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Objectives of the Tutorial

• Illustrate the influence of representations on 
the performance of EAs.

• Illustrate the relationship between problem 
difficulty and used for 
representation/operator.

• Focus on some properties of representations
– Locality of representations

– Redundant representations and neutral search 
spaces

– Synonymous and non-synonymous redundancy
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Agenda

1. A Short Intro to Representations 

1. Defining Representations

2. Standard Genotypes

3. Representations and Operators

4. Direct versus Indirect Representations

5. Design Guidelines for Representations

2. Locality of Representations

3. Redundant Represenations
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Basics: Modern Heuristics

• Modern heuristics
– Can be applied to a wide range of problems

– Use intensification (exploitation) and 
diversification (exploration) steps

• Intensification steps shall improve quality

• Diversification explores new areas of 
search space, also accepting complete or 
partial solutions that are inferior to current 
solution.

Rothlauf: Representations for Evolutionary Algorithms 6

Basics: Modern Heuristics

• Start with one or more solutions
– One solutions: Local search methods

– Population of solutions: Recombination-based methods

• In iterative steps, modify solution(s) to generate one or 
more new solution(s)

• New solutions are created by search operators 
(variation operators)

• Regularly perform intensification and exploration 
phases
– During intensification, use objective function value and 

focus variation on high-quality solutions

– During diversification, objective function less relevant. 
Modify solutions such that new areas of search space are 
explored.

Rothlauf: Representations for Evolutionary Algorithms
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Defining Representations (1)

• A representation assigns genotypes to corresponding 
phenotypes.

• Every search and optimization algorithms needs a 
representation.

• The representation allows us to represent a solution to a 
specific problem.

• Different representations can be used for the same problem.

• Performance of search algorithm depends on properties of the 
used representation and how suitable is the representation in 
the context of the used genetic operators.

• There are many different representations like binary, real-
valued vectors, messy encodings, trees ...

... and we assume that everybody has some experience at 
least with some of them.

Intro – Defining Representations
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Defining Representations (2)

• Each optimization problem f(x) can be separated into a 

genotype-phenotype mapping fg and a phenotype-fitness 

mapping fp

where f=fp◦fg = fp(fg(xg))

• A change of fg also changes the properties of f

• The genetic operators mutation and crossover are applied to 
xg whereas the selection process is based on the fitness of xp

• fp (xp) determines the fitness and complexity of the problem

• fg (xg) determines the used representations

• There are ||Φg|| different representations!

Intro – Defining Representations
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Representations make the Difference

• Representations 

change the character 

and difficulty of 

optimization problems

• Example fp = xp, x∈N

• Different problem 

depending on the 

used representation

(Gray versus Binary) 

Intro – Defining Representations
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Representations make the difference (2)

• Phenotype problem easy to solve for hill-climber.

• When using bit-flipping GA, the Gray-encoded 
problem is easier to solve than the binary-encoded 
problem.

• Gray encoding induces less local optima (when 
used on problems of practical relevance; compare 
Free Lunch theorem (Whitley, 2000)).

• Search performance depends on used search 
method. If other search methods (e.g. different 
operators) are used, then search performance is 
different (compare Reeves, 2000).

Intro – Defining Representations
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Binary Genotypes

• Commonly used in Genetic Algorithms

• Recombination is main operator, mutation used as 
background noise.

• Search space is Φg = {0,1}l where l is length of a binary 
vector xg =(xg


,…, xg

l
)

• Representation (genotype-phenotype mapping) depends 
on problem to be solved

• Sometimes natural for combinatorial problems

• When using binary representations for integers (which is 
usually no good design choice), decide between unary, 
Gray, or binary.

• Are binary genotypes are good choice for continuous 
phenotypes?

Intro – Standard Genotypes
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Integer Genotypes

• Use χ-ary alphabet instead of binary, where

{χ∈N|χ >2} 

• Instead of coding 2l solutions, size of search 
space becomes χl

• Fine for integer phenotypes.

