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ABSTRACT

We propose the method of selection of auxiliary objectives (2+ 2λ)-
EA+RL which is the population-based modification of the EA+RL
method. We analyse the efficiency of this method on the problem
XdivK that is considered to be a hard problem for random search
heuristics due to multiple plateaus. We prove that in the case of
presence of a helping auxiliary objective this method can find the
optimum in O(n2) fitness evaluations in expectation, while the
initial EA+RL, which is not population-based, yields at leastΩ(nk−1)
fitness evaluations, where k is the plateau size. We also prove that
in the case of presence of an obstructive auxiliary objective the
expected runtime increases only by a constant factor.
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1 INTRODUCTION

Single-objective optimization can often be accelerated by the intro-
duction of auxiliary objectives [1, 9]. There are plenty of ways how
auxiliary objectives can be used [11]. In multiobjectivization [5, 6],
auxiliary objectives are used to help the optimizers pass through
plateaus of the target objective or escape its local optima.

Auxiliary objectives can be obtained in different ways, e.g. they
can arise from decomposition of the target objective [1, 6, 8] or be
automatically generated in the hope that they reflect some proper-
ties of the problem [3]. However, in the latter case it is a challenging
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task to learn, which of the objectives accelerate the optimization
and which ones slow it down. Moreover, some objectives may
change their helpfulness during the optimization, so it is important
to dynamically learn, which objective is the most useful at every
moment. It caused the uprise of methods of dynamic selection of
auxiliary objectives [5, 7]. One of such methods is EA+RL [3].

The essence of the EA+RL method is in the interaction of an
optimizer, that is usually an evolutionary algorithm (EA), and a
reinforcement learning agent that chooses the objectives to be op-
timized [3]. The efficiency of this method has been proven both
empirically [3] and theoretically [2, 10]. While most empirical stud-
ies of EA+RL consider various EAs as the optimizer, in theoretical
works only simple non-populational EAs are analysed. This lack
of theoretical research increases the risk that population-based
heuristics are used in EA+RL without real understanding of their
role.

In our work we show that using of a population of large size may
decrease the asymptotic runtime of EA+RL method when there is
at least one helpful auxiliary objective.

2 PROPOSED MODIFICATION OF EA+RL

METHOD

The detailed pseudocode of the proposed (2 + 2λ)-EA+RL method
is shown in Algorithm 1.

The EA+RL method consists of two iteratively interacting com-
ponents. The first component is a learning agent that chooses an
auxiliary objective on each iteration. The second component is an
EA that receives an auxiliary objective from the learning agent,
performs one iteration with respect to the chosen objective and
calculates the reward r and the new state of the algorithm s . The
learning agent uses the values of r and s to update its selection strat-
egy. We define a state as the value of the target objective calculated
on the best individual in the population (see Line 5 in Algorithm 1).
The reward is defined as the difference in the sum of the target
objective values over the population before and after the iteration
(Line 15).

As the optimizer we propose the (2 + 2λ)-EA that has two indi-
viduals in the population and on each iteration creates λ offspring
from each individual in the population by mutating one random
bit (Line 8). After creating offspring, the algorithm selects two indi-
viduals to the next generation from the parents and the offspring.
First it selects one of the individuals with the best value of auxiliary
objective uniformly at random (u.a.r. for brevity, see Line 11). Note
that the target objective may be selected as an auxiliary objective
as well. Then the algorithm selects one of the rest individuals with
the best value of target objective u.a.r. (Line 13).
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Algorithm 1 The (2 + 2λ)-EA+RL with forgetting mechanism.
1: Individuals x1,x2 ← two random bit strings
2: Population Pop ← {x1,x2}
3: H ← {auxiliary objectives, target objectivef }
4: Q(s,h) ← 0 for all states s and objectives h ∈ H
5: s ← maxi ∈[1..2](f (xi ))
6: while s < n div k do

7: for i ∈ [1..2] and j ∈ [1..λ] do
8: Pop ← Pop ∪Mutate(xi ) (random bit inversion)
9: end for

10: Objective h ← RandomElement(argmaxh′∈H Q(s,h′))
11: x ′1 ← RandomElement(argmaxx ∈Pop h(x))
12: Pop ← Pop \ x ′1
13: x ′2 ← RandomElement(argmaxx ∈Pop f (x))

14: New state s ′ ← maxi ∈[1..2] f (x ′i )
15: Reward r ← (f (x ′1) + f (x ′2)) − (f (x1) + f (x2))
16: if for C iterations: h was chosen & r = 0 & s has not

changed then

17: Q(s,h) ← 0
18: else

19: Q(s,h) ← (1 − α)Q(s,h) + α(r + γ maxh′∈H Q(s ′,h′))
20: end if

21: New generation Pop ← {x ′1,x
′
2}

22: s ← s ′

23: end while

The previous theoretically analysed versions of the EA+RLmethod
employed only one parent and one child, and in all the previous
versions the search was guided only by the selected objective. In
the proposed method, the selection of two individuals by different
objectives is the feature that became possible due to the two individ-
uals in the population instead of one. It preserves the best individual
as in [10], but also lets the algorithm to explore the search space
with the second individual.

