
Diploidy for Evolving Neural Networks

Cara Reedy
Rensselaer Polytechnic Institute

110 8th St
Troy, NY, United States of America

reedyc@rpi.edu

ABSTRACT
Genetic algorithms and artificial neural networks are two widely-
used techniques that can be combined with each other to produce
evolved neural networks. Some research has also looked at the use
of diploidy in genetic algorithms for possible advantages over the
haploid genetic representation usually used, most notably in the
form of better adaptation to changing environments. This paper
proposes a diploid representation for evolving neural networks,
used in an agent-based simulation. Two versions of the diploid
representation were tested with a haploid version in one static and
two changing environments. All three genetic types performed
differently in different environments.

CCS CONCEPTS
• Computing methodologies~Neural networks • Computing
methodologies~Genetic algorithms

KEYWORDS
Diploidy

ACM Reference format:
Cara Reedy. 2018. Diploidy for Evolving Neural Networks. In
Proceedings of ACM GECCO conference, Kyoto, Japan, July 2018
(GECCO’18), 4 pages.
DOI: 10.1145/3205651.3208226

1 INTRODUCTION
Genetic algorithms (GAs) and artificial neural networks

(ANNs) are both problem-solving techniques inspired by nature.
GAs are a simplified version of evolution and artificial or natural
selection, while ANNs were inspired by the structure of the brain
and its ability to learn and solve problems.

In the same way that evolution and learning are not entirely
separate processes – natural brains evolved, and learned behaviors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5764-7/18/07$15.00
https://doi.org/10.1145/3205651.3208226

can influence selection – GAs and ANNs can be combined. GAs
can be used instead of or beside conventional learning functions in
an ANN. They are typically used to evolve either the weights of
the network or both the weights and structure of the network,
although other possibilities, such as only evolving the structure or
evolving the transfer functions of the network nodes, have also
been tested. Evolving the weights can be useful when gradient
descent-based learning methods cannot be used or are undesirable,
such as when the error function is not differentiable, and evolving
the structure of a network is useful because the topology of the
network can affect network training and performance. Evolution
has been applied to different kinds of ANNs, including feed-
forward and recurrent ANNs [1] and deep networks [2].

2 DIPLOID GENETIC ALGORITHMS
Most GAs use haploid genetics, where each individual has one

copy of their genetic material. However, in real-life organisms,
there are other possible genetic arrangements. Most cells in the
vast majority of animals are diploid, or have two copies of their
genetic material. Some organisms mix haploidy and diploidy -
bees, for example, have diploid females and haploid males - while
many plants are polyploid, or have more than two copies. All of
these systems have been explored for use in GAs; however,
artificial diploidy is the most well-researched of these. It
introduces the least additional complexity compared to the default
haploidy technique, and its prevalence in real-life organisms
implies that it has some kind of advantage in some situations that
outweighs the costs of copying and maintaining twice as much
DNA. There may be benefits to diploidy in artificial GAs, as well.

The main difficulty with programming a GA with more than
one copy of the genome is to figure out, for each gene, which
copy should be expressed, or to what degree each copy should be
expressed. This is called dominance. In real life, dominance is a
consequence of how genes are expressed and the proteins they
produce; a simple example is an allele that makes a broken protein
being dominant over an allele that produces a properly-working
protein, because the broken protein gets in the way of the
functioning version. However, in an artificial GA, this must be
decided by the creators of the GA. Many methods have been used
to decide dominance, and it is not clear which methods are better
than others, or if some are better in certain situations than others.

The early work of Goldberg and Smith [3] had a dominance
scheme with three evolving alleles that affected dominance. This
work was later criticized by Ng and Wong [4], who argued that
this scheme was biased, biologically implausible, and, due to the
design of the experiment, not actually advantageous over haploid

