃗) =
√∑m

k=1[maxak − zk , 0]2. IGD+ measures the av-
erage distance from each reference vector to the nearest dominated
region related to an element inA. The aim is to minimize the value
of IGD+. On the other hand, Hardin and Saff proposed the s-energy
indicator [4] in order to measure the even distribution of a set of
points in k-dimensional manifolds. Its mathematical definition is
given by the next formula:

Es (A) =
∑
i,j

a⃗i − a⃗j

−s (3)

where A is an approximation set which represents a manifold,2
and s > 0 is a fixed parameter. Its minimization leads to a uniform
distribution of the points in A if s ≥ k [4].

The remainder of this paper is organized as follows. Section 2
describes our proposed sIGD+-MOEA. In Section 3, we present our
experimental results using the Walking-Fish-Group (WFG) [6] test
suite and its minus version WFG−1. Finally, Section 4 provides our
preliminary conclusions and some possible research paths.

2The Pareto front of a MOP withm objective functions is at most an (m −1)-manifold.
In case the dimension is less thanm − 1, the Pareto front is called degenerated.

2 OUR PROPOSED APPROACH
sIGD+-MOEA is a steady-state MOEA that uses Pareto dominance
as its main selection criterion and incorporates two indicator-based
density estimators (IB-DEs) where each one is employed depend-
ing on certain conditions. An IB-DE requires two steps: (1) cal-
culate the individual contributions to the indicator of each so-
lution, (2) delete the worst-contributing solution. For IGD+, the
individual contribution C of a solution a⃗ ∈ A is defined as fol-
lows: C (a⃗,A,Z) = |IGD+ (A,Z) − IGD+ (A \ {a⃗},Z) |. Regard-
ing s-energy, the individual contribution of a⃗ ∈ A is given by:
C (a⃗,A) = 1

2 (Es (A) − Es (A \ {a⃗})). Based on these equations and
the above steps, we define the density estimators: IGD+-DE and
S-ENERGY-DE, respectively.

Through the search process, sIGD+-MOEA switches between
IGD+-DE and S-ENERGY-DE depending on the quality of the popu-
lation measured by an approximation to the hypervolume indicator
[12] (denoted as HVappr ). At the end of each generation, HVappr
is computed and the value is stored in a circular array SHV of size
Tw . After the first Tw generations, we calculate the index of distri-
bution β of the samples and a linear regression model is computed
in order to determine the angle θ related to the slope of the linear
model. Using β and θ and the thresholds β̄ and θ̄ , we can determine
if sIGD+-MOEA has stagnated regarding the convergence graph
produced by HVappr . If the search process is stagnated, we execute
S-ENERGY-DE in order to improve diversity; otherwise, we employ
IGD+-DE.

Algorithm 1 sIGD+-MOEA general framework
Require: Tw , β̄ , θ̄
Ensure: Pareto front Approximation
1: Randomly initialize population P
2: r ← 0
3: while stopping criterion is not fulfilled do
4: q ← Var iation (P )
5: Q ← P

⋃
{q }

6: {L1, L2, . . . , Lk } ← nondominated-sorting(Q )
7: Update reference point z⃗max using L1
8: SHV[r mod Tw ]← HVappr (L1, z⃗max)
9: Statistically analyze the last Tw samples in SHV and generate β and

θ
10: if k = 1 and β ≤ β̄ and θ ∈ [−θ̄, θ̄ ] then
11: c ←S-ENERGY-DE(L1,m)
12: j ← arg maxici
13: else
14: if |Lk | > 1 then
15: Z ← L1
16: c ← IGD+-DE(Lk , Z)
17: j ← arg minici
18: else
19: j is equal to the sole individual in Lk
20: P ← Q \ {j }
21: r ← r + 1
22: return P

In Algorithm 1, we present the pseudocode of sIGD+-MOEA. It re-
quires three parameters: Tw , β̄ and θ̄ . Since our proposed approach
is a steady-state MOEA, it generates one offspring per generation
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Table 1: Parameters adopted in our experiments.