• Definition of recombination operators can be 

difficult (e.g. permutation problems).

Intro – Standard Genotypes

Rothlauf: Representations for Evolutionary Algorithms
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Continuous Genotypes

• The search space is Φg = Rl where l is the size of 

the real-valued vector

• Often used in evolution strategies, rely on local 

search

• Can also encode permutations, trees, 

schedules, or tours.

Intro – Standard Genotypes
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Representations, Operators, and Metrics

• Representation, metric defined on Φg and Φp, and 
genetic operators are closely related.
– A representation is just a mapping from Φg to Φp . It 

assigns any possible xg∈ Φg to an xp∈ Φp

– In both search spaces, Φg and Φp, a metric is or has to 
be defined. The metric determines the distances 
between individuals and allows measuring similarities 
between individuals. 

– In general, the metric used for Φp is defined by the 
problem. The metric used for Φg is determined by the 
used search operators.

– Genotype operators like mutation and crossover are 
defined based on the used metric.

Intro – Representations and Operators

Rothlauf: Representations for Evolutionary Algorithms
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Representations, Operators, and Metrics (2)

• Mutation:

– The application of mutation to a genotype 

individual results in a new individual with 

similar properties. There is a small genotype 

distance between offspring and parent.

• What happens if mutation (small genotype 
change) does not result in a small 
phenotype change? ->low locality

Intro – Representations and Operators
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Representations, Operators, and Metrics (3)

• Crossover:
– Crossover combines the genotype properties of 

two or more parents in an offspring. The 
genotype distance between offspring and parent 
should be equal or smaller than the distance 
between both parents. Often iterative application 
of crossover does not loose genetic material. 

– Basic idea of "geometric crossover" from 
Moraglio and Poli (2004); compare also Surry and 
Radcliffe (1996), Liepins and Vose (1990), or 
Rothlauf, (2002)

– What happens if genotype and phenotype 
distance does not fit? -> low locality

Intro – Representations and Operators

Rothlauf: Representations for Evolutionary Algorithms
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Representations, Operators, and Metrics (4)

Summary

– Metric on Φg and used operators depend on 

each other. The one determines the other.

– Representations “transform” the metric on Φg

to the (problem dependent) metric on Φp. 

(compare locality, causality, and distance 

distortion)

Intro – Representations and Operators
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Direct Representations

• If genetic operators are applied directly to phenotypes, it 
is not necessary to specify a representation and the 
phenotypes are identical with the genotypes:

This means, fg is the identity function fg(xg)=xg. Using 
direct representations do not make life easier:
– Design of proper operators is difficult

– How can we apply specific types or EAs (like EDAs)?

– Representation issues are not important any more (Φg = Φp and 
fg(xg)=xg).

Intro – Direct versus Indirect Representations
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Genetic Programming (1)

• Representation issues are also relevant to 

Genetic Programming.

• Phenotypes: programs, logical expressions.

Genotypes: Parse trees, bitstrings, linear 

structures, ...

• Neglecting proper genotype-phenotype 

mappings can result in low performance of GP 

approaches.

Intro – Direct versus Indirect Representations
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Genetic Programming (2): Example

• Standard GP (expression tree 

representation and subtree swapping 

crossover) cannot solve problems where 

optimal solutions require very full or very 

narrow trees (Daida et al., 2001). This is 

an inherent problem of the construction 

of the phenotype from the genotype 

(Hoai et al., 2006).

• Linear GP (e.g. Grammatical Evolution) 

has larger problems finding optimal full 

trees. Some phenotypes can not be 

encoded (binary LID problem) 

• See more later

Intro – Direct versus Indirect Representations

Rothlauf: Representations for Evolutionary Algorithms
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Benefits of indirect representations

The use of an explicit genotype-phenotype mapping has 

some benefits:

– specific constraints can be considered.

– Standardized genetic operators with known behavior and 
properties can be used.

