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ABSTRACT
Search-based software engineering, a discipline that often requires
finding optimal solutions, can be a viable source for problems that
bridge theory and practice of evolutionary computation. In this
research we consider one such problem: generation of data connec-
tions in a distributed control application designed according to the
IEC 61499 industry standard.

We perform the analysis of the fitness landscape of this problem
and find why exactly the simplistic (1 + 1) evolutionary algorithm
is slower than expected when finding an optimal solution to this
problem. To counteract, we develop a population-based algorithm
that explicitly maximises diversity among the individuals in the
population. We show that this measure indeed helps to improve
the running times.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; •Theory of computation→ Evolutionary algorithms;
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1 INTRODUCTION
Evolutionary computation consists of theory and practice. Most
recent advances in theory come from analysing relatively simple
algorithms on artificial problems in terms of the number of fitness
evaluations needed to reach the optimum in order to understand
and improve the working principles of randomised search heuristics.
Practice employs algorithms with rather complicated designs to
solve problems that are often large and not understood well, and
solving these problems to optimality is often an exception. Given
these differences, bridging theory and practice is a difficult task,
although successful cross-fertilisation always gives bright results.

Search-based software engineering [4] is one of the practical do-
mains where evolutionary computation is applicable which, unlike
many other domains, often requires solving problems to optimality.
Program synthesis is a prominent example of such a problem: when
the fitness of a program is based on its correctness any sub-optimal
solution is not acceptable as a final result. Although there exist some
benchmark problems of program synthesis that can be theoretically
studied [7], no definite answers are known about synthesis of even
middle-sized practically usable programs. The best forces are now
concentrated on evolutionary software improvement [6]. Theoreti-
cal analysis is a rare thing even in the neighbouring discipline of
automated software testing [5].

Our approach towards closing the gap between theory and prac-
tice, which we undertake in this paper, is to analyse small but
realistic problems from the area of industrial control software syn-
thesis, and to develop algorithms which overcome problems that
are specific to this field. We chose a particular domain of distributed
control software designed according to the IEC 61499 standard [1].
This standard defines software as a network of communicating
functional blocks, which describe the state and the behaviour of
a certain micro-controller in the distributed system. We further
refine ourselves to the problem of synthesis of data connections for
the given set of functional blocks in order to satisfy the conditions,
expressed in terms of formal verification and model checking [2],
that define how the entire system should behave.

Our previous research [8] considered evolutionary synthesis of
such data connections by a simple (1 + 1) evolutionary algorithm
(EA), which applies a mutation operator to the current solution at
each iteration and the result replaces the current solution if it is
at least as good as the current one. The fitness was defined as the
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number of satisfied formulae. In this paper, we aim to improve the
performance of this method by analysing the fitness landscape in
more detail, which reveals the weak points of the simple algorithms
in this particular case and suggests the algorithmic design changes
towards better convergence to the global optimum.

2 PROBLEM DESCRIPTION
We use a simple closed-loop system from an automated pick-and-
place manipulator as our model problem. It consists of a pneumatic
cylinder with two proportional valves, position sensor and the
joystick. This system follows an Internet-of-things architecture,
thus each valve and the sensor has its own micro-controller. The
system must reach the point shown by the joystick. The reader is
kindly asked to refer to [8] for more details regarding this system.

In order to compute the fitness function we model each function
block in the UPPAAL model checker [3]. UPPAAL uses a subset
of computation tree logic to specify the properties of the system.
Using the UPPAAL query language allows to describe the expected
behaviour of the model using path and state formulae.

Compared to the previous paper [8], which had six formulae to
check, we introduce two additional formulae – a copy of an original
formula with different variables, which checks similar behaviour
characteristic of a different block, and a new formula which checks
a different behaviour characteristic which was not considered in
the original paper. We now have eight formulae to check, so the
fitness function, which is the number of satisfied formulae, takes
values from 0 to 8.

Each individual is a model with n = 6 decision variables, each
representing an input of a function block, which can take values
from 0 to 6, each representing a signal output. In the original paper
eight inputs were present, but for this paper we removed two of
them, as they were used only for the visualization in the original
application, and do not affect the functionality of the system.

