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ABSTRACT
In machine learning, feature selection is a commonly used tech-
nique for improving the predictive performance and interpretability
of a trained model. Feature selection techniques are classified into
three approaches: the filter, wrapper, and embedded approaches.
The embedded approach performs the feature selection process
during the model training and achieves a good balance between
performance and computational cost in general. In the paper, we
propose a novel embedded feature selection method using proba-
bilistic model-based evolutionary optimization. We introduce the
multivariate Bernoulli distribution, which determines the selection
of features, and we optimize its parameters during the training.
The distribution parameter update rule is the same as that of the
population-based incremental learning (PBIL), but we simultane-
ously update the parameters of themachine learningmodel using an
ordinary gradient descent method. This method can be easily imple-
mented into non-linear models, such as neural networks. Moreover,
we incorporate the penalty term into the objective function to con-
trol the number of selected feature. We apply the proposed method
with the neural network model to the feature selection of three
classification problems. The proposed method achieves competitive
performance and reasonable computational cost compared with
conventional feature selection methods.
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1 INTRODUCTION
In machine learning, feature selection is useful for improving the
predictive performance and identifying which features are impor-
tant. Feature selection techniques are generally classified into three
approaches: the filter, wrapper, and embedded approaches [4]. Evo-
lutionary computation has been mainly applied to the wrapper
and filter approaches [21]. Whereas, the embedded approach is
considered as having a good balance between computational cost
and accuracy because it performs the selection of features during
the model training. The typical method of the embedded approach
is LASSO [18] and similar methods [12, 22], which use the L1 regu-
larization for the weight coefficients in a linear model. LASSO can
be only applied to the linear model in general and is difficult to
be applied to the complex models such as neural networks as the
feature selection method.

In this paper, we propose a novel method called the probabilistic
model-based embedded feature selection (PEFS) that can easily in-
corporate non-linear models such as neural networks. In the PEFS,
we define the multivariate Bernoulli distribution of the binary vec-
tor and use the vector for feature selection. The key technique to
realize the embedded feature selection is to optimize the parameters
of the distribution during the model training introduced in [17]. We
formulate the objective function to be minimized as the expectation
of loss function under the distribution for the feature selection
and show that such formulation relates to the information geo-
metric optimization (IGO) [14] and population-based incremental
learning (PBIL) [2]. Different from the IGO and PBIL, we simultane-
ously optimize the parameters of machine learning model (e.g., the
weight parameters of neural network) using an ordinary gradient
descent method. Furthermore, we introduce the penalty term into
the objective function to control the number of selected features.

To evaluate the performance of the PEFS, we apply the PEFS with
a neural network model to three classification problems. From the
experimental results, the PEFS shows the competitive performance
and reasonable computational cost compared with some existing
feature selection methods.

The contribution of this paper is as follows: (1) applying the idea
introduced in [17], which simultaneously optimizes both of the
weight parameters of neural network and the Bernoulli parameters
based on the gradient descent1, to the feature selection problem,
and (2) incorporating the penalty term into the objective function
to control the number of selected features.

1The framework proposed in [17] uses the Bernoulli distribution to represent the
neural network structures such as the selection of layers or units and optimize the
neural network structures during the training.
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2 PEFS: THE PROPOSED METHOD
We consider the general problem setting of supervised learning

with a given training dataset D = {X ,Y }. Let X = {x1, . . . ,xN } be
the set of input vectors, xi ∈ Rd , andY = {y1, . . . ,yN } be the set of
target variables. In the classification problem, Y refers to the labels,
whereas it refers to continuous values in the regression problem.

In the PEFS, the features to be used are selected by a random vari-
able consisting of d-dimensional binary vectorM = (m1, . . . ,md )

⊤,
mi ∈ {0, 1}. Given a binary vectorM and an input vector x , the in-
put of the prediction model is represented by diag(M)x , where diag
represents a diagonal matrix whose diagonal elements are zero or
one depending on the corresponding element ofM . This means that
the values of the unused features become zero.We consider the prob-
ability distribution for the random variableM as the multivariate
Bernoulli distribution defined by p(M | θ ) =

∏d
i=1 θ

mi
i (1−θi )

1−mi ,
where θ = (θ1, . . . ,θd )

⊤, θi ∈ [0, 1] refers to the parameters of the
distribution. The parameter θi corresponds to the probability that
the i-th feature is selected, i.e.,mi = 1.