– An indirect representation is necessary if problem-specific 
operators are either not available or difficult to design.

– Representation can make problem easier by incorporating 
problem-specific knowledge.

Intro – Direct versus Indirect Representations
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Specific constraints

• Example: Tree optimization problems

• A tree is a fully connected graph with exactly n−1 links 

(for an n node network). There are no circles in a tree.

• A graph can be represented by its characteristic vector.

Intro – Direct versus Indirect Representations
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Specific constraints (2)

• Prüfer numbers are a one-to-one mapping between trees 

and a sequence of integers (like other Cayley codes). A 
tree with n nodes is represented by a string of length 

n−2 over an alphabet of n symbols.

• Therefore, using Prüfer numbers allows us to consider 

the constraint that the graph is a tree (For other 

representations repair operators are necessary).

Intro – Direct versus Indirect Representations
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Standardized operators

• When mapping many different types of 
phenotypes on only a few types of different 
genotypes (binary, integer, or continuous), it is 
possible to use standardized operators.

• Behavior of EAs for standard genotypes like binary 
(simple GAs) or continuous (evolution strategies) 
genotypes is well understood.

• Mapping phenotypes on binary genotypes allows 
the use of schemata and effective linkage learning 
GAs (under the assumption that the problem still 
remains decomposable and that binary encodings 
allow a natural encoding of the problem).

Intro – Direct versus Indirect Representations

Rothlauf: Representations for Evolutionary Algorithms
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Problem-specific operators

Developing of problem-

specific operators is 

difficult and often 

additional repair 

mechanisms must be 

used to ensure a valid 

solution

Intro – Direct versus Indirect Representations

from Raidl (2000)
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Problem-specific operators (2)

For some types of problems no problem-specific 

operators exist that can be applied to direct 

representations

Intro – Direct versus Indirect Representations
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Ultimate Goal for Design of 
Representations

Incorporate problem-specific knowledge such 

that EA performance increases:

– Increase the initial supply of solutions that are similar 

to the optimal solution.

– Use high-locality representations for easy problems.

– Consider specific properties of the optimal solution 

(e.g. stars and trees).

– Use representations that make a problem easier for a 

particular optimization method.

Intro – Design Guidelines
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Radcliffe's recommendations

• Representation and operators belong together and 
can not be separated from each other (Radcliffe, 
1992).

• Design of representation-independent EAs is possible 
if the following properties are considered (Surry and 
Radcliffe, 1996) 
– Respect: Offspring produced by recombination are 

members of all formae to which both their parents belong.

– Transmission: Every gene is set to an allele which is 
taken from one of the parents.

– Assortment: Offspring can be formed with any compatible 
characteristics taken from the parents. 

– Ergodicity: Iterative use of operators allows the search 
method to reach any point in the search space.

Intro – Design Guidelines

Rothlauf: Representations for Evolutionary Algorithms
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Representation Invariant Genetic 
Operators (Rowe et al., 2010)

• Fact: Performance of genetic algorithms using one-point 
crossover depends on order of objects (e.g. knapsack 
problem). Thus, one-point crossover is not invariant under 
changes in the order of objects.

• Evolutionary operators are invariant with respect to a set of 
representations if EA performance is independent of used 
representation (how objects are encoded).

• Rowe et al. (2010) proposed an approach to generate 
invariant search operators.

• Examples for appropriate (representation-independent) 
search operators for some types of problems (subset 
problems, permutation problems, and balanced partition 
problems).

Intro – Design Guidelines
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Locality

• Representations (genotype-phenotype mappings) can 

change the neighborhood and the structure of the fitness 

landscapes.

• A neighbor can be reached directly by a move (mutation, 

crossover, etc). Therefore, the neighborhood depends on 

the used operator/metric.

• The set of neighbors can be different for genotypes and 

phenotypes.

• The distance between two individuals is determined by 

the number of moves between both individuals.