Objectives (m) 2 3 4 5 6
Population size 120 120 120 126 126
Objective function
evaluations (×103 ) 50 50 60 70 80

W
FG variables (n) 24 26 28 30 32

position-related
parameters 2 2 3 4 5

Weight-vector
partitions (H ) 119 14 7 5 4

(line 4). This newly created solution is added to the current popula-
tion P in order to form the temporary populationQ .Q is ranked by
the nondominated sorting algorithm [2] in order to form the ranks
{L1,L2, . . . ,Lk }, where L1 is the set of nondominated solutions and
Lk represents the worst solutions regarding Pareto dominance. In
line 8, HVappr is calculated using L1 and the value is stored in SHV.
The statistical analysis of SHV is done in line 9 in order to compute
β and θ . Based on these values, sIGD+-MOEA decides which IB-DE
to execute.

3 EXPERIMENTAL RESULTS
In order to illustrate the efficiency of sIGD+-MOEA, we focus on
WFG2 and WFG6 as well as on their minus versions: WFG2−1 and
WFG6−1 (the complete study is available at [3]) for 2 to 6 objective
functions. We compare the results of sIGD+-MOEA with respect to
IGD+-EMOA3 [10], NSGA-III4 [2], MOEA/D5 [11] and MOMBI26
[5]. All common adopted parameter values used by the selected
MOEAs and our proposed approach are described in Table 1. Regard-
ing sIGD+-MOEA, the values of β̄ and θ̄ were set to 0.01 and 0.25◦,
respectively for all the test instances. The neighborhood size T of
MOEA/Dwas set to 20 in all cases. Since our proposed approach and
the considered MOEAs employ Simulated Binary Crossover (SBX)
and polynomial-based mutation (PBX) as their variation operators,
for two and three objective functions, the crossover probability and
distribution index were set to 0.9 and 20, respectively; while for
MaOPs, these values were set to 1.0 and 30. For PBX, the probability
and distribution index were set to 1/n and 20, respectively. For
performance assessment of the MOEAs, we used the hypervolume
indicator (HV), and its reference point was set to {2∗i+1}i=1,2, ...,m .
We performed 30 independent runs for all scenarios, and we applied
the Wilcoxon rank sum test (one-tailed) to the mean hypervolume
indicator values in order to determine whether sIGD+-MOEA per-
formed better than the other MOEAs at the significance level of
5%. In Tables 2 and 3, the two best HV values are highlighted using
gray tones where the darker one corresponds to the best HV value.
The symbol # is placed when sIGD+-MOEA performs better in a
statistical signficant way.

Table 2 presents the hypervolume values for the problems WFG2
and WFG6. Clearly, sIGD+-MOEA was unable to obtain the best
results. However, the differences concerning the best MOEA are not
very significant. Overall, our approach obtains the third place in the
ranking of MOEAs. Figure 1 shows the Pareto fronts forWFG6 of all
MOEAs adopted in our study. Based on these plots, it is possible to
see that the HV differences are due to the distribution of solutions.
3The source code was provided by its author Edgar Manoatl Lopez.
4Available at http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
5Available at http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
6EMO Project available at http://computacion.cs.cinvestav.mx/~rhernandez/

Table 2: Mean and standard deviation (in parentheses) of the
hypervolume indicator for the comparedMOEAs and sIGD+-
MOEA in WFG2 and WFG6

MOP Dim. sIGD+-MOEA IGD+-EMOA NSGA-III MOEA/D MOMBI2

W
FG

2 2 1.097554e+01
(4.122132e-01)

1.100954e+01
(3.978609e-01)

1.091544e+01#
(3.990434e-01)

9.812547e+00#
(5.469032e-01)

1.076660e+01#
(3.822806e-01)

3 9.992770e+01
(2.544887e-01)

9.794645e+01#
(6.749397e+00)

1.000303e+02
(2.020421e-01)

