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ABSTRACT
Genetic algorithms and artificial neural networks are two widely-
used techniques that can be combined with each other to produce 
evolved neural networks. Some research has also looked at the use 
of diploidy in genetic algorithms for possible advantages over the 
haploid genetic representation usually used, most notably in the 
form of better adaptation to changing environments. This paper 
proposes a diploid representation for evolving neural networks, 
used in an agent-based simulation. Two versions of the diploid 
representation were tested with a haploid version in one static and 
two changing environments. All three genetic types performed 
differently in different environments.
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1 INTRODUCTION
Genetic algorithms (GAs) and artificial neural networks 

(ANNs) are both problem-solving techniques inspired by nature. 
GAs are a simplified version of evolution and artificial or natural 
selection, while ANNs were inspired by the structure of the brain 
and its ability to learn and solve problems. 

In the same way that evolution and learning are not entirely 
separate processes – natural brains evolved, and learned behaviors
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can influence selection – GAs and ANNs can be combined. GAs 
can be used instead of or beside conventional learning functions in 
an ANN. They are typically used to evolve either the weights of 
the network or both the weights and structure of the network, 
although other possibilities, such as only evolving the structure or 
evolving the transfer functions of the network nodes, have also 
been tested. Evolving the weights can be useful when gradient 
descent-based learning methods cannot be used or are undesirable, 
such as when the error function is not differentiable, and evolving
the structure of a network is useful because the topology of the 
network can affect network training and performance. Evolution 
has been applied to different kinds of ANNs, including feed-
forward and recurrent ANNs [1] and deep networks [2].

2 DIPLOID GENETIC ALGORITHMS
Most GAs use haploid genetics, where each individual has one 

copy of their genetic material. However, in real-life organisms, 
there are other possible genetic arrangements. Most cells in the 
vast majority of animals are diploid, or have two copies of their 
genetic material. Some organisms mix haploidy and diploidy -
bees, for example, have diploid females and haploid males - while 
many plants are polyploid, or have more than two copies. All of 
these systems have been explored for use in GAs; however, 
artificial diploidy is the most well-researched of these. It 
introduces the least additional complexity compared to the default 
haploidy technique, and its prevalence in real-life organisms 
implies that it has some kind of advantage in some situations that 
outweighs the costs of copying and maintaining twice as much 
DNA. There may be benefits to diploidy in artificial GAs, as well. 

The main difficulty with programming a GA with more than 
one copy of the genome is to figure out, for each gene, which 
copy should be expressed, or to what degree each copy should be 
expressed. This is called dominance. In real life, dominance is a 
consequence of how genes are expressed and the proteins they 
produce; a simple example is an allele that makes a broken protein 
being dominant over an allele that produces a properly-working 
protein, because the broken protein gets in the way of the 
functioning version. However, in an artificial GA, this must be 
decided by the creators of the GA. Many methods have been used
to decide dominance, and it is not clear which methods are better 
than others, or if some are better in certain situations than others.

The early work of Goldberg and Smith [3] had a dominance 
scheme with three evolving alleles that affected dominance. This 
work was later criticized by Ng and Wong [4], who argued that 
this scheme was biased, biologically implausible, and, due to the 
design of the experiment, not actually advantageous over haploid 
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GAs, as Goldberg and Smith claimed. They proposed a new 
scheme, which they showed was superior to that of Goldberg and 
Smith and haploid GAs across a range of parameters. Ryan’s [5]
diploid scheme lacked explicit dominance; instead, each allele 
was given a value, and the value of an individual's two copies of 
the gene were added together to determine the trait. This could be 
extended to polygenic traits, which depend on multiple genes - for 
example, human eye color. Other work used two additional genes 
to control dominance for each allele [6], used probability instead 
of absolute dominance and recessiveness [7], or had an entire 
chromosome considered dominant or recessive to the other [8]. In 
some schemes, dominance is fixed, while in others, it can change, 
either through mutation and evolution, or through population 
analysis. For example, Uyar and Harmanci [7] tested a system 
where the dominance value of a given allele can change each 
generation, depending on the fitness of individuals with that allele 
during that generation. They found this produced better results 
than either haploidy or two previous schemes that did not have a 
dominance change method. Lewis et al [9] had earlier modified 
these two schemes to produce a similar dominance change based 
on population fitness, and found this was important for the diploid 
population to recover after environmental change.