GECCO’18, July 15-19, 2018, Kyoto, Japan Reedy

GAs, as Goldberg and Smith claimed. They proposed a new
scheme, which they showed was superior to that of Goldberg and
Smith and haploid GAs across a range of parameters. Ryan’s [5]
diploid scheme lacked explicit dominance; instead, each allele
was given a value, and the value of an individual's two copies of
the gene were added together to determine the trait. This could be
extended to polygenic traits, which depend on multiple genes - for
example, human eye color. Other work used two additional genes
to control dominance for each allele [6], used probability instead
of absolute dominance and recessiveness [7], or had an entire
chromosome considered dominant or recessive to the other [8]. In
some schemes, dominance is fixed, while in others, it can change,
either through mutation and evolution, or through population
analysis. For example, Uyar and Harmanci [7] tested a system
where the dominance value of a given allele can change each
generation, depending on the fitness of individuals with that allele
during that generation. They found this produced better results
than either haploidy or two previous schemes that did not have a
dominance change method. Lewis et al [9] had earlier modified
these two schemes to produce a similar dominance change based
on population fitness, and found this was important for the diploid
population to recover after environmental change.

While some diploid schemes have been compared, it is still
unclear what features make for a good scheme. Yang [10]
examined two features: the number of levels of dominance, from
two to eight, and whether or not the mapping from genotype to
phenotype was deterministic. It was concluded that while being
non-deterministic was a hindrance to performance, having at least
four levels of dominance increased it. Bowers and Sevinç [11]
looked at whether there was an advantage to Mendelian
inheritance, where alleles are completely dominant and recessive,
or to complete co-dominance, where each allele contributes
equally to the outcome. This was tested both with both diploidy
and haploidy, where dominance was used to determine the child’s
haploid genotype from its parents rather than which gene should
be expressed. While there was a drastic difference for the haploid
genomes, the results for the diploid genomes were less clear.

The main advantage that has been looked for in diploid GAs is
better performance in changing environments. Haploid GAs can
struggle when fitness changes, because they have difficulty
finding a new solution after having converged on a good one for
the initial environment. However, diploid GAs seem to lose less
genetic diversity as they adapt [7, 11]. This is because alleles can
be preserved and shielded from selection when they are not
currently advantageous, if they are recessive and rarely expressed.
If the environment changes and that allele becomes advantageous,
it is easier for that trait to return in individuals with two alleles
and spread through the population, rather than having to wait for
mutation to cause the allele to re-appear. Because of this, diploid
GAs with a similar phenotype convergence as haploid GAs have
more genetic diversity to draw upon.

Another possible advantage for diploid GAs is a greater ability
to search complex spaces and find better optima. Bowers and
Sevinç [11] speculated about this ability based on how diploid

GAs preserved genetic variability even when a haploid GA had
entirely converged on a sub-optimal solution. Collingwood et al
[12] found that diploidy and higher-level polyploidies could
provide an advantage on difficult problems where it was helpful to
lose less diversity when converging toward an attractive local
optimum, though not when this preservation of diversity was not
needed to solve simpler problems. Indeed, Bowers and Sevinç
[11] found poorer results from diploid GAs than haploid GAs in
simpler, static environments. There may be a solution to improve
diploid performance on static problems - changing how crossover
works. In real-world biology, crossover mixes genes within a
diploid organism before the mixed genome is used to produce
haploid gametes, which will combine with other haploid gametes
to produce diploid offspring. However, if crossover is changed to
mix genes between individuals instead, as is done with crossover
operations in haploid GAs, it may improve results on stationary
problems without preventing adaptation to changing ones [13].

One last difference between haploid GAs and diploid GAs is
that of sensitivity to mutation rate. Mutations can be helpful, but
they can also be detrimental. Having too many mutations build up
too quickly, before selection can remove bad ones from the
population, impedes performance. Diploid GAs have twice as
much genetic material as haploid GAs, and thus will build up
twice as many mutations given the same mutation rate; however,
because mutations can be hidden in recessive genes, the displayed
mutation rate in the phenotype will be somewhat lower. Calabretta
et al [6] found that diploid GAs performed better with a lower
mutation rate than did the equivalent haploid GAs, while Uyar
and Harmanci [7] found that two out of three dominance methods
were sensitive to mutation rate. The third had a low error rate
even at high (30%) mutation rates, leading to speculation that the
changing dominance of this method, which the other two lacked,
may have provided protection from the mutation rate.