The learning agent in the proposed method uses Q-learning
algorithm that stores the qualityQ(s,h) of each objective h for each
state of the algorithm s . On each step it chooses one objective from
the objectives with the largest Q-value in the current state of the
algorithm u.a.r. After EA sends the reward to the learning agent,Q-
learning updates the quality of the selected objective as in Line 19.
Q-learning has two parameters α and γ . Their values are taken
from the interval (0, 1).

The proposed method also has a forgetting mechanism. If the
learning agent chooses the same objective h for C iterations in a
row and during these iterations the algorithm has not changed its
state, then the quality of these objectives falls to zero (Line 17). C
is a parameter of the algorithm that is considered as a constant.
Note that if r = 0 and s does not change, then the quality Q(s,h) is
multiplied by (1−α +γα) < 1. Thus due to the precision of floating
point arithmetics if the same objective with positive quality is
chosen for many times and the reward is always zero, at some point
its quality becomes zero. So the forgetting mechanism is actually
just determinization of this process to simplify the analysis.

3 PROBLEM STATEMENT

We consider three objectives. The first objective is OneMax that
is a classical function for theoretical analysis defined on all the

bit-strings of length n. OneMax(x) is the number of one-bits in x ,
so it reaches its maximum value in x∗ = (1, . . . , 1).

The second objective is ZeroMax(x) that returns the number
of zero-bits in x . The third objective we consider is XdivK that is
usually defined as XdivK(x) = OneMax(x) div k . However, in our
work we consider the modified version XdivK(x) = (OneMax(x)+
k − n mod k) div k ., so that this function has the unique optimum
in x∗ = (1, . . . , 1). In the rest of the paper by XdivK we imply the
modified version of this function.

The two research questions in our work are (i) whether the pro-
posed population-based EA+RL method can solve hard problems
faster in the case of presence of helpful objectives and (ii) whether
obstructive objectives may significantly decrease its efficiency. To
answer the first question, we consider (XdivK, OneMax) problem,
where XdivK is the target objective and OneMax is an auxiliary
objective. XdivK has a lot of plateaus where the algorithm does not
receive any feedback from the objective. To increase the value of
XdivK the optimizer has to flip up to k zero-bits. All these make
XdivK hard to be optimized by EAs. At the same time, OneMax has
the same optimum as XdivK, and OneMax is a linear function, so
it is easier to optimize, and it is supposed to be a helpful objective.
To answer the second question we added ZeroMax as an auxil-
iary objective. This objective is counter directed with XdivK: any
improvement of XdivK leads to decrease in ZeroMax. Therefore,
ZeroMax is considered as an obstructive objective.

To evaluate the efficiency of the algorithm we estimate its ex-
pected runtime. In this work by runtime we imply the number
of iterations that algorithm performs before finding the optimum.
However, we are also interested in the number of fitness evaluations
that can be computed as the number of iterations multiplied by 2λ,
which is the number of fitness evaluations per iteration.

4 THEORETICAL ANALYSIS

To find the expected runtime of the algorithm we use the fitness
levels technique [12]. We first find how many iterations the (2+2λ)-
EA+RL spends on each plateau in expectation. Then we sum up
these values for all plateaus.

4.1 Notation

By plateau Pj we imply the set of all possible bit-strings with at
least j one-bits, but less than j + k one-bits. For this notation we
use only j such that (n − j) mod k = 0, so the value of XdivK is
the same for all individuals in Pj .

To simplify our proofs we use the following notation.We say that
the algorithm enters (or reaches) the plateau Pj , when the individual
from Pj occurs in the population for the first time. The time that

the algorithm spends on the plateau Pj is the number of iterations
since the algorithm enters Pj until it reaches the next plateau Pj+k .

Pull-up is the iteration that starts with a population of two indi-
viduals from different plateaus and finishes with two individuals
from the same plateau. We say that the algorithm pulls up dur-
ing this iteration. We call it a pull-up, since the algorithm always
accepts an individual with the best known value of the target ob-
jective. It implies that if the two individuals from the population
are from plateaus Pa and Pb , then after the pull up they both will
be on the plateau Pc , where c ≥ max(a,b).
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4.2 Analysis on (XdivK, OneMax) Problem

Theorem 4.1. The expected runtime of (2+2λ)-EA+RL optimizing

(XdivK, OneMax) problem is

E[T ] ≤

n/k−1∑
m=0

(
(1 − (1 − (n −mk)/n)λ)−1+

+ 2k−1
mk+k−1∏
i=mk

(
1 −

(
1 − n − i

n

)λ )−1ª®¬ + n + Cn

k
.