While some diploid schemes have been compared, it is still 
unclear what features make for a good scheme. Yang [10]
examined two features: the number of levels of dominance, from 
two to eight, and whether or not the mapping from genotype to 
phenotype was deterministic. It was concluded that while being 
non-deterministic was a hindrance to performance, having at least 
four levels of dominance increased it. Bowers and Sevinç [11]
looked at whether there was an advantage to Mendelian 
inheritance, where alleles are completely dominant and recessive, 
or to complete co-dominance, where each allele contributes 
equally to the outcome. This was tested both with both diploidy 
and haploidy, where dominance was used to determine the child’s 
haploid genotype from its parents rather than which gene should 
be expressed. While there was a drastic difference for the haploid 
genomes, the results for the diploid genomes were less clear.

The main advantage that has been looked for in diploid GAs is 
better performance in changing environments. Haploid GAs can 
struggle when fitness changes, because they have difficulty 
finding a new solution after having converged on a good one for 
the initial environment. However, diploid GAs seem to lose less 
genetic diversity as they adapt [7, 11]. This is because alleles can 
be preserved and shielded from selection when they are not 
currently advantageous, if they are recessive and rarely expressed. 
If the environment changes and that allele becomes advantageous, 
it is easier for that trait to return in individuals with two alleles 
and spread through the population, rather than having to wait for 
mutation to cause the allele to re-appear. Because of this, diploid 
GAs with a similar phenotype convergence as haploid GAs have 
more genetic diversity to draw upon.

Another possible advantage for diploid GAs is a greater ability 
to search complex spaces and find better optima. Bowers and 
Sevinç [11] speculated about this ability based on how diploid 

GAs preserved genetic variability even when a haploid GA had 
entirely converged on a sub-optimal solution. Collingwood et al 
[12] found that diploidy and higher-level polyploidies could 
provide an advantage on difficult problems where it was helpful to 
lose less diversity when converging toward an attractive local 
optimum, though not when this preservation of diversity was not 
needed to solve simpler problems. Indeed, Bowers and Sevinç
[11] found poorer results from diploid GAs than haploid GAs in 
simpler, static environments. There may be a solution to improve 
diploid performance on static problems - changing how crossover 
works. In real-world biology, crossover mixes genes within a 
diploid organism before the mixed genome is used to produce 
haploid gametes, which will combine with other haploid gametes 
to produce diploid offspring. However, if crossover is changed to 
mix genes between individuals instead, as is done with crossover 
operations in haploid GAs, it may improve results on stationary 
problems without preventing adaptation to changing ones [13].

One last difference between haploid GAs and diploid GAs is 
that of sensitivity to mutation rate. Mutations can be helpful, but 
they can also be detrimental. Having too many mutations build up 
too quickly, before selection can remove bad ones from the 
population, impedes performance. Diploid GAs have twice as 
much genetic material as haploid GAs, and thus will build up 
twice as many mutations given the same mutation rate; however, 
because mutations can be hidden in recessive genes, the displayed 
mutation rate in the phenotype will be somewhat lower. Calabretta 
et al [6] found that diploid GAs performed better with a lower 
mutation rate than did the equivalent haploid GAs, while Uyar 
and Harmanci [7] found that two out of three dominance methods 
were sensitive to mutation rate. The third had a low error rate 
even at high (30%) mutation rates, leading to speculation that the 
changing dominance of this method, which the other two lacked, 
may have provided protection from the mutation rate.

3 DIPLOID NEURAL NETWORKS
Evolving ANNs have been used in many applications, 

including robotics, control systems, game player AI, and artificial 
life [14]. It may be possible to use diploidy with evolving ANNs 
to combine their strengths, such as the ability of diploidy to adapt 
to changing environments and perhaps search complex spaces and 
that of evolving ANNs to solve reinforcement learning problems.
This combined approach appears to have been tried only once 
before. Calabretta et al [6] evolved the weights of networks 
controlling simulated robots. The robots were scored based on 
how much of their environment they explored, but had to return to 
a food area periodically. In one condition, this area was fixed; in 
the other, it moved every 25 generations. While diploids had 
lower average fitness in the fixed condition, they performed better 
than haploids in the changing one. In a follow-up study [15], the 
pace of environmental change was drastically sped up to every 
other generation. While haploids had difficulty adapting to this, 
diploids appeared to find a solution for both environments at once.