3 DIPLOID NEURAL NETWORKS
Evolving ANNs have been used in many applications,

including robotics, control systems, game player AI, and artificial
life [14]. It may be possible to use diploidy with evolving ANNs
to combine their strengths, such as the ability of diploidy to adapt
to changing environments and perhaps search complex spaces and
that of evolving ANNs to solve reinforcement learning problems.
This combined approach appears to have been tried only once
before. Calabretta et al [6] evolved the weights of networks
controlling simulated robots. The robots were scored based on
how much of their environment they explored, but had to return to
a food area periodically. In one condition, this area was fixed; in
the other, it moved every 25 generations. While diploids had
lower average fitness in the fixed condition, they performed better
than haploids in the changing one. In a follow-up study [15], the
pace of environmental change was drastically sped up to every
other generation. While haploids had difficulty adapting to this,
diploids appeared to find a solution for both environments at once.

The system proposed here, programmed in Python 3.6 and
using Caffe for its neural networks, is meant to extend this

Diploidy for Evolving Neural Networks GECCO’18, July 15-19, 2018, Kyoto, Japan

previous work by Calabretta et al. For example, it is intended to
be able to evolve both the weights and the structure of neural
networks, although only the weight evolution was tested here. The
previous work had no sexual reproduction; new individuals were
created by duplication with mutation. The proposed system allows
for recombination between two diploid genomes, including
crossover between parent chromosomes within each parent.
Although there has been speculation that crossover operations are
detrimental to evolving neural networks because they could break
up sub-structures in the network, it is not clear that this is
necessarily the case in practice, and other evolving ANNs have
successfully used crossover [2]. In our system, crossover can also
be constrained to try to avoid breaking sub-structures.

Based on considerations from previous work discussed in
section 2, four chromosomes are used – two for encoding layers,
and two for weights. Each gene contains the information needed
to make a layer or a weight, along with a mutation rate, which
itself can mutate, and flags for allowing or disallowing mutation
and duplication. Following the previous finding that having at
least four levels of dominance is helpful for diploid genomes,
dominance is an integer ranging from one to five. There are also
several other adjustable system parameters, such as the default
mutation rate used when creating new genes, and the probability
of the different kinds of mutation. These mutations include
changes to weight, layer size, mutation rate, and dominance.

To create the network, the two layer chromosomes are first
compared against each other. Where there are differences, the
network checks that both layers can be created. If one of them
cannot – for example, if one gene codes for a layer that depends
on an input that does not exist in the network – then the other is
used. Otherwise, dominance is used to determine which gene is
used; if there is a tie, then one is chosen at random. Once this is
finished, the network is created, and the weights must be altered
following the weight genes. The two weight chromosomes are
compared to each other; here, if two alleles coding for the same
weight have the same dominance, the resulting weight is the
average of those encoded by the two alleles. The random network
generated at creation can also be used to create a set of weight
genes, if the genome does not have any already.

4 RESULTS AND DISCUSSION
This genetics system was tested in an agent-based simulation

environment. The environment consists of cells and wraps around
on itself. In it are several objects, including the agents. Each
agent, meant to represent a biological creature, has its own set of
drives – most importantly, fullness. Agents that reach zero
fullness are considered to have starved to death and are removed
from the simulation; agents also have a chance of dying dependent
on their age, and are removed if they reach a threshold of old age
at an age of 130,000 time steps. Agents can move around the
environment and perform actions on other objects, such as eating
a food source. These movements and actions are controlled by the
agent’s neural network. The input to this network consists of what
the agent can see right in front of it, its own drives, and a short-

term memory of its previous actions. An agent can also attempt to
mate with another agent it encounters, although whether this is
successful depends on each agent’s current level of fertility.

The genetics system was tested, with only weight genes able to
mutate, with three versions of the genetics, in three versions of
this environment. Because random networks tend to perform very
poorly in this environment, almost always starving to death as
soon as possible at 300 time steps, eighteen diploid genomes
which survived for a long time (>=30,000 time steps) in
preliminary experiments were first collected and their two weight
chromosomes saved separately. The genomes that began the first
generation of every iteration of the experiment were drawn from
this gene pool. The first genetic variant was a haploid version of
the genetics system. The second and third were two variations on
diploidy. With the first, ‘plain diploid’, each beginning agent was
given two copies of the same chromosome from the gene pool,
while with the second, ‘diverse diploids’, agents received two
different random chromosomes from the gene pool.