To prove this theorem we first have to prove Lemma 4.2.

Lemma 4.2. If both individuals in the population are in Pj and the
auxiliary objective is chosen u.a.r. from XdivK and OneMax, then

the expected number of iterations that (2+ 2λ)-EA+RL spends on Pj is

E[Tj ] ≤ 2k−1
j+k−1∏
i=j

(
1 −

(
1 − n − i

n

)λ )−1
+ k .

Proof. First notice that an individual from the previous plateau
cannot appear in the population, as this individual is inferior in both
objectives to the individuals in the population. This fact implies that
the sum of the target objective values over the population does not
change until the algorithm reaches the next plateau. Therefore, the
learning agent does not receive any reward and proceed to choose
objectives u.a.r.

We define an improvement as an iteration when the algorithm
generates and accepts an individual with more one-bits than in the
best individual in the current population. At every moment the
algorithm can perform a series of not more than k improvements to
reach the next plateau, since flipping k zero-bits increases the value
of XdivK. The probability of such series p(j) is not less than the
product of the probabilities of k consequent improvements. When
the best individual has exactly i one-bits, then the probability of the
improvement is not less than the probability to create an individual
with more one-bits p1(i) = (1 − (1 − (n − i)/n)λ) multiplied by the
probability to accept this individual to the next population p2(i).
If OneMax is chosen by the learning agent, then the individual
with maximal number of one-bits will be accepted to the next
population for sure, so p2(i) ≥ 1/2. Moreover, if i = j + k − 1, then
the individual with more one-bits will be accepted regardless to the
chosen objective. Therefore,

p(j) ≥
1

2k−1

j+k−1∏
i=j

(
1 −

(
1 − n − i

n

)λ )
.

The algorithm starts the series of improvements not later than
after 1/p(j) iterations in expectation. After that it needs no more
than k iterations to reach the next plateau. Hence,

E[Tj ] ≤ 2k−1
j+k−1∏
i=j

(
1 −

(
1 − n − i

n

)λ )−1
+ k . (1)

□

Now we are ready to prove Theorem 4.1

Theorem 4.1. Let Tj be the time that (2 + 2λ)-EA+RL spends on
Pj .

If after the algorithm enters Pj both individuals in the population
are in Pj , then the algorithm occurs in the conditions of Lemma 4.2.
Hence, in this case the runtime is bounded as in (1).

Otherwise, after entering the plateau the population consists of
one individual from Pj and one individual from the previous plateau.
So the algorithm has to pull up. If the algorithm generates a superior
offspring of the best individual, both this offspring and the best
individual are better than any individual from the previous plateau.
Hence, they both will be accepted to the next population. Thus, the
probability of the pull-up is not less thanp1(j) ≥ (1−(1−(n−j)/n)λ).
Therefore, the expected number of iterations before the pull-up is
not greater than (1− (1− (n − j)/n)λ)−1. After the pull-up, the sum
of the target objective values over the population increases and
the learning agent starts to choose the rewarded objective. In this
case either the algorithm reaches the next plateau in C iterations,
or after C iterations the forgetting mechanism is triggered, and the
algorithm occurs in conditions of Lemma 4.2.

Therefore, the most pessimistic bound on the expected time that
algorithm spends on Pj is

E[Tj ] ≤ (1 − (1 − (n − j)/n)λ)−1 +C

+ 2k−1
j+k−1∏
i=j

(
1 −

(
1 − n − i

n

)λ )−1
+ k .

(2)

Summing up E[Tj ] over all plateaus we prove the theorem. □

If λ = 1 we have expected runtime that is O(nk ). However, the
bound decreases with growth of λ. If λ = n, then (1 − (n − i)/n)λ ≤
1/e, thus

E[T ] ≤
n

k

(
1 − 1

e

)−1
+ 2k−1n

k

(
1 − 1

e

)−k
+ n +

Cn

k
= O(n).

If λ = n, then the expected number of fitness evaluations is
n times the expected number of iterations, that is O(n2). Even
besides the leading constant is large, this result is significant, as it
is the first modification of the EA+RL method that provenly needs
asymptotically less than nk fitness evaluations in expectation to
solve XdivK problem. The previous result was Ω(nk−1) for both
EA+RL and Random Local Search [2].