Locality

Rothlauf: Representations for Evolutionary Algorithms
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Locality of a Representation

• The locality of a representation describes how well 
neighboring genotypes correspond to neighboring 
phenotypes.

• Locality of a representation is high, if neighboring 
genotypes correspond to neighboring phenotypes.

• Locality describes how well the phenotype metric 
fits to the genotype metric. If they fit well, locality is 
high.

• Representations fg that change the distances between 
corresponding genotypes and phenotypes modify the 
performance of particular optimization problems 
(method performance(f) ≠ method performance(fp )).

Locality
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Be aware: There are different ideas of 
locality

• Locality of Representations
– Representations have high locality if genotype distance correspond 

to phenotype distance (discussed here).
– Necessary for keeping easy problems easy. 

• Locality of Search Operators
– High-locality mutation operators generate offspring with low distance 

to parent.
– High-loality crossover operators generate offspring whose distance 

to each of his parents is lower or equal than the distance between 
both parents (equivalent to geometric crossover).

• Locality of Problem
– In high-locality problems, neighboring solutions have similar solution 

quality; such problems are easy to solve for modern heuristics using 
mutation. 

– Can be defined on genotypes or phenotypes

Locality

Rothlauf: Representations for Evolutionary Algorithms
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Different Types of Problems (Phenotype-

Fitness Mappings; Jones and Forrest, 1995)

• Class 1: Fitnes difference to optimal solution is positively 
correlated with the distance to optimal solution. Structure 
of the search space guides local search methods to the 
optimal solution → easy for mutation-based search. 

• Class 2: No correlation between fitness difference and 
distance to optimal solution. Structure of the search 
space provides no information for guided search 
methods → difficult for guided search methods.

• Class 3: Fitness difference is negatively correlated to 
distance to optimal solution. Structure of search space 
misleads local search methods to sub-optimal solutions 
→ deceptive problems

Locality
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Different Phenotype-Fitness Mappings 
(2)

Locality

Rothlauf: Representations for Evolutionary Algorithms
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Low-locality 
versus high-locality representations

Influence of high versus low-locality 
representations on genotype-

phenotype mappings

Effect of mutation for high versus 
low-locality representations

Locality
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Low-locality versus 
high-locality representations (2)

• Class 1: 

– High-locality representations preserve difficulty of problem. Easy 

problems remain easy for guided search. 

– Low-locality representations make easy problems more difficult. 

Resulting problem becomes of class 2.

• Class 2:

– High-locality representations preserve difficulty of problem. Problems 

remain difficult for guided search. 

– Low-locality representations on average do not change class of 

problem. Problems remain difficult.

• Class 3:

– High-locality representations preserve deceptiveness of problem. Traps 

remain traps. 

– Low-locality representations transform problem to class 2 problem. 

Deceptive problems become more easy to solve for guided search.

Locality

Rothlauf: Representations for Evolutionary Algorithms
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An Example

• Both, genotypes and 

phenotypes are binary.

• We use the bit-flipping 

operator as a move 

(Hamming distance).

• One-max problem (class 1).

• All building blocks (regarding 

genotypes and phenotypes) 
are of size k=1.  Therefore, 

problem is easy for Gas 

using recombination.

Locality
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An Example

• A representation with 

lower locality.

• The neighborhood 

structure changes.

• Not all genotype 

building blocks are of 
size 1. Although fp

remains unchanged, f

becomes more 

difficult for guided 

search.

Locality

Rothlauf: Representations for Evolutionary Algorithms
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An Example

• High-locality 
representation. 

• Problem easy for 
Selectorecombinative
GAs.

• Different fitness values  
for genotypes 000 and 
001.

• Problem more difficult for 
selectorecombinative
GAs.

• Neighborhood not 
preserved by 
representation.