The first environment was static, with only one type of food
source. In the second, the changing environment, at 100,000 time
steps, the food source was switched to a different object, and the
simulation would switch back at 200,000 steps if it was still
running. In the third, called the ‘nutrition’ environment, two food
objects were present around the environment from the beginning.
One type gave one-third of the normal raise in fullness when
eaten. Every 40,000 time steps, this switched, so that the type of
food which gave one-third of the normal raise began to give the
normal amount of fullness, and the type which had given the
normal raise began to only give one-third the normal raise. Each
environment was set to 13 by 13 cells, and the experiments begun
with 20 agents, with the population capped at 40.

Table 1: Results for Success Measures
Values in bold highlight the best performers.

Log(age) mean Haploid Plain diploid Diverse diploid
Static 2.91 2.88 3.00
Changing 2.92 2.89 2.95
Nutrition 2.87 3.01 2.91
Log(age) median
Static 2.82 2.68 2.81
Changing 2.74 2.69 2.70
Nutrition 2.64 2.82 2.62
Survival mean
Static 0.51 0.48 0.59
Changing 0.54 0.49 0.50
Nutrition 0.44 0.58 0.42

Although there are several ways to measure success in this
environment, such as number of mating attempts, children
produced, or how many generations the simulation reaches before
the population dies out, here we look only at age at death and
whether each agent survived for at least 500 time steps (coded as

GECCO’18, July 15-19, 2018, Kyoto, Japan Reedy

0 for death and 1 for living), which is slightly beyond the point
where they can first starve to death (Table 1). Although most
agents did die within their first few thousand time steps, a few
were able to live much longer. Because of the skew of the
distribution of lifespans, analysis was done on log of ages.

The initial hypotheses were that the haploid agents would do
best in the static environment, while either kind of diploidy would
have an advantage over haploidy in the changing environments,
and that the changing environments would be more difficult for all
of the genetic systems, particularly the ‘nutrition’ one. A 2-way
analysis of variance (ANOVA) on the log lifespans of the agents
(Table 2) found a significant effect of both genetics and
environment, as well as a significant interaction effect.

Table 2: ANOVA on Lifespan Results

SumSq DF F PR(>F)
Genetics 8.96 2 17.19 <0.001
Environment 14.62 2 28.05 <0.001
Gen x Env 3.35 4 3.22 0.012
Residual 13073.59 50184

The results (Table 1) did not quite follow the initial
expectations. Haploidy actually tended to perform better than
‘plain’ diploidy in both static and changing environments, while it
was outperformed by ‘diverse’ diploidy. ‘Diverse’ diploidy
performed best in static environments, worse in changing ones,
and had its worst performance in the ‘nutrition’ environment,
though it did better than haploidy in all three environments.
However, ‘plain’ diploidy actually performed best of all three
genetic systems in the ‘nutrition’ environment, and had longer
lifespans there than in the other two environments tested.

5 CONCLUSIONS AND FUTURE WORK
Previous work on diploid GAs found that haploid genomes

outperformed diploidy in static environments, while diploidy
performed better in changing ones. Here, we tested this hypothesis
with evolving ANNs in three environments and two kinds of
diploidy. However, the haploid genome’s performance was in-
between that of the two diploids. It is not clear why there is a
difference in behavior seen between the diploid agents which
started with two copies of the same genes, and those which began
with two different chromosomes, and why one performs best in
the environment that the other performs worst in. A possible
reason for the better performance of the haploidy could be that
because of the nature of this task, there are not many places in the
search space that work well, and that because haploid genomes
converge on solutions faster than diploid ones, it was able to adapt
to those few places better. The ‘diverse’ diploid type could be
more successful in the static and changing conditions than the
‘plain’ diploid type because it started off with twice as much
genetic diversity than either of the other conditions, allowing it to
explore more possibilities faster; however, why does it then

perform worse in both of the two changing conditions than the
static ones? Further exploration of how the genomes adapt and
converge over time could provide insight into why these
differences are seen, and when different genetic systems may
perform better than others.

