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ABSTRACT 

In this paper, a new Multi-Objective Particle Swarm optimization 

algorithm (MOPSO) with adaptive inertia weight and dynamic 

search space is introduced for multi-objective optimization. The 

objective of the study is to investigate an efficient MOPSO to deal 

with large-scale optimization and multi-modal problems. The new 

adaptive inertia weight strategy allows the inertia weight to keep 

varying throughout the algorithm process, which helps the 

algorithm to escape from local optima. The dynamic search space 

design can avoid decision variables from continuously taking their 

extreme values, and therefore enhances the searching efficiency. 

The performance of the proposed algorithm was compared with 

three popular multi-objective algorithms in solving seven 

benchmark test functions. Results show that the new algorithm can 

produce reasonably good approximations of the Pareto front, while 

performing with a budget of 10,000 fitness function evaluations. 

CCS CONCEPTS 

• Computing methodologies → Search methodologies; 

KEYWORDS 

Multi-objective particle swarm optimization; inertia weight; 

exploration and exploitation; bound handing, searching efficiency 

1 INTRODUCTION 

Multi-Objective optimization problems (MOP) have more than 

one objective function to be optimized simultaneously [1]. A 

general MOP global minimum problem with n objectives is 

defined as [2]: 

 Minimize f(x) = [f1(x), f2(x) …, fn(x)] 

 subject to g(x) ≤ 0, h(x) = 0  

where g(x) ≤ 0 and h(x) = 0 represent the constraints. 
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Definition 1. (Pareto dominance) [3]:  

 x is said to dominate y  

 if  ∀i,  fi(x) ≤ fi(y), ∃i,  fi(x) < fi (y).          

Definition 2. (Pareto optimal set) [3]:  

 P* = {x | ¬∃y ∈ Ω, f(y) ≺ f(x)}.          

Definition 3. (Pareto front) [3]:   

 PF* = {f(x) = [f1(x), f2(x) …, fn(x)] | x ∈ P*}.          

The concept of domination is defined as A dominates B if it is 

better in at least one objective and not worse in all other 

objectives. We aim to find a set of non-dominated “trade-off” 

solutions that represent the best possible compromises among the 

objectives instead of a single solution.  

     Particle Swarm Optimization (PSO) [3] is a population-based 

heuristic search technique that simulates the movements of a flock 

of birds which aim to find food. In a PSO algorithm, each particle 

represents a potential solution in objective space, and the 

population of particles is called a swarm. At each iteration, 

particles update their position according to its own experience 

(personal best, pbest) and its neighbors (global best, gbest). The 

non-dominated global best solutions are called “leaders”, which is 

stored in an external archive. Particle movement is computed for 

the (t+1)th iteration as follows [3]:  

           x𝑖(𝑡 + 1) = x𝑖(𝑡) + v𝑖(𝑡 + 1)                                              (1) 

            v𝑖(𝑡 + 1) = W × v𝑖(𝑡) + C1𝑟2 × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − x𝑖(𝑡)) 

                                                     + C2𝑟2 × (g𝑏𝑒𝑠𝑡(𝑡) − x𝑖(𝑡))        (2) 

where 𝑖 = 1,2,3 ... , 𝑛 is the index of particle, the position and  

velocity of the i-th particle at the t-th iteration is denoted as x𝑖(t) 

and x𝑖(t), respectively. At the t-th iteration, gbest(t) is the global 

best position founded by the entire swarm while pbesti(t) is the 

personal best position found so far by the i-th particle. W is the 

inertia weight of the current particle, it controls the trade-off 

between global and local experience. C1, C2 are the acceleration 

coefficients, and r1 and r2 are random values uniformly 

distributing in the interval [0, 1]. 

     In PSO, inertia weight (W) [4] plays a key role to balance 

between exploration and exploitation process in PSO. It 

determines the contribution rate of a particle’s previous velocity 

to its velocity at the current time step. When W is small, the PSO 

is more like a local search algorithm. When W is large, the PSO is 

more like a global search method and it always tries to explore the 

new areas. 
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     Multi-Objective Particle Swarm optimization (MOPSO) is a 

very competitive swarm intelligence algorithm for solving multi-

objective optimization problems. However, there are two main 

issues affecting the efficiency of MOPSO. Firstly, when using 

MOPSO to solve multi-modal functions, it gets into local optima 

easily, and suffers from premature convergence. Secondly, in 

some cases, decision variables would continuously take the values 

of their extreme values, which does not contribute to the search 

[5]. This is because when a particle moves outside the bound, the 

decision variable takes the value of its corresponding boundary. 