The system proposed here, programmed in Python 3.6 and 
using Caffe for its neural networks, is meant to extend this
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previous work by Calabretta et al. For example, it is intended to 
be able to evolve both the weights and the structure of neural 
networks, although only the weight evolution was tested here. The 
previous work had no sexual reproduction; new individuals were 
created by duplication with mutation. The proposed system allows 
for recombination between two diploid genomes, including 
crossover between parent chromosomes within each parent. 
Although there has been speculation that crossover operations are 
detrimental to evolving neural networks because they could break 
up sub-structures in the network, it is not clear that this is 
necessarily the case in practice, and other evolving ANNs have 
successfully used crossover [2]. In our system, crossover can also 
be constrained to try to avoid breaking sub-structures.

Based on considerations from previous work discussed in 
section 2, four chromosomes are used – two for encoding layers, 
and two for weights. Each gene contains the information needed 
to make a layer or a weight, along with a mutation rate, which 
itself can mutate, and flags for allowing or disallowing mutation 
and duplication. Following the previous finding that having at 
least four levels of dominance is helpful for diploid genomes, 
dominance is an integer ranging from one to five. There are also 
several other adjustable system parameters, such as the default 
mutation rate used when creating new genes, and the probability 
of the different kinds of mutation. These mutations include 
changes to weight, layer size, mutation rate, and dominance.

To create the network, the two layer chromosomes are first 
compared against each other. Where there are differences, the 
network checks that both layers can be created. If one of them 
cannot – for example, if one gene codes for a layer that depends 
on an input that does not exist in the network – then the other is 
used. Otherwise, dominance is used to determine which gene is 
used; if there is a tie, then one is chosen at random. Once this is 
finished, the network is created, and the weights must be altered 
following the weight genes. The two weight chromosomes are 
compared to each other; here, if two alleles coding for the same 
weight have the same dominance, the resulting weight is the 
average of those encoded by the two alleles. The random network 
generated at creation can also be used to create a set of weight 
genes, if the genome does not have any already.

4 RESULTS AND DISCUSSION
This genetics system was tested in an agent-based simulation 

environment. The environment consists of cells and wraps around 
on itself. In it are several objects, including the agents. Each 
agent, meant to represent a biological creature, has its own set of 
drives – most importantly, fullness. Agents that reach zero 
fullness are considered to have starved to death and are removed 
from the simulation; agents also have a chance of dying dependent 
on their age, and are removed if they reach a threshold of old age 
at an age of 130,000 time steps. Agents can move around the 
environment and perform actions on other objects, such as eating 
a food source. These movements and actions are controlled by the 
agent’s neural network. The input to this network consists of what 
the agent can see right in front of it, its own drives, and a short-

term memory of its previous actions. An agent can also attempt to 
mate with another agent it encounters, although whether this is 
successful depends on each agent’s current level of fertility.

The genetics system was tested, with only weight genes able to 
mutate, with three versions of the genetics, in three versions of 
this environment. Because random networks tend to perform very 
poorly in this environment, almost always starving to death as 
soon as possible at 300 time steps, eighteen diploid genomes 
which survived for a long time (>=30,000 time steps) in 
preliminary experiments were first collected and their two weight
chromosomes saved separately. The genomes that began the first 
generation of every iteration of the experiment were drawn from 
this gene pool. The first genetic variant was a haploid version of 
the genetics system. The second and third were two variations on 
diploidy. With the first, ‘plain diploid’, each beginning agent was 
given two copies of the same chromosome from the gene pool, 
while with the second, ‘diverse diploids’, agents received two 
different random chromosomes from the gene pool. 

