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ABSTRACT
AMulti-objective optimization problemwith several di�erent Pareto
optimal solution sets is de�ned as a multi-modal multi-objective op-
timization problem. Finding all the Pareto optimal solution sets
for this type of problem can provide more options for the de-
cision maker, which is important in some real-world situations.
The Multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) has been proved to perform well in various multi-
objective problems but it does not perform well in �nding all the
Pareto optimal solution sets for multi-modal multi-objective opti-
mization problems. In this paper, a MOEA/D variant is proposed to
solve these problems. K solutions are assigned to each weight vec-
tor in the MOEA/D variant and the solutions are evaluated by not
only the scalarizing function values but also the minimum distance
from other solutions with the same weight vector and the average
distance from the neighboring solutions in the same weight vector
grid. Experimental results show that the MOEA/D variant performs
much better than the original MOEA/D on the multi-modal distance
minimization problems.
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1 INTRODUCTION
Some multi-objective optimization problem can have several dif-
ferent Pareto optimal sets. Put another way, at least two similar
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parts of feasible region map to the same part of the objective set.
This type of problems is de�ned as Multi-modal multi-objective
optimization problems[9]. Figure 1 describes an exemplary one.
The three rhombuses in the feasible region correspond to the same
rhombus in the objective set.

Solving multimodal multi-objective optimization problems is
important and necessary. For a decision maker, it is never a bad
thing to have plenty of options since there are always a lot of
constraints in the real world. An exemplary real-world multi-modal
multi-objective optimization problem is presented in section 3

There are a lot of e�orts have been paid tomodify evolutionary al-
gorithms to solvemulti-modal optimization problems[2, 4, 8, 12–14].
For multi-modal multi-objective optimization problems, Liang[9]
introduced the niching method[11] into NSGA-II[3] to deal with
them. In this paper, we incorporated a new diversity space mech-
anism into MOEA/D. We used multi-grid method[6] to separate
its population and introduced two factors to force the solutions
with the same weight vector to stay away from each other. The
experimental results show that the new MOEA/D variant out per-
forms the original MOEA/D in solving multimodal multi-objective
optimization problems.
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Figure 1:Multi-modalmulti-objective optimization problem

This paper is organized as follows. Section 2 presents the de-
cision space diversity maintenance mechanism of the MOEA/D
variant. Section 3 examines the e�ects of the proposed idea. Section
4 concludes this paper.

2 THE PROPOSED DECISION SPACE
DIVERSITY MAINTENANCE MECHANISM

MOEA/D has been proved to perform pretty well in multi-objective
problems[1, 7, 10]. However, In a preliminary experiment, the poor
performance of MOEA/D on multimodal multi-objective problems
had been observed, which is shown in Figure 6. In order to solve the
above problem, we modi�ed the original MOEA/D. In this study, we
adopted the PBI method (Weighted Sum and Tchebyche� are left for
future research). Since in multi-modal multi-objective optimization
problems, an objective vector can be mapped from several di�erent
solutions in decision space. The original MOEA/D assign each
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weight vector one solution, which can only obtain one of these
solutions.

In order to �nd all these solutions, the number of solutions for
each weight vector should at least be the same as the number of
di�erent Pareto sets. Thus, We assignK solutions to a weight vector.
This can be viewed as using k grid structures of weight vectors.

ƒ10

ƒ2

Figure 2: The k grid structures of weight vectors

Figure 2 shows an example of 3 grid structures of weight vectors.
The triangles, squares, and circles represent solutions in decision
space. "Solutions" with the same shape are in the sameweight vector
grid. Parent selection and solution replacement are performed in
each weight vector grid independently in the same manner as the
original MOEA/D. However, solutions with the same weight vector
(These solutions are in di�erent weight vector grids but correspond
to the same weight vector) can be overlapped. In order to separate
these overlapped solutions, we calculated two factors to force them
to stay away from each other. The �rst factor is the minimum
distance from other solutions with the same weight vector. We
prefer solution who have a larger such distance. This preference
will cause evolutionary pressure that makes solutions with the same
weight vector away from each other, which hopefully can help us to
single out each solution in di�erent Pareto sets. The second factor
is the average distance from neighboring solutions (solutions in the
neighborhood de�ned in [15]) in the same weight vector grid. We
prefer solution who have a lower such distance, which will make
the solutions in a neighborhood of a weight vector grid more close
to each other.