The code for the system proposed here is available on
GitHub.1 In the future, we will further test its ability to evolve
network structure, as well as the capability of diploidy in
comparison to haploid genetic structures. To better understand
what genetic structures work best in which domains, we need to
explore more complex environments, different kinds of
environmental change, and different models of diploid evolution.

REFERENCES
[1] Xin Yao. 1999. Evolving Artificial Neural Networks. Proceedings of the

IEEE 87, 9 (September 1999), 1423–1447.
DOI:http://dx.doi.org/10.1109/5.784219

[2] Risto Miikkulainen et al. 2017. Evolving Deep Neural Networks. arXiv
preprint arXiv:1703.00548.

[3] David E. Goldberg and Robert E. Smith. 1987. Nonstationary Function
Optimization Using Genetic Algorithms with Dominance and Diploidy.
ICGA (October 1987), 59–68.

[4] Khim Peow Ng and Kok Cheong Wong. 1995. A New Diploid Scheme and
Dominance Change Mechanism for Non-Stationary Function Optimization.
In Proceedings of the 6th international conference on genetic algorithms.
Morgan Kaufmann Publishers Inc., 159–166.

[5] Conor Ryan. 1997. Diploidy Without Dominance. Third Nordic workshop on
genetic algorithms. 63–70.

[6] Raffaele Calabretta, Riccardo Galbiati, Stefano Nolfi, and Domenico Parisi.
1996. Two is better than one: A Diploid Genotype for Neural Networks.
Neural Processing Letters 4, 3 (1996), 149–155.
DOI:http://dx.doi.org/10.1007/bf00426023

[7]
Adaptive Domination Change Mechanism for Diploid Genetic Algorithms in
Dynamic Environments. Soft Computing 9, 11 (February 2005), 803–814.
DOI:http://dx.doi.org/10.1007/s00500-004-0421-4

[8] Boris Shabash and Kay C. Wiese. 2015. Diploidy in Evolutionary Algorithms
for Dynamic Optimization Problems. International Journal of Intelligent
Computing and Cybernetics 8, 4 (November 2015), 312–329.
DOI:http://dx.doi.org/10.1108/ijicc-07-2015-0026

[9] Jonathan Lewis, Emma Hart, and Graeme Ritchie. 1998. A Comparison of
Dominance Mechanisms and Simple Mutation on Non-Stationary Problems.
Lecture Notes in Computer Science Parallel Problem Solving from Nature —
PPSN V (September 1998), 139–148.
DOI:http://dx.doi.org/10.1007/bfb0056857

[10] Shengxiang Yang. 2006. On the Design of Diploid Genetic Algorithms for
Problem Optimization in Dynamic Environments. 2006 IEEE International
Conference on Evolutionary Computation (2006).
DOI:http://dx.doi.org/10.1109/cec.2006.1688467

[11] Robert Ian Bowers and Emre Sevinç. 2006. Preserving Variability in Sexual
Multi-agent Systems with Diploidy and Dominance. Engineering Societies in
the Agents World VI Lecture Notes in Computer Science (October 2006),
184–202. DOI:http://dx.doi.org/10.1007/11759683_12

[12] E. Collingwood, D. Corne, and P. Ross. 1996. Useful Diversity Via
Multiploidy. Proceedings of IEEE International Conference on Evolutionary
Computation (May 1996), 810–813.
DOI:http://dx.doi.org/10.1109/icec.1996.54270

[13] Mayada F. Abdul-Halim and Abbas F. Abdul-Kader. 2006. A New
Recombination Scheme for Diploid Genetic Algorithms. IEEE International
Conference on Computer Systems and Applications, 2006. (March 2006),
274–280. DOI:http://dx.doi.org/10.1109/aiccsa.2006.205101

[14] Joel Lehman and Risto Miikkulainen. 2013. Neuroevolution. Scholarpedia 8,
6 (2013), 30977. DOI:http://dx.doi.org/10.4249/scholarpedia.30977

[15] Raffaele Calabretta, Stefano Nolfi, Domenico Parisi, and Riccardo Galbiati.
1998. Diploid Robots Adapting to Fast Changing Environments. ICANN 98
Perspectives in Neural Computing (1998), 1145–1150.
DOI:http://dx.doi.org/10.1007/978-1-4471-1599-1_180

1 https://github.com/Lekyn/dgeann