Let us denote the model to predict the target variable from the
input vector asϕ(X ,W ,M), and the loss function to be minimized as
L(Y ,X ,W ,M). We often use the mean squared errors for regression
and the softmax cross-entropy losses for classification. We note
that the filter approach in feature selection optimizes the model
parameterW using the pre-selected binary vectorM , whereas the
wrapper approach searches the better binary vectorM based on the
validation error of the optimized model parameterW . Therefore,
the wrapper approach generally requires a much computational
cost. Since we treat the binary vector M as the random variable,
we consider minimizing the expected loss function as G(W ,θ ) =∑
M ∈M L(Y ,X ,W ,M)p(M | θ ).
Furthermore, to reduce and control the number of selected fea-

tures, we add the termwith respect to (w.r.t.) the number of selected
features

∑
mk as the penalty. Considering the loss function with

the penalty of the number of selected features, its expectation under
p(M |θ ) is given by

G(W ,θ ) = E

[
L(Y ,X ,W ,M) + ϵ

d∑
k=1

mk

]
(1)

=
∑

M ∈M

L(Y ,X ,W ,M)p(M | θ ) + ϵ
d∑
k=1

θk , (2)

where ϵ is the coefficient to control the influence of the penalty.
In the case of ϵ = 0, the minimization of G(W ,θ ) w.r.t. θ can

be viewed as the same formulation in the information geometric
optimization (IGO) [14] with the objective function L(Y ,X ,W ,M).
The IGO updates the parameters of the distribution toward the
natural gradient direction [1], which is the steepest direction of θ
w.r.t. the KL-divergence. The natural gradient ∇̃θG(W ,θ ) is given
by

∇̃θG(W ,θ ) =
∑

M ∈M

L(Y ,X ,W ,M)∇̃θ lnp(M | θ ) + ϵ∇̃θ

d∑
k=1

θk ,

(3)
where the natural gradients of the log-likelihood and the penalty are
given by ∇̃θ lnp(M | θ ) = F−1(θ )∇θ lnp(M | θ ) and ∇̃θ

∑d
k=1 θk =

F−1(θ )∇θ
∑d
k=1 θk , respectively, and F−1(θ ) denotes the Fisher in-

formation matrix of p(M | θ ). Since we consider the Bernoulli
distribution as p(M | θ ), the natural gradients can be obtained
analytically as ∇̃θ lnp(M | θ ) = M − θ and ∇̃θ

∑d
k=1 θk = θ (1 − θ ).

Unlike the IGO and PBIL, minimizing G(W ,θ ) requires optimiza-
tion not only w.r.t. the distribution parameters θ but also w.r.t. the
model parametersW . The gradient w.r.t.W is given by

∇W G(W ,θ ) =
∑

M ∈M

∇W L(Y ,X ,W ,M) . (4)

We note that the gradient ∇W L(Y ,X ,W ,M) can be computed by
the back-propagation when the neural network model is considered.

We realize the embedded feature selection by simultaneously
optimizing θ andW using (3) and (4), respectively. In practice, the
gradients (3) and (4) are approximated by Monte-Carlo method
using λ samples ofM drawn from p(M | θ ).

In most practical cases, the loss L(Y ,X ,W ,Mi ) is approximated
using mini-batch samples Z = {(x1,y1), . . . , (xN̄ ,yN̄ )}. Referring
to [17], we use the same mini-batch between differentMi to obtain
the accurate rankings of losses. The approximated loss function
is given by L̄(Y ,X ,W ,Mi ) = N̄−1 ∑

(y,x )∈Z l(y,x ,W ,Mi ), where
l(y,x ,W ,M) represents the loss of a datum, and N̄ indicates the
number of the mini-batch samples. Also, we transform the loss
value into the ranking-based utility as done in [17] as follows:

L̄(Y ,X ,W ,Mi ) 7→ ui =


1 (best ⌈λ/4⌉ samples)
−1 (worst ⌈λ/4⌉ samples)
0 (otherwise)

. (5)

With the transformation, the θ update using λ samples drawn from
p(M | θ ) reads

θ (t+1) = θ (t ) + ηθ

( λ∑
i=1

ui
λ
(Mi − θ (t )) − ϵθ (t )(1 − θ (t ))

)
, (6)

where ηθ is the learning rate for θ . If ϵ is zero, the update rule of θ
recovers the PBIL [2] which is one of the estimation of distribution
algorithms. Moreover, we restrict the range of θ within [1/d, 1−1/d]
in order to keep the possibility of generating any binary vector.