9.425491e+01#
(1.887090e+00)

9.995196e+01
(2.218338e-01)

4 9.244139e+02
(3.316801e+00)

8.974524e+02#
(1.285704e+02)

9.272970e+02
(2.893643e+00)

8.519469e+02#
(1.824213e+01)

9.276510e+02
(2.419216e+00)

5 1.015545e+04
(5.247626e+01)

7.528502e+03#
(3.118251e+03)

1.022660e+04
(2.444328e+01)

9.147103e+03#
(2.989196e+02)

1.021265e+04
(2.425440e+01)

6 1.310595e+05
(5.984829e+02)

5.753396e+04#
(2.269538e+04)

1.331408e+05
(4.343800e+02)

1.178550e+05#
(3.855927e+03)

1.328084e+05
(6.917661e+02)

W
FG

6 2 8.360707e+00
(3.881634e-02)

8.365132e+00
(4.216268e-02)

8.373642e+00
(3.334034e-02)

8.164502e+00#
(1.036161e-01)

8.349707e+00#
(4.006040e-02)

3 7.316186e+01
(3.090747e-01)

7.433975e+01
(3.131495e-01)

7.356399e+01
(3.730537e-01)

7.200035e+01#
(6.485353e-01)

7.364138e+01
(3.220770e-01)

4 7.349888e+02
(3.975988e+00)

7.473567e+02
(3.402231e+00)

7.396874e+02
(4.392577e+00)

7.218089e+02#
(7.685726e+00)

7.422923e+02
(4.483313e+00)

5 8.496471e+03
(5.271866e+01)

8.556716e+03
(9.691970e+02)

8.640890e+03
(4.979948e+01)

7.556842e+03#
(1.664222e+02)

8.661809e+03
(3.853133e+01)

6 1.083477e+05
(9.980675e+02)

9.415101e+04#
(2.883219e+04)

1.167143e+05
(6.034739e+02)

8.312614e+04#
(1.675956e+03)

1.168987e+05
(5.753055e+02)

Table 3: Mean and standard deviation (in parentheses) of the
hypervolume indicator for the comparedMOEAs and sIGD+-
MOEA in WFG2−1 and WFG6−1

MOP Dim. sIGD+-MOEA IGD+-EMOA NSGA-III MOEA/D MOMBI2

W
FG

2−
1 2 5.937841e+01

(2.237740e-03)
5.933772e+01#
(1.725388e-02)

5.938144e+01
(1.176128e-03)

5.797012e+01#
(7.237092e-02)

5.905142e+01#
(8.152131e-03)

3 7.319968e+02
(3.518163e-01)

6.773068e+02#
(7.783953e+00)

7.256549e+02#
(2.471515e+00)

7.318071e+02#
(5.137348e-01)

7.277336e+02#
(7.218694e-01)

4 1.040013e+04
(1.811214e+01)

4.816314e+03#
(6.745302e+01)

1.018125e+04#
(3.125945e+01)

9.249223e+03#
(8.345493e+02)

1.004970e+04#
(2.447182e+01)

5 1.640498e+05
(8.185932e+02)

9.805288e+04#
(4.411349e+04)

1.470928e+05#
(8.586496e+03)

1.122933e+05#
(1.197256e+04)

1.499384e+05#
(4.291788e+02)

6 2.855584e+06
(1.421240e+04)

2.783331e+06#
(2.624045e+04)

2.132797e+06#
(1.478385e+05)

1.687099e+06#
(1.866532e+05)

2.503181e+06#
(7.566149e+02)

W
FG

6−
1 2 5.825329e+01

(2.407529e-03)
5.811072e+01#
(3.129884e-02)

5.824431e+01#
(1.403821e-03)

5.731344e+01#
(7.849495e-02)

5.765449e+01#
(3.158869e-02)

3 7.552594e+02
(9.026264e-01)

5.298722e+02#
(2.874383e+01)

7.467881e+02#
(2.547384e+00)