Locality
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An Example

• Neighborhood 
structure of the 
genotypes

• Resulting 
neighborhood 
structure of 
phenotypes

Locality

Rothlauf: Representations for Evolutionary Algorithms
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An Example: comparing representations

• We compare the performance of a GA using only crossover 
and selection over all different representations for the one-max 
problem.

• When focusing on binary bitstrings and assigning l-bit 
genotypes to l-bit phenotypes, there are 2l! different 
representations.

• For l=3 there are 8 different genotypes and phenotypes, resp., 
and 8! = 40,320 different representations.

• 36 different representations result in the same overall problem 
f (for the one-max problem).

• To reduce problem complexity, xg = 111 is always assigned to 
xp=111. Therefore, we consider 7! = 5.040 different 
representations.

• We concatenate ten 3-bit problems and use a GA with 
tournament selection of size 2, uniform crossover, and N=16.

Locality
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An Example: Results

Locality

Rothlauf: Representations for Evolutionary Algorithms
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An Example: Deceptive Trap

• We compare the performance 
of a GA using only crossover 
and selection over all different 
representations of the 
deceptive trap problem.

• To reduce problem 
complexity, xg = 111 is always 
assigned to xp = 111. 
Therefore, there are 7! = 
5040 different 
representations.

• We concatenate ten 3-bit 
problems and use a GA with 
tournament selection of size, 
uniform crossover, and N = 
16.

111

100

010

000
0

3

2

1

f
p

110

101

011

001

phenotypes fitness

Locality
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An Example: Results for Deceptive Traps

Locality

Rothlauf: Representations for Evolutionary Algorithms
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Conclusions on Locality

• When using high locality representations, 

genotype neighbors correspond to phenotype 

neighbors.

• High locality representations do not change the 

structure and difficulty of the problem.

– Easy problems remain easy.

– Difficult problems remain difficult.

• Locality depends on the used distance metrics 

(which depend on the used operators).

Locality
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Redundant Representations

• Representations are redundant if the number of 

genotypes is larger than the number of 

phenotypes.

– Using redundant representations fg means changing 

f = fp (fg ). There are additional plateaus in the fitness 

landscape.

– Redundant representations are more “inefficient” 

encodings which use a higher number of alleles but 

do not increase the amount of encoded information.

– Redundant representations are not an invention of AI 

researchers but are commonly used in nature.

Redundancy

Rothlauf: Representations for Evolutionary Algorithms
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Redundant Representations (2)

There are different opinions regarding the 

influence of redundant representation on the 

performance of EAs.

– Redundant representations reduce EA performance 

due to loss of diversity (Davis, 1989; Eshelman and 

Schaffer, 1991; Ronald et al., 1995)

– Redundant representations increase EA performance 

(Gerrits and Hogeweg, 1991; Cohoon et al., 1988; 

Julstrom, 1999)

Redundancy
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Redundant Representations (3)

• Some work follow the neutral theory (Kimura, 1983). This 
theory assumes that not natural selection fixing advantageous 
mutations but the random fixation of neutral mutations is the 
driving force of molecular evolution. 

• Following these ideas, redundant representations (neutral 
networks) have been used in EAs with great enthusiasm.

• There was hope that increasing the "evolvability of a system" 
(reachability of solutions) also increases the performance of 
the system (Barnett, 1997; Barnett, 1998; Shipman, 1999; 
Shipman et al., 2000b; Shackleton et al., 2000; Shipman et 
al., 2000a; Ebner et al., 2001; Smith et al., 2001c; Smith et al.,
2001a; Smith et al., 2001b; Barnett, 2001; Yu and Miller, 
2001; Yu and Miller, 2002; Toussaint and Igel, 2002).

• This goal was not reached! (Knowles and Watson, 2002)

Redundancy

Rothlauf: Representations for Evolutionary Algorithms
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Redundant Representations (4)

Neutral Network: Set of 
genotypes connected by 
single-point mutations 
that map to the same 
phenotype

Redundancy

Ebner et al. (2001)
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Redundant Representations (5)

• Benefits of Neutral Networks
– Population can drift along these neutral networks.