As proposed in [17], there are two options to predict a new data
using optimized θ andW . First, the binary vectors are sampled
from p(M | θ ) and the prediction results are averaged. While this
prediction method can reach an accurate prediction, it is not a
desirable approach from the feature selection perspective because
it may use all features. Another way is to deterministically decide
the binary vectorM such thatmi = 1 if θi ≥ 0.5; otherwise,mi = 0.
In the experiment, we use this deterministic prediction and report
the results.
3 EXPERIMENT AND RESULT
In this section, we evaluate the PEFS with the neural network
model on three classification problems. The datasets used in the
experiment are summarized in Table 1.

3.1 Experimental Setting
For all datasets, the neural network consisting of three fully con-
nected hidden layers with 200 units and the softmax output layer
is used. Each hidden unit performs the rectified linear unit (ReLU)
[13] as the activation, followed by the batch normalization [8]. The
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Table 1: The summary of datasets used in the experiment.

No. of data No. of No. of Data
Dataset (training / test) features classes domain

pcmac [11] 1555 / 388 3289 2 Article
usps [7] 7439 / 1859 256 10 Image
adult [10] 36178 / 9044 104 2 Income

number of units in the input and output layers depends on the num-
ber of features and classes. The weight parameters are initialized
by He’s initialization [6]. We use the cross-entropy loss function
as L. The weight parameters are optimized using Adam [9], an
accelerated stochastic gradient method, with the default parameter
setting, and we use the weight decay of 10−4.

In the PEFS, we initialize the distribution parameters by θinit =
0.5 and use the learning rate of ηθ = 1/d , where d is the number
of features. The mini-batch size N̄ is set to N̄ = 128 in the PEFS.
The sample size λ is set to two2. We vary the coefficient ϵ from
0 to 1 in 0.1 increments to check the effect. The natural gradient
corresponding to L is bounded in [−0.5, 0.5]d because of the utility
transformation defined in (5), and the one corresponding to the
penalty term is within [0, ϵ/4]d .Therefore, it is reasonable to set
ϵ in [0, 1] independently of datasets. The parameter update in the
training is terminated at 100,000 iterations for all datasets.

We compare the performance of the PEFS with those of existing
feature selection methods. For the comparison, the minimum re-
dundancy and maximum relevance (mRMR) [15] and ReliefF [16]
were used as the filter approach; the wrapper method using particle
swarm optimization (PSO), which is called ErFS in [20], was used
as the wrapper approach; and LASSO with a linear model was used
as the embedded approach. Filter methods select the features based
on the feature ranking and train the above-mentioned neural net-
work model using high-ranked feature subset. The fitness used in
ErFS is based on the error of the randomly selected 30% validation
data from the training data. We set the numbers of individuals and
generations to 10 and 25, respectively, in ErFS. This setting uses
smaller values than those used in [20] to reduce the computational
cost because the above-mentioned neural network model is more
computationally expensive than the model used in [20]. In these
existing methods, the mini-batch size of the neural network train-
ing is set to λN̄ , which is the same number of data samples to be
used at one iteration in the PEFS, for a fair comparison. In LASSO,
the linear model is optimized by the SAGA [3] with 500 iterations.
We employ the different regularization factors from 1 to 10 in 1 in-
crements. The features are selected if the trained model parameters
are greater than 10−5 in LASSO.

3.2 Result and Discussion
Prediction Performance and Number of Features. Figure 1 shows

the relation between the percentile of selected features and the
test error. The result of the different numbers of selected features,
from 10% to 100% in 10% increments, are reported in the filter
methods. The plotted values are the average values of test errors of

2The θ update in (6) with λ = 2 and ϵ = 0 recovers the update rule of the compact
genetic algorithm (cGA) [5].

Table 2: Computational time (hour) of a typical single run.
We report the total time of the feature selection and neural
network training. Note that LASSO uses the linear model.