The relatively small search space size consisting of 117 649 in-
dividuals made it possible to precompute fitness values for each
possible individual, which makes the fitness landscape analysis
much easier. We give the number of individuals for each fitness
value below:

• 0: 99 (0.0841%);
• 1: 2016 (1.7136%);
• 2: 15956 (13.5624%);
• 3: 20958 (17.8140%);
• 4: 30148 (25.6254%);

• 5: 36164 (30.7389%);
• 6: 12257 (10.4183%);
• 7: 47 (0.0399%);
• 8: 4 (0.0034%).

Unfortunately, the search space size is quite regular, and still too
large to enable exact computation of expected running times of vari-
ations of the (1+1) EA provided that neutral mutations are accepted.
Thus our methods of analysis will still be either experimental (with
the use of precomputed fitness values) or coarse-grained (such
as computing the average probability of getting from fitness x to
fitness y).

3 LANDSCAPE ANALYSIS
Initially we evaluated the performance of the (1 + 1) EA with the
modified fitness function. We consider two mutation operators:

• Uniform mutation (uf ): replaces each gene of an individual
with a random different value with probability of 1/n. We
additionally guarantee that at least one gene is changed.
• Single gene mutation (sng): replaces one random gene with
a new value different from it.

For each mutation operator 200 runs were conducted with a budget
of 105 fitness evaluations. The median number of fitness evalua-
tions until the optimum is found was 2783 in the case of uniform
mutation and 3193.5 for single gene mutation. The corresponding
interquartile ranges were 3556.5 and 5445.25. What is more, single
gene mutation failed to obtain the optimum within the budget in
14 out of 200 runs, while uniform mutation found the optimum in
all cases.

The transition matrices in Table 1, computed by aggregating
data for all individuals and their fitness values, show the average
probability to move from an individual with fitness f1 to an indi-
vidual with fitness f2 > f1. From this we can see that, on average,
it is very easy to leave the fitness values of [0; 5], as the probability
of leaving these fitness values is at least 6.28 · 10−2, which maps
to approximately 16 iterations. However, leaving the fitness of 6 is
much more difficult, and requires at least about 103 iterations on
average. Transition from the fitness of 7 to the optimum is several
times faster.

The fact that the actual running times are much higher than the
sum of the average transition times shows that there is a significant
number of individuals from which it is much more difficult to leave
towards an individual of higher fitness.

Our investigations of the individuals with the fitness values of 6
and 7 show that the majority of individuals with fitness function of
6 are far from the optimum, as presented in Table 2. We consider
it to be one of the possible reasons for the low performance of
the (1 + 1) EA using the single gene mutation operator. As single
gene mutation always produces a new individual with Hamming
distance of 1 from the parent, it seems plausible that the single gene
mutation cannot escape the plateau of individuals with fitness of
6 and gets stuck. Contrast to that, the average distance from an
individual with the fitness of 7 to the optimum is much smaller.

4 INTRODUCING DIVERSITY
In order to check if the considered idea that the performance of
the (1 + 1) EA is hindered by the fitness plateau distant from the
optimal solutions, we propose a population based algorithm with
enforced population diversity shown in Algorithm 1.

The initial population consists of N randomly generated indi-
viduals. At each iteration, N child individuals are produced from
each parent via the chosen mutation operator. All (N × N ) + N
individuals are sorted by their fitness and for the next iteration N
best and most diverse individuals are chosen. The algorithm stops
when an individual with the maximum fitness value of 8 is found.