To overcome the first issue, this paper proposes a new adaptive 

inertia weight strategy to adjust the inertia weight using the 

potential of algorithm being trapped into a local optima at the 

current iteration. To overcome the second issue, dynamic search 

space is introduced to avoid particles from going to the search 

space boundary.  

2  PROPOSED ALGORITHMS 

2.1 Adaptive inertia weight strategy 

Inertia weight can balance the exploration and exploitation ability 

of PSO. When it is large, the algorithm has a higher chance to 

jump out of the local optima. When it is small, the algorithm 

enables more exploration. To enhance the capability of MOPSO 

to solve multi-modal problems, a new adaptive inertia weight 

strategy is introduced in this paper. The new strategy consider the 

search progress of the algorithm, using this information to 

dynamically adjust the inertia weight, so that the algorithm can 

escape from local optima.  

     To get an indicator of the search progress, the percentage of 

particles whose personal best (pbest) is dominated by any external 

archive members is calculated, which is called p(t). The higher 

p(t) indicates the current iteration has a higher potential that it is 

trapped into a local optimum. p(t) is calculated at the end of each 

iteration.  

𝑝(𝑡) = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑜𝑠𝑒 𝑝𝑏𝑒𝑠𝑡 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑  

                𝑏𝑦 𝑎𝑛𝑦 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑚𝑒𝑚𝑏𝑒𝑟                        (3) 

When p(t) is high, it indicates that a dominance improvement is 

made at the previous iteration (a solution that dominates all 

previous solutions is found). At this iteration, inertia weight 

decreases to encourage more exploration of the new good leaders. 

When p(t) is medium, particles share information and converge to 

the global best, but the swarm is not trapped in local optima. 

When p(t) is low, the algorithm is potentially trapped in local 

optima, inertia  weight will increase to encourage more global 

search, and escape from the local optima.  

     To balance local search and global search in MOPSO, we let 

W varies in [0.5, 0.9]:  

                𝑊(𝑡 + 1) = 0.9 − 𝑝(𝑡) ∗ 0.4                        (4) 

where p(t) is the indicator value at iteration t, and W(t+1) is the 

inertia weight at iteration t+1. 

     Fig.1 and Fig.2 plots the Hypervolume and the corresponding 

inertia weight of a MOPSO with adaptive inertia weight using the 

test function ZDT4. When the Hypervolume improvement is 

small, it means that MOPSO is potentially trapped in local optima. 

Thus W increases to enable more exploitation.  

 
Figure 1: Hypervolume indicator at iteration t. 

 
Figure 2: Variations of the inertia weight at iteration t. 

2.2 Dynamic search space 

In MOPSO, particles move in the search space guided by their 

own experiences and the acquired knowledge during the 

optimization process. One of the problems faced with PSO is that 

of maintaining the swarm within the feasible region. Researchers 

have proposed various bound handling methods, according to 

experimental studies, the nearest method is the most reliable 

methods for bound handling, which is when a particle moves 

outside the bound, the decision variable takes the value of its 

corresponding boundary [6]. However, the disadvantage of this 

method is that it is unable to solve some of the MOPs (e.g. 

DTLZ1, and DTLZ3 problems) when particles moves to its 

extreme values continuously [5]. 

     A dynamic search space which the upper and lower bound of 

decision variables are changed with the number of iterations is 

introduced in the proposed algorithm. It can avoid particles from 

continuously going to the search space boundary, and therefore 

enhances the search efficiency.  

     We let the first half swarm moves within a dynamic search 

space boundary, and another half moves within the normal search 

space boundary. When a particle moves outside the bound, the 

decision variable takes the value of its corresponding boundary. 

For the first half swarm at the first iteration, their position are set 

to the search space center, and the upper and lower bound of 

decision variable becomes: 

                𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 =
𝑟𝑎𝑛𝑔𝑒

2
+ 𝑟𝑎𝑛𝑔𝑒 ∗ 0.1                         (5) 

                𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 =
𝑟𝑎𝑛𝑔𝑒

2
− 𝑟𝑎𝑛𝑔𝑒 ∗ 0.1                         (6) 

For every specified number of iterations, the upper and lower 

bound of decision variables increase or decrease by (𝑟𝑎𝑛𝑔𝑒 ∗

0.1). When half of the total iterations have completed, the upper 
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and lower bound of decision variables becomes their normal 

value.   

     The idea of dynamic search space is to first gather the particles 

at the search space center, and then expand the search area 

gradually. This can prevent the decision variables keep taking 

their extreme values, and therefore improve the efficiency of 

search. 