– Reducing the chance of being trapped in sub-optimal 
solutions.

– Population is quickly able to recover after a change 
has occurred.

– Evolvability and connectivity of the system increases.

• Problems
– Redundancy can lead to higher evolvability and 

connectivity. However, this can randomize search. 
No guided search would be possible any more. 

– Genetic drift?

Redundancy

Rothlauf: Representations for Evolutionary Algorithms
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Synonymous and Non-Synonymous 
Redundancy

• We study

– how to distinguish between synonymously 

and non-synonymously redundant encodings,

– how synonymous redundancy changes 

performance of EAs (quantitative predictions) 

(Rothlauf and Goldberg, 2003),and

– the properties of non-synonymously 

redundant representations (Choi and Moon, 

2003; Choi and Moon, 2008).

Redundancy
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Categorization of Redundancy

• For redundant 

representations, we can 

distinguish between:

– Synonymously redundant 
representations: All 
genotypes that encode the 
same phenotype are similar to 
each other.

– Non-synonymously 
redundant representations: 
Genotypes that encode the 
same phenotype are not similar 
to each other.

Redundancy

Rothlauf: Representations for Evolutionary Algorithms



53

Non-synonymous Redundancy

• Non-synonymously 

redundant representations 

do not allow guided 

search.

• EA search becomes 

random.

• Same effect as low locality 

representations.

Redundancy
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Non-synonymous Redundancy

• Choi and Moon (2003) defined uniformly redundant 
encodings that are maximally non-synonymous and 
proved that such encodings induce uncorrelated 
search spaces (fitness distance correlation (nearest 
neighbor) is equal to zero).

• For a maximally non-synonymous redundant encoding, 
the expected distance between any two genotypes 
that correspond to the same phenotype is invariant 
and about equal to the problem size n.

• Normalization (transformation of one parent to be 
consistent with the other) can transform uncorrelated 
search spaces into correlated search spaces with higher 
locality (Choi and Moon, 2008).

Redundancy

Rothlauf: Representations for Evolutionary Algorithms
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Non-synonymous Redundancy

Some examples for problems with maximally non-

synonymous redundant encodings :
– Partitioning problems in graphs: k subsets are represented by 

integers from 0 to k−1, where nodes are contained in the same 

group if they are represented by the same number. Each 
phenotype is represented by k! different genotypes. 

– HIFF problems (Watson et al., 1998): binary encoding where 
each phenotype is represented by a pair of bitwise 
complementary genotypes.

– TSP: Order-based crossover, in which vertices are indexed from 
1 to n and each tour is represented by a permutation of the 
vertex indices. Each phenotype is represented by 2n genotypes

Redundancy
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Example: Redundancy in GE (1)

• Grammatical Evolution encodes trees 
(phenotypes) using strings of fixed length

• Does GE uses a redundant encoding? 
– Obviously yes

• Are all phenotypes encoded? 
– Obviously no (|Φp|>|Φg|)

• Is the encoding non-synonymous redundant?
– Yes, to some extend (Thorhauer and Rothlauf, 2014)

• Is the encoding uniformly redundant?
– Probably not (Daida et al., 2001 )

• What types of trees are overrepresented?

Redundancy

Rothlauf: Representations for Evolutionary Algorithms
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Redundancy in GE (2)

• Thorhauer (2016) studied genotypes with either 10 or 20 
codons → Size of the genotype space |Φg|= 210 or |Φg|=220

• Two types of grammar (balanced versus explosive)

• She examined the different types of possible phenotypes 
by generating all possible phenotypes (binary trees)

Redundancy
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<start> ::= <expr>

<expr> ::= (<expr> + <expr>)

| <var>

<var> ::= X

(a) grammar A

<start> ::= <expr>

<expr> ::= (<expr> + <expr>)

| (<expr> + <expr>)

| (<expr> + <expr>)

| <var