In order to determine the order of the best possible effect from
introducing diversity, we try to maximise diversity by an exact de-
terministic algorithm rather than a heuristic. In our algorithm, the
population diversity is enforced via the Diversity(P ,k) function.
It chooses k individuals from the set of individuals P such that the
sum of Hamming distances between them is maximum. For the
set of individuals P we compute the matrix M of their Hamming
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Table 1: Transition matrices: upper triangle for uniform mutation, lower triangle for single gene mutation.

uf 0 1 2 3 4 5 6 7 8
0 – 8.41 · 10−2 1.87 · 10−1 1.07 · 10−1 9.12 · 10−2 1.08 · 10−1 1.10 · 10−2 4.16 · 10−6 7.25 · 10−8 8
1 5.91 · 10−3 – 2.17 · 10−1 1.25 · 10−1 9.75 · 10−2 9.07 · 10−2 1.59 · 10−2 5.92 · 10−5 8.50 · 10−7 7
2 6.57 · 10−5 1.02 · 10−3 – 1.40 · 10−1 1.17 · 10−1 9.57 · 10−2 2.98 · 10−2 1.49 · 10−4 1.73 · 10−5 6
3 1.77 · 10−5 3.83 · 10−4 8.37 · 10−2 – 1.61 · 10−1 1.05 · 10−1 2.44 · 10−2 1.78 · 10−4 3.88 · 10−5 5
4 1.75 · 10−5 2.43 · 10−4 4.45 · 10−2 2.17 · 10−1 – 1.61 · 10−1 3.76 · 10−2 2.28 · 10−4 1.66 · 10−5 4
5 6.49 · 10−5 1.96 · 10−4 2.38 · 10−2 1.24 · 10−1 2.28 · 10−1 – 6.28 · 10−2 2.47 · 10−4 1.18 · 10−5 3
6 1.04 · 10−5 1.34 · 10−4 3.32 · 10−2 1.08 · 10−1 1.47 · 10−1 2.03 · 10−1 – 5.06 · 10−4 3.42 · 10−5 2
7 0.00 6.89 · 10−5 1.03 · 10−2 9.60 · 10−2 1.12 · 10−1 1.70 · 10−1 3.65 · 10−1 – 2.82 · 10−3 1
8 0.00 0.00 8.42 · 10−4 1.23 · 10−1 9.54 · 10−2 1.40 · 10−1 3.09 · 10−1 1.60 · 10−1 – 0

8 7 6 5 4 3 2 1 0 sng

Table 2: Distribution of individuals with f (x) close to opti-
mum by Hamming distance

Hamming distance 1 2 3 4 5 6
f (x) = 7 6 17 8 16 0 0
f (x) = 6 9 56 195 715 2754 8528

Algorithm 1 Population based algorithm with diversity
Population P ← N randomly initialized individuals
while optimal solution has not been found do

Initialize C ← �
for p ∈ P do

for i ∈ [1;N ] do
C ← C ∪Mutate(p)

end for
end for
A← P ∪C
Best ← {x ∈ A | ∀xi ∈ A : f (x) ≥ f (xi )}
if |Best | ≥ N then

P ← Diversity(Best ,N )
else

P ← Best ∪ Diversity(A \ Best ,N − |Best |)
end if

end while

distances between each other: {mi, j ∈ M | i, j ∈ [1, |P |] : mi, j =

HammingDistance(Pi , Pj )}. In order to find k most diverse indi-
viduals we have to find k × k submatrix ofM , such that the sum of
its elements is the maximum possible.

The number of possible sub-matrices is equal to
( |P |
k
)
, thus it

may be unfeasible to solve this problem for large N . To overcome
this problem, we evaluate only a small set of randomly chosen
combinations, determined by the parameter L of the algorithm.

Initial experimentswith single genemutation and smallN showed
that the algorithm tends to get stuck with the same set of parents:
new children are as good as parents but closer to each other in
terms of the Hamming distance. In order to ensure progress in the
optimization process we implement additional age correction in the
Diversity(P ,k) function: for each individual we count the number
of times it was used in the parent populations a, and reduce its
Hamming distance to other individuals by a factor of a + 1.

5 EXPERIMENTS AND RESULTS
For each combination of mutation operator, population size (N ∈
[2, 18]) and diversity enforcement (no population diversity enforced,
population diversity enforced and diversity enforced with age cor-
rection) 200 runs of the proposed algorithmwere made. The number
of evaluated combinations in Diversity function was limited to
L = 20 000.