2.3  The improved MOPSO Algorithm 

The new algorithm is based on an improved MOPSO algorithm 

called OMOPSO [7], which adopts the concept of ε-dominance 

and crowding-distance information to identify the leader set. To 

improve the efficiency of the algorithm, a new adaptive inertia 

weight strategy and dynamic search space is applied. 

     Fig.3 shows the pseudo code of the proposed algorithm. First, 

the swarm is initialized. The non-dominated particles found in the 

swarm will be introduced into the leader set. The crowding factor 

of each leader is calculated. Later on, we gather the first half 

swarm to the search space center, and set the corresponding 

feasible search space. At each iteration, we calculate the indicator 

p(t), using this information to adjust the inertia weight. When the 

current iteration equals to ⅛, ¼, ⅜ or ½ of the total iterations, the 

feasible search space for the first half swarm will expand its size. 

For each particle, we perform the flight and apply the 

corresponding mutation operator. The resulting particles are 

evaluated and both the particles’ memory and the archive are 

updated. The algorithm returns the archive as the approximation 

set found. 

 

Figure 3: Pseudo code of the complete algorithm. 

3  PEFORMANCE COMPARSIONS 

To validate our proposed algorithm, we performed comparison 

with respect to three state-of-the-art multi-objective algorithms: 

OMOPSO [7], SMPSO [8] and NSGA-II [9]. We evaluate the 

efficiency of the algorithms by comparing the convergence and 

diversity of solutions produced after performing 10000 function 

evaluations. For each test function, 30 independent runs are taken, 

and the following metrics [10] are adopted. 

Hypervolume Indicator (HV): This measures the convergence 

and diversity of the obtained solutions. The closer are the 

solutions to the true Pareto fronts, the larger is the value of HV. 

Generational distance (GD): This indicates the difference 

between obtained solutions and the true Pareto fronts.  

Additive epsilon indicator (Iε+): This relies on the epsilon 

dominance concept, it measures how close the obtained solutions 

is to the true Pareto fronts. 

     ZDT (ZDT1, ZDT2, ZDT3, ZDT4, ZDT6) and DTLZ 

(DTLZ1, DTLZ3) benchmark test functions [11] are taken to 

verify the new proposed MOPSO, and two objectives are 

optimized. ZDT4 is a highly multi-modal function which has 21 

local Pareto-optimal fronts.  

     All the algorithms have been implemented in Java using 

MOEA Framework [12]. For the three PSO-based algorithm, the 

population size and external archive size were both set to 100, C1 

and C2 were assigned randomly between 1.5 and 2.0, r1 and r2 

were assigned randomly between 0.0 and 1.0. For the new 

algorithm, the inertia weight varied in [0.5, 0.9]. For OMOPSO, 

the inertia weight was assigned randomly between 0.1 and 0.4. 

For SMPSO, the inertia weight was set to 0.1 and the mutation 

rate was set to 1/ (number of decision variables). For NSGA-II, 

the population size was set to 100, crossover rate was set to 0.9 

and the mutation rate was set to 1/ (number of decision variables).  

     Table 1 to 3 tabulate the performance of all algorithms in terms 

of HV, GD and Iε+ in different test functions. A number 

highlighted in bold is the best results in such corresponding test 

function. The tables show that the proposed algorithm generally 

outperformed the other three MOP algorithms in all ZDT 

problems (except for ZDT6), according to all the indicators. For 

ZDT6 problem, the proposed algorithm obtains the best HV 

values, and the second best GD, Iε+ values. ZDT4 is a well-

known problem characterized by having many local optima. We 

can observe that the proposed algorithm clearly outperformed the 

other three MOP algorithms for ZDT4, it has a high capability to 

solve multi-modal functions. 

     For the two DTLZ test problems, only the proposed algorithm 

and OMOPSO are able to converge to the true Pareto-front, their 

performance are comparable in terms of HV and Iε+. The rest of 

the MOP algorithms achieves a HV value very close 0, meaning 

that the solution sets obtained are outside the limits of the Pareto 

front. For the results in terms of GD, SMPSO outperformed the 

three other algorithms. 

     The proposed algorithm yielded five best mean values of HV, 

GD, and four best mean values of Iε+. 