7.362416e+02#
(1.543128e+00)

7.514303e+02#
(4.566291e-01)

4 1.185440e+04
(2.230257e+01)

7.598649e+03#
(2.210589e+01)

1.130555e+04#
(1.261387e+02)

1.110350e+04#
(8.380234e+01)

1.127234e+04#
(7.450687e+00)

5 2.119733e+05
(8.382179e+02)

1.276462e+05#
(9.209553e+02)

1.941781e+05#
(2.753116e+03)

1.728454e+05#
(1.224291e+03)

1.890477e+05#
(1.482334e+02)

6 4.085900e+06
(6.197265e+04)

2.368114e+06#
(9.756636e+03)

3.694659e+06#
(6.599968e+04)

2.903169e+06#
(2.763830e+04)

3.213215e+06#
(1.097736e+03)

Since IGD+-EMOA, NSGA-III, MOEA/D and MOMBI2 rely on the
set of weight vectors in order to find intersection points with the
Pareto front, they obtained, in general, uniformly distributed Pareto
fronts. On the other hand, sIGD+-MOEA relies on the s-energy indi-
cator in order to obtain such distribution of solutions. However, the
front generated by sIGD+-MOEA is considerably well distributed,
and it entirely covers the Pareto front surface.

Table 3 summarizes the HV results when tackling the minus
versions of problems WFG2 and WFG6. From this table, it is ev-
ident that sIGD+-MOEA produces the best results in all the test
instances. Furthermore, as the number of objective functions in-
creases, sIGD+-MOEA presents a more considerable HV difference
to the second best MOEA. In other words, the performance of our
approach improves in many-objective optimization problems. Fig-
ure 1 shows the Pareto fronts related to the MOEAs in problem
WFG6−1, where it is possible to see that sIGD+-MOEA generates
uniformly distributed solutions, covering the Pareto front entirely.
In contrast, the other MOEAs cannot produce uniformly distributed
solutions due to the use of convex weight vectors and, in some cases,
they cannot completely cover the Pareto front. On the basis of these
results, it is possible to see that the performance of sIGD+-MOEA
is not strongly related to the shape of the Pareto front as is the case
of the other MOEAs. Although sIGD+-MOEA does not obtain the
best results in the original WFG test problems, its performance is

http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://computacion.cs.cinvestav.mx/~rhernandez/
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Figure 1: Pareto fronts produced by sIGD+-MOEA and the considered MOEAs on problemsWFG6 andWFG6−1 for three objec-
tive functions. All fronts correspond to the median hypervolume values.

not very different from that of the best MOEA. Additionally, our
approach does not get degrade when solving the minus versions of
the considered MOPs as happens with the other MOEAs.

4 CONCLUSIONS AND FUTUREWORK
This paper presented a Many-Objective Evolutionary Algorithm
that aims to be a more general optimizer. The new approach, called
sIGD+-MOEA, employs two density estimators based on the indi-
cators IGD+ and s-energy in order to improve both its convergence
and diversity. The switching between the two indicator-based den-
sity estimators (IB-DEs) is done by statistically analyzing the quality
of the population based on an approximation to the hypervolume
indicator. sIGD+-MOEA does not require a set of convex weight
vectors in any of its mechanisms which allows it to solve MOPs
having different Pareto front geometries. The experimental results
have shown that our proposed approach is competitive with respect
to NSGA-III, MOEA/D, MOMBI2 and IGD+-EMOA in the original
WFG test suite while it outperforms the adopted MOEAs in all the
WFG−1 problems when using the hypervolume indicator. There
is still a lot of room for improvement, being the balance between
IGD+ and s-energy the most critical aspect to be analyzed. We
have observed that S-ENERGY-DE usually accepts solutions that
are not good in the Pareto dominance sense when tackling MaOPs.
Hence, we have to improve the selection mechanism of the IB-DEs.
Furthermore, the reference set of IGD+ needs some refinement for
MaOPs.
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