4.3 Analysis on (XdivK, OneMax, ZeroMax)

Problem

The main result of this section is Theorem 4.3.
Theorem 4.3. The expected runtime of (2+2λ)-EA+RL optimizing

(XdivK, OneMax, ZeroMax) problem is

E[T ] ≤

n/k−1∑
m=0

(
5
3 (1 − (1 − (n −mk)/n)λ)−1

+ (3k/2 + 2k−1)
mk+k−1∏
i=mk

(
1 −

(
1 − n − i

n

)λ )−1ª®¬ + 2n + 2Cn
k
.

Overall, analysis of the algorithm on (XdivK, OneMax, Zero-
Max) problem replicates the ideas of the analysis on (XdivK, One-
Max) problem. However, because of the presence of ZeroMax the
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algorithm can fall from plateau Pj , that is, having both individuals
in Pj it can accept an individual from the previous plateau to the
next population. This results into Lemma 4.4.

Lemma 4.4. If both individuals in the population are in Pj and
the auxiliary objective is chosen u.a.r. from XdivK, OneMax and

ZeroMax, then the expected number of iterations that (2+2λ)-EA+RL
spends on Pj is

E[Tj ] ≤ (3k/2 + 2k−1)
j+k−1∏
i=j

(
1 −

(
1 − n − i

n

)λ )−1
+ 2k +C +

(
1 −

(
1 − n − j

n

)λ )−1
.

Proof. Before reaching the next plateau the algorithm can go
through up to two phases. In the first phase it selects objectives
u.a.r. The first phase ends when the algorithm receives a non-zero
reward. It happens when the algorithm either reaches the next
plateau or if an individual from the previous plateau is accepted to
the population. In the second case the second phase starts.

To finish the first phase the algorithm can perform a series of k
improvements, as in Lemma 4.2. If OneMax is chosen (or XdivK is
chosen in the end of the plateau), then a better individual will surely
be accepted into the next population. The probability to choose one
particular objective is 1/3. So the probability of k improvements is

p(j) ≥
2
3k

j+k−1∏
i=j

(
1 −

(
1 − n − i

n

)λ )
.

Therefore, the first phase takes not more than 1/p(j) + k iterations
in expectation.

The second phase starts only if the individual from the previous
plateau is accepted to the population. However, such individual can
be accepted only if the learning agent selects ZeroMax. Thus, on
the second phase ZeroMax is not selected by the learning agent,
since it has received a negative reward. Hence, the algorithm is in
the same situation as in the worst case in Theorem 4.1. Therefore,
the expected runtime of the second phase is the same as in (2).

Summing up the expected runtime of the two phases we prove
the lemma.

□

Now we are ready to prove Theorem 4.3.

Theorem 4.3. Like in Theorem 4.1, if after entering the plateau
both individuals in the population are in Pj , then the auxiliary
objectives are selected u.a.r. at least on the next iteration. Therefore,
the algorithm is in conditions of Lemma 4.4

If after entering the plateau only one individual in the population
is in Pj , then the algorithm has to pull up. After that, in the worst-
case scenario it spends C iterations on the plateau, triggers the
forgetting mechanism and gets into the conditions of Lemma 4.4.
The difference with Theorem 4.1 is that the probability of pull-up
should be multiplied by 2

3 , as it can occure only if ZeroMax was
not selected.

Summing up the expected runtime of the worst-case scenario
over all the plateaus we prove the theorem. □

Considering particular values of λ we can see that for λ = 1 the
expected runtime is O(nk ). However, for λ = n we have 1 − (1 −
(n − i)/n)λ ≥ 1 − 1/e . Therefore,

E[T ] ≤
5n
3k

( e

e − 1

)
+
(3k + 2k )n

2k

( e

e − 1

)k
+ 2n + 2Cn

k
= O(n).

And the expected number of fitness evaluations is O(n2).

5 CONCLUSION

We proposed and analysed the (2 + 2λ)-EA+RL, a populational
version of the EA+RL method, which selects auxiliary objectives
in EAs with reinforcement learning. Compared to the previous
versions of EA+RL, the proposed method solves the XdivK problem
asymptotically faster in the presence of a helpful auxiliary objective.
Inclusion of an obstructive objective increases the runtime only by
a constant factor.

Since the choice of λ significantly affects the runtime, in the
future it may be interesting to analyse different parameter control
techniques applied to the parameter λ in the (2+2λ)-EA+RL. We feel
optimistic that even simple 1/5-th rule may give an asymptotical
improvement, like it did, e.g., in [4].

This workwas partially financially supported by the Government
of Russian Federation (Grant 08-08), and by RFBR according to the
research project No. 16-31-00380 mol_a.
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