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ABSTRACT

This document contains the description of the experiments and
the discussion of their results that supplement the main theoretical
results on the runtime of the (2 + 2λ)-EA+RL.
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1 EXPERIMENTS

For our empirical research we ran the algorithm on both considered
problems with parameters k ∈ [2..6] and n ∈ [20..100] with step
10. For each set of parameters we performed 800 runs that were
executed in parallel in 8 threads (100 runs per each thread). We
used the parameter of the forgetting mechanism C = 450.

The plots in Fig. 1, Fig. 2 and Fig. 3 illustrate the results of the
experiments. Note that all the plots in Fig. 2 and Fig. 3 have a
logarithmic scale over the y-axis and linear scale over the x-axis.

In Fig. 2 we see that on the (XdivK, OneMax) problem the
(2 + 2n)-EA+RL is not far from the best algorithms for k ≤ 4. For
k = 5 and k = 6 it outscores other algorithms, when n ≥ 30. On
the (XdivK, OneMax, ZeroMax) problem the (2 + 2n)-EA+RL is
also not far from other algorithms for k ≤ 4. However, it is the best
algorithm only when n ≥ 90 for k = 5 and when n ≥ 70 for k = 6.
It is notably that for k = 5 and k = 6 the (2 + 2n)-EA+RL concedes
only to the (2 + 2)-EA+RL that is also the proposed (2 + 2λ)-EA+RL
for λ = 1. In this general sense the (2 + 2λ)-EA+RL outperformed
the initial EA+RL and conventional EAs for k ≥ 3. However, these
results make us assume that parameter tuning may significantly
increase the efficiency of the proposed method.

Fig. 2 also shows that the theoretical upper bound for the ex-
pected runtime of the (2+2n)-EA+RL is rather pessimistic. However,
it seems to have the right asymptotics, as it differs from the mean
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runtime of the (2 + 2n)-EA+RL only by a constant factor. Note that
since we use the logarithmic scale on the plots, the difference by a
constant factor equals to the gap of the constant height between
plots. We support these statements with Fig. 1, which illustrates
the ratio of the theoretical upper bound on the expected runtime of
the (2 + 2n)-EA+RL to its mean runtime. Note that for each k this
ratio is almost constant, if n ≥ 40. For lower values of n the ratio
may be different, that may be explained by the specific behaviour
of the (2 + 2n)-EA+RL in low-dimensional search spaces.

Note that the ratio in Fig. 1 is significantly different for different
values of k . We can see that our upper bound is very pessimistic
for k = 2, and at the same time it is not so pessimistic for k ≥

4. We assume that this behaviour is explained by the fact that
the probability of the worst-case scenario (when the forgetting
mechanism is triggered) for each plateau is lower for greater k .

From Fig. 3 we see that the (2 + 2n)-EA+RL has a very small
variation of the runtime comparedwith (1+1)-EA+RL and the (2+2)-
EA+RL. Moreover, runtimes of the (2 + 2)-EA+RL are concentrated
around several values. Precise analysis of the experimental results
revealed that the (2+2n)-EA+RL extremely rarely enters the plateau
with only one individual, while the (2 + 2)-EA+RL has a lot of runs
when it pulls up after choosing XdivK and spends C iterations to
forget it. However, the (2 + 2)-EA+RL often pulls up after choosing
OneMax, and this fortunate scenario may be the reason why the
(2 + 2)-EA+RL outperforms (2 + 2n)-EA+RL for small values of k
and n.
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Figure 1: The ratio of the theoretical upper bound to the mean runtime of the (2 + 2n)-EA+RL for problems (XdivK, OneMax)

and (XdivK, OneMax, ZeroMax) for all k ∈ [2..6] and for all n ∈ [20..100] with step 10.
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Figure 2: Mean value of the runtime of the (2 + 2λ)-EA+RL compared with the mean runtime of the (1 + 1)-EA+RL with preser-

vation of the best individual, the (1+ 1)-EA, the (2+ 2)-EA and with the theoretical upper bound for the (XdivK, OneMax) and

(XdivK, OneMax, ZeroMax) problems.
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Figure 3: Vertical histograms that illustrate the variation of the number of fitness evaluations for the (1+ 1), (2+ 2) and (2+ 2n)-
EA+RL.
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