4 CONCLUSION 

This paper has presented an improved multi-objective particle 

swarm optimizer with a new adaptive inertia weight strategy and 

bound handling method. We compared the performance of the 

new approach and three other popular MOP algorithms, 
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OMOPSO, SMPSO and NSGA-II with a budget of 10000 

function evaluations, the new approach generally outperformed 

three other algorithms in terms of Hypervolume, Generational 

distance and Additive epsilon indicator in seven benchmark test 

problems. The proposed MOPSO is more efficient, also it is able 

to solve multi-objective problems with many local optima, and 

avoid decision variables getting the extreme values. As part of our 

future work, we intend to further enhance the diversity of solution 

sets.  

Table 1: Performance comparison in HV 

Test 
Function 

HV 
Proposed 
MOPSO 

OMOPSO SMPSO NSGA-II 

ZDT1 
Mean 6.31E-01 6.24E-01 5.91E-01 6.02E-01 

Std. 1.71E-04 5.18E-03 7.64E-02 5.17E-03 

ZDT2 
Mean 3.27E-01 3.25E-01 3.08E-01 2.74E-01 

Std. 8.76E-05 2.06E-03 4.83E-02 4.70E-02 

ZDT3 
Mean 4.84E-01 4.75E-01 3.75E-01 4.66E-01 

Std. 3.91E-03 9.29E-03 7.70E-02 4.92E-03 

ZDT4 
Mean 4.71E-01 2.17E-01 2.59E-01 1.44E-01 

Std. 2.66E-01 2.7E-01 2.7E-01 1.46E-01 

ZDT6 
Mean 3.99E-01 3.99E-01 3.99E-01 1.07E-01 

Std. 3.00E-04 5.00E-04 4.57E-04 3.13E-02 

DTLZ1 
Mean 3.24E-01 0.00 4.73E-01 6.48E-02 

Std. 4.28E-02 0.00 5.83E-02 1.24E-01 

DTLZ3 
Mean 1.1E-01 0.00 1.61E-01 0.00 

Std. 2.52E-02 0.00 5.79E-02 0.00 

 

Table 2: Performance comparison in GD 

Test 
Function 

GD 
Proposed 
MOPSO 

OMOPSO SMPSO NSGA-II 

ZDT1 
Mean 2.91E-04 9.78E-04 4.67E-03 2.67E-03 

Std. 5.92E-05 3.78E-04 7.98E-03 4.43E-04 

ZDT2 
Mean 2.27E-04 7.24E-04 4.17E-03 4.29E-03 

Std. 3.18E-05 2.21E-04 1.04E-02 1.22E-03 

ZDT3 
Mean 2.09E-03 3.27E-03 2.34E-02 4.20E-03 

Std. 8.30E-04 9.82E-04 3.44E-02 7.44E-04 

ZDT4 
Mean 3.91E-02 1.4E-01 6.86E-02 6.57E-02 

Std. 7.15E-02 2.47E-01 6.04E-02 3.32E-02 

ZDT6 
Mean 8.23E-04 8.35E-04 9.72E-04 5.57E-02 

Std. 3.90E-05 5.00E-04 4.57E-04 3.13E-02 

DTLZ1 
Mean 12.90 - 7.1E-01 3.64E-01 

Std. 8.16 4.52 2.73 2.74E-01 

DTLZ3 
Mean 49.20 - 8.31 - 

Std. 26.50 16.05 12.40 2.52 

Table 3: Performance comparison in Iε+ 

Test 
Function 

Iε+ 
Proposed 
MOPSO 

OMOPSO SMPSO NSGA-II 

ZDT1 
Mean 8.37E-03 1.39E-02 3.94E-02 2.81E-02 

Std. 1.75E-03 3.97E-03 5.37E-02 3.51E-03 

ZDT2 
Mean 7.89E-03 1.06E-02 4.39E-02 1.16E-01 

Std. 2.19E-03 1.40E-03 8.89E-02 1.97E-01 

ZDT3 
Mean 1.46E-02 2.86E-02 1.59E-01 4.54E-02 

Std. 5.15E-03 1.60E-02 8.66E-02 5.41E-02 

ZDT4 
Mean 2.67E-01 7.47E-01 5.45E-01 6.08E-01 

Std. 4.9E-01 8.28E-01 4.59E-01 3.07E-01 

ZDT6 
Mean 1.12E-02 1.04E-02 1.22E-02 4.75E-01 

Std. 2.66E-03 3.05E-03 1.64E-03 6.97E-02 

DTLZ1 
Mean 4.22E-01 - 4.52E-02 1.07 

Std. 1.14E-01 8.71 1.24E-01 7.38E-01 

DTLZ3 
Mean 6.64E-01 - 2.69E-01 - 

Std. 1.3E-01 3.97E+01 3.39E-01 5.31 
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