We use weighted sum method to combine these three factors.
The evaluation function is as follows:

feval = w1д
pbi +w2dmin +w3davд (1)

where дpbi is the PBI function value, dmin is the minimum dis-
tance mentioned above, davд is the average distance mentioned
previously,w1,w2,w3 are weights of these three factors.w2 is set
to be a negative number while w1 and w3 are set to be positive
numbers. We prefer solution with a smaller feval value, which
force solutions to evolve to have a smaller davд and дpbi but larger
dmin .

The pseudo code of the proposed MOEA/D variant is shown in
Algorithm 1. The space complexity of the proposed MOEA/D vari-
ant is the same as the original MOEA/D since they both maintain
the population of the same size. For solving the test problem de�ned
in section3, the time complexity for calculating dmin isO(KD). The
time complexity for calculating дpbi is O(MNbuildinдD).M is the
number of objectives, Nbuildinд is the number of a particular type

of buildings, and D is the dimensionality of the variable space. In
the experiment, K and Nbuildinд are both 4 and the distance cal-
culation are in the same space whose dimensionality is 2. So, the
time complexity for calculating dmin is dominated by the time com-
plexity for calculating дpbi . The time complexity for calculating
davд isO(TD). In the experiment, T is set to be 20, which is slightly
larger than the product ofM and Nbuildinд . We could set T to be
the product ofM and Nbuildinд , then the complexity of calculating
davд is the same as the complexity of calculating дpbi . Thus, the
time complexity of the proposed MOEA/D variant is almost the
same as the complexity of the original MOEA/D.

Algorithm 1 The proposed MOEA/D variant
Input: A MOP, a spread of evenly distributed weight vectors: Λ =

{λ1, λ2, ..., λN }, N: The number of the weight vectors, MNI:
max number of iteration, T:number of neighbours, K: number
of weight vector grids

Output: The �nal population
1: Calculate the Euclidean distance of every two di�erent weight

vectors and single out T closest weight vectors as neighbours
of a weight vector. Store the indexes of neighbors of weight
vector λi in B[i], B[i] = {i1, i2, ..., iT }

2: Initialize the population X = {x1,x2, ...,xN } randomly and
calculated the respective object value F (x) for each solution x .
Assign k solutions to each weight vector.

3: Initialize the reference point: set Z = {z1, z2, ..., zm } by a
problem-speci�c method.

4: for t = 1 → MNI do
5: for i = 1 → N do
6: for p = 1 → K do
7: Reproduction: Randomly select two solutions

x l ,xr in the neighborhood of xi in weight vector grid p to
generate a new solution xchild

8: Update of reference point: for each j ∈

{1, 2, ...,m}, if zj > fj (xchild ), set zj = fj (xchild )
9: Update of Neighboring Solutions in weight

vector grid p: for each parental solution xparental in the
neighborhood, if feval (xchild ) < feval (xparental ), replace
xparental with xchild

10: end for
11: end for
12: end for

3 EFFECTS OF THE PROPOSED IDEA
3.1 Test problems
We employed the test problem proposed by Ishibuchi[5]. There is a
company who wants to build an apartment. The company wants
to make the new apartment close to a hospital, a subway station,
a primary school, and a gas station. The minimum distance from
the apartment to any hospital, any subway station, any primary
school, and any gas station are the four objectives.

Since there are a lot of hospitals, subway stations, primary
schools, and gas stations in a city, it can form a distance min-
imization problem with several di�erent Pareto sets. We call it
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multi-modal distance minimization problem(MMDMP), which is
depicted in the left chart in Figure 4. The four squares are identical.
In each vertex of a square, there is a building we are interested in.
The triangle represents a hospital, the circle represents a subway
station, the pentagon represents a gas station, and the pentacle
represents a school. Any point in the chart is a potential place
to build an apartment. Apparently, points in the four squares are
nondominated to each other. All points out of the four squares are
dominated by points in them. Apart from this basic problem, we
also test our algorithm on its variants. In one variant shown in the
middle chart, the size of each "Pareto box" is slightly di�erent. In
this case, the true Pareto set is the smallest box. In the other variant
shown in the right chart, the shape of each "Pareto box" is slightly
di�erent. In this case, a part of each box is Pareto optimal.

3.2 Examine the e�ect of dmin and davд
Experimental setting:

We de�ne a criterion called Pareto set coverage ratio to measure
the decision space diversity of solutions. It is formulated as pc =
nc/ne where pc is the Pareto set coverage ratio, nc is the number
of covered Pareto sets, ne is the number of existing Pareto sets.

We test three di�erent settings ofW in the modi�ed MOEA/D.
They are W1 = (1, 0, 0), W2 = (1,−1, 0), W3 = (1,−1, 0.05). W1
means we do not incorporate dmin and davд .W2 means we only
incorporate dmin andW3 means we incorporate both.