The resulting median number of fitness evaluations required to
reach optimum is presented on Figure 1 for the population algo-
rithm with uniform mutation and on Figure 2 for the algorithm
with single gene mutation. Each plot presents baseline results for
(1 + 1) EA using corresponding mutation operator, as well as the
results for three versions of the population algorithm: algorithm
without enforcing population diversity (Pop), algorithm with diver-
sity, but without age correction (Div) and algorithm with diversity
and age correction (DivAge). Closer comparison of the (1 + 1) EA
with uniform and single gene mutations as well as the correspond-
ing population based algorithm with diversity and age correction
is shown on Figure 3.

It can be seen that with sufficient population size (N > 5) both
Div and DivAge algorithms outperform their (1+1) EA counter-
parts. Age correction significantly improves performance of the
algorithms with small population sizes, but makes almost no dif-
ference with larger values of N . The Div algorithm with small
population size and single gene mutation operator fails to reach
optimum within the budget of 100 000 computations, but DivAge
version’s performance is almost on par with the (1 + 1) EA sng
algorithm.

The differences in performance between the population-based
algorithm and its (1+1) EA counterpart were checked for statistical
significance using the Wilcoxon rank-sum test with Holm correc-
tion implemented in R programming language. The p-values given
in Table 3 suggest that for each version of the population algorithm
there are population sizes which render it statistically better than
the (1+ 1) EA at the confidence level of 0.05. The medians observed
for these sizes are typically less than those of the (1 + 1) EA by
roughly 1/3.

6 CONCLUSION
We have empirically analysed the fitness landscape of a practical
problem of automatic generation of data connections in IEC 61499
function block applications for industrial control systems. As this
problem features fitness plateaus at large genotypical distances to
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Figure 1: Results with the uniform mutation operator.
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Figure 2: Results with the single gene mutation operator.

the optimum, hill climbers such as the (1 + 1) EA with various mu-
tation operators experience problems in reaching the optimum. We
introduced a population-based algorithm with a diversity preser-
vation technique based on explicit diversity maximization, which
reduced the observed running times by approximately a third for
optimal choices of the population size.

In industrial applications, fitness evaluation can be expensive. De-
randomized and non-heuristic mechanisms for improving various
algorithmic properties are not only affordable in these conditions,
but can also be desirable, since in the master-slave fitness evalua-
tion framework the master node would otherwise stay idle most
of time. In a sense, there is always a trade-off between the fitness
cost and the cost of evolutionary operations. We showed that even
solving an NP-hard problem to improve population diversity can
enhance the overall performance.

Finally, we observe that our population-based algorithm seems
to have an optimal range for the population size. Making this pa-
rameter self-adjusted can be another good showcase for introducing
a theoretical investigation into a practice-oriented algorithm.

This work was financially supported by the Government of Rus-
sian Federation (Grant 08-08).
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Figure 3: Closer comparison of best algorithms.

Table 3: The p-values for algorithms compared to the corre-
sponding (1 + 1) EA. The cells with values p < 0.05 are high-
lighted in gray.

N Div uf DivAge uf Div sng DivAge sng
2 1.00 1.00 1.00 5.47 · 10−1
3 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 2.19 · 10−1
7 3.39 · 10−4 1.00 1.00 3.11 · 10−6
8 6.23 · 10−4 2.18 · 10−1 1.03 · 10−1 4.21 · 10−4
9 1.46 · 10−4 1.35 · 10−3 3.82 · 10−4 2.09 · 10−8
10 3.15 · 10−2 1.54 · 10−2 5.16 · 10−4 2.31 · 10−6
11 1.92 · 10−1 2.34 · 10−2 1.81 · 10−3 6.20 · 10−4
12 1.79 · 10−1 1.86 · 10−4 2.01 · 10−3 4.76 · 10−7
13 4.50 · 10−2 1.66 · 10−2 1.23 · 10−2 1.63 · 10−1
14 3.73 · 10−1 1.00 5.12 · 10−2 2.14 · 10−2
15 1.00 1.00 9.34 · 10−3 5.48 · 10−1
16 1.00 1.00 1.83 · 10−1 5.45 · 10−2
17 1.00 1.00 1.01 · 10−1 2.56 · 10−1
18 1.00 1.00 3.17 · 10−1 1.00
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