The first environment was static, with only one type of food 
source. In the second, the changing environment, at 100,000 time 
steps, the food source was switched to a different object, and the 
simulation would switch back at 200,000 steps if it was still 
running. In the third, called the ‘nutrition’ environment, two food 
objects were present around the environment from the beginning. 
One type gave one-third of the normal raise in fullness when 
eaten. Every 40,000 time steps, this switched, so that the type of 
food which gave one-third of the normal raise began to give the 
normal amount of fullness, and the type which had given the 
normal raise began to only give one-third the normal raise. Each 
environment was set to 13 by 13 cells, and the experiments begun 
with 20 agents, with the population capped at 40.

Table 1: Results for Success Measures
Values in bold highlight the best performers.

Log(age) mean Haploid Plain diploid Diverse diploid
Static 2.91 2.88 3.00
Changing 2.92 2.89 2.95
Nutrition 2.87 3.01 2.91
Log(age) median
Static 2.82 2.68 2.81
Changing 2.74 2.69 2.70
Nutrition 2.64 2.82 2.62
Survival mean
Static 0.51 0.48 0.59
Changing 0.54 0.49 0.50
Nutrition 0.44 0.58 0.42

Although there are several ways to measure success in this 
environment, such as number of mating attempts, children 
produced, or how many generations the simulation reaches before 
the population dies out, here we look only at age at death and 
whether each agent survived for at least 500 time steps (coded as 
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0 for death and 1 for living), which is slightly beyond the point 
where they can first starve to death (Table 1). Although most 
agents did die within their first few thousand time steps, a few 
were able to live much longer. Because of the skew of the 
distribution of lifespans, analysis was done on log of ages.

The initial hypotheses were that the haploid agents would do 
best in the static environment, while either kind of diploidy would 
have an advantage over haploidy in the changing environments, 
and that the changing environments would be more difficult for all 
of the genetic systems, particularly the ‘nutrition’ one. A 2-way 
analysis of variance (ANOVA) on the log lifespans of the agents 
(Table 2) found a significant effect of both genetics and 
environment, as well as a significant interaction effect.

Table 2: ANOVA on Lifespan Results

SumSq DF F PR(>F)
Genetics 8.96 2 17.19 <0.001
Environment 14.62 2 28.05 <0.001
Gen x Env 3.35 4 3.22 0.012
Residual 13073.59 50184

The results (Table 1) did not quite follow the initial 
expectations. Haploidy actually tended to perform better than 
‘plain’ diploidy in both static and changing environments, while it 
was outperformed by ‘diverse’ diploidy. ‘Diverse’ diploidy 
performed best in static environments, worse in changing ones, 
and had its worst performance in the ‘nutrition’ environment, 
though it did better than haploidy in all three environments. 
However, ‘plain’ diploidy actually performed best of all three 
genetic systems in the ‘nutrition’ environment, and had longer 
lifespans there than in the other two environments tested.

5 CONCLUSIONS AND FUTURE WORK
Previous work on diploid GAs found that haploid genomes 

outperformed diploidy in static environments, while diploidy 
performed better in changing ones. Here, we tested this hypothesis 
with evolving ANNs in three environments and two kinds of 
diploidy. However, the haploid genome’s performance was in-
between that of the two diploids. It is not clear why there is a 
difference in behavior seen between the diploid agents which 
started with two copies of the same genes, and those which began 
with two different chromosomes, and why one performs best in 
the environment that the other performs worst in. A possible 
reason for the better performance of the haploidy could be that 
because of the nature of this task, there are not many places in the 
search space that work well, and that because haploid genomes 
converge on solutions faster than diploid ones, it was able to adapt 
to those few places better. The ‘diverse’ diploid type could be 
more successful in the static and changing conditions than the 
‘plain’ diploid type because it started off with twice as much 
genetic diversity than either of the other conditions, allowing it to 
explore more possibilities faster; however, why does it then 

perform worse in both of the two changing conditions than the 
static ones? Further exploration of how the genomes adapt and 
converge over time could provide insight into why these 
differences are seen, and when different genetic systems may 
perform better than others.

The code for the system proposed here is available on 
GitHub.1 In the future, we will further test its ability to evolve 
network structure, as well as the capability of diploidy in 
comparison to haploid genetic structures. To better understand 
what genetic structures work best in which domains, we need to 
explore more complex environments, different kinds of 
environmental change, and different models of diploid evolution.
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