The max number of iteration is 80, T is 20, H is 10, K is 4, the
distribution indexes in the simulated binary crossover(SBX) and
the polynomial mutation are set to be 20, the crossover rate is 1.
In a similar manner as Zhang & Li[15], Zi is initialized to be
nine-tenths of the lowest value of fi found in the objective set of
the initial population. The initial population for the three MOEA/D
variants is identical. The random numbers used to select parents,
used to determine whether mutate or not, and used for the SBX and
the polynomial mutation are also identical for the three MOEA/D
variants.

Since the three variants all converge very fast (in 2 or 3 iterations),
we do not compare convergence in this paper. We only compare
solutions in the �nal population in this paper.We run the algorithms
100 times and calculate the average Pareto set coverage ratio.
Experimental results:

Figure 5 shows the Pareto set coverage ratio of each iteration for
di�erent settings ofw in the proposed MOEA/D on the MMDMP
with four identical Pareto boxes, with Pareto boxes of slightly dif-
ferent size, and with Pareto boxes of slightly di�erent shape from
left to right.

For brevity, we call the modi�ed MOEA/D withW1 MOEA/D1,
themodi�edMOEA/DwithW2MOEA/D2, and themodi�edMOEA/D
withW3 MOEA/D3. From the �gure we can see that the Pareto set
coverage ratio of solutions ofMOEA/D2 are much higher than so-
lutions ofMOEA/D1, which means incorporating dmin improves
the diversity of the solutions and thus help the MOEA/D variant
�nd more Pareto sets. The Pareto set coverage ratio of solutions
of MOEA/D3 are slightly higher than solutions of MOEA/D2 in
MMDMP with four identical Pareto boxes. In MMDMP with four
Pareto boxes of di�erent size, the performance ofMOEA/D2 and
MOEA/D3 is similar.MOEA/D3 perform worse thanMOEA/D2 in

MMDMP with four Pareto boxes of di�erent shapes. The e�ect of
davд is not obvious.

3.3 Examine the e�ect of K
Experimental setting:

We test the performance of the proposed MOEA/D variant with
di�erent K on the above test problems. In order to have a fair
comparison, we adjust H according to K to make the population
size of the MOEA/D variants almost the same. The population size
is 1120, 1092, and 1144 when k is 2, 3, and 4 respectively.W is
(1,−1, 0.05). All other settings are the same as in section 3.2.

Experimental results: Figure 3 shows that the Pareto set coverage
ratio of the MOEA/D variant with a large K is higher than the
MOEA/D variant with a smaller K. With a larger K, the MOEA/D
variant can �nd more Pareto sets when the population size stays
the same.

Figure 3: Results of MOEA/D variants with di�erent K

3.4 Compare the original MOEA/D and the
proposed MOEA/D variant

Experimental setting:
The population size of the MOEA/D variant and the original

MOEA/D is 1144 and 1140 respectively.W of the proposedMOEA/D
variant is (1,−1, 0.05) Other settings are the same as in section 3.2.
Experimental results:

As showed in Figure 6, the average Pareto set coverage ratio of
solutions of the proposed MOEA/D variant are much higher than
the solutions of the original MOEA/D.

4 CONCLUSIONS
In this paper, we incorporated a decision space diversity main-
tenance mechanism into MOEA/D to solve multi-modal multi-
objective optimization problems without increasing the space and
time complexity. The proposed idea was examined through exper-
iments on the test problems de�ned in section 3. The results in
section 3.2 showed that incorporating dmin into the evaluation
function could signi�cantly increase the decision space diversity of
solutions and helped the MOEA/D variant to �nd more di�erent
Pareto sets. The e�ect of incorporating davд is not apparent, which
needs further study. The results in section 3.3 showed that the deci-
sion space diversity increase as K becomes larger. From results in
Figure 6, we can see the proposed MOEA/D have a much higher
performance in decision space diversity than the original MOEA/D.



GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Chenxu Hu and Hisao Ishibuchi

x0

y
Hospital

SchoolGas Station

Subway Station

x0

y

x0

y

Figure 4: A sample multi-modal distance minimization problem and its variants

Figure 5: Results of the proposed MOEA/D variant with di�erentW

Figure 6: Results of the original MOEA/D and the proposed MOEA/D variant withW3 on MMDMP with 4 Pareto boxes

It would be interesting to Modify the formula of the evaluation
function, adjust the parameters, and test our algorithm on di�erent
test problems. All these are left for future research.
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