Without Embedded Filter Wrapper
Dataset FS PEFS / LASSO ReliefF / mRMR PSO
pcmac 0.675 0.748 / 0.010 0.857 / 11.1 169
usps 0.451 0.659 / 0.027 0.549 / 1.05 114
adult 0.458 0.601 / 0.009 1.27 / 0.682 113

10 different neural network trainings. In the PEFS, we also report
the average test errors and average percentile of selected features of
10 different trainings for each setting. The results of the PSO-based
wrapper method and LASSO are reported for a single run.

Comparing the PEFS and filter methods, the PEFS outperforms
the filter methods for small feature subset around from 10% to 40% in
the usps and adult datasets. For the pcmac dataset, the performances
of the PEFS outperforms the filter method for selected features of
around 50%.

Comparing the PEFS and LASSO as an embedded approach, the
PEFS outperforms LASSO in the usps dataset on the same percentile
of selected features. However, LASSO outperforms the PEFS and
filter methods in the pcmac dataset. Interestingly, the PEFS reaches
the equivalent performance with LASSO when the fewer number of
features are selected in the adult dataset. We consider that this per-
formance difference is caused by the model difference; i.e., LASSO
uses the linear model. These results demonstrate that the PEFS can
take good advantage of the neural network model as the embed-
ded approach. In addition, the percentile of the selected features in
LASSO is not distributed compared to the PEFS. This is because the
appropriate scale of the regularization factor in LASSO depends on
the dataset. In contrast, the PEFS does not require to tune the scale
of ϵ by the utility transformation.

Next, we compare the test error with ErFS, the PSO-based wrap-
per approach. ErFS outperforms the filter methods except for the
pcmac dataset. In general, the wrapper method is superior to the
filter method, but it is computationally expensive when the compli-
cated model is used. In our setting, the numbers of individuals and
generations may not be sufficient to reach the fewer test errors. The
performances of the PEFS and ErFS are comparable on the same
percentile of selected features.

Computational Costs. We compare the total computational times
of the feature selection and neural network trainings. Table 2 shows
the computational times of a typical single run for each method and
the case of using all features (i.e., without feature selection (FS)). For
three datasets, the computational time of the PEFS was about 1.2 to
1.5 times as long as without the feature selection, while ReliefF and
mRMR require more computational time as the number of training
data or feature increase. The computational complexity of ReliefF
and mRMR is O(dN ) [16] and O(d2) [19], respectively. LASSO is
fast because it uses the linear model, unlike the other methods.
Obviously, the PSO-based wrapper method requires significant
computational cost because it needs the cycle of the model training
to evaluate the feature subset.
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Figure 1: The relations between the percentile of selected features and the test error for each dataset. The vertical and hori-
zontal axes represent the test error rate and the percentile of the selected features, respectively. For the mRMR, ReliefF and
PEFS (proposed method), the average value and standard deviation of 10 different model trainings are plotted.

In the PEFS, the additional computational time for the feature
selection does not have a significant impact because the additional
computation is the computation regarding the sampling and updat-
ing of p(M | θ ). The experimental result shows that the PEFS can
select features in a reasonable computational time even when using
neural network models. Moreover, the coefficient of the penalty did
not affect the computational time in our implementation.

4 CONCLUSION
In this paper, we have proposed a novel embedded feature selection
method using probabilistic model-based optimization, called the
PEFS. The distribution for selecting features is updated by the nat-
ural gradient like IGO, while the model parameters are optimized
by a usual gradient descent method simultaneously. Moreover, we
have introduced the penalty based on the number of selected fea-
tures. Although evolutionary algorithms have often been used for
the wrapper approach, our method has shown the potential of evo-
lutionary algorithms for embedded feature selection. We evaluated
the PEFS with the neural network on three classification problems
and compared the performance of our method with those of ex-
isting feature selection methods. We confirmed that introducing
the penalty can control the number of selected features. The PEFS
achieved the competitive test error and reasonable computational
time and particularly outperformed the filter methods in the small
number of selected features.

A future work can formulate the penalty under the prior distribu-
tion. Another future work can combine the PEFS with the dynamic
model structure optimization technique introduced in [17], which
is based on the same framework used in this paper. We can simply
combine these methods and simultaneously optimize the model
structure, the selected features, and the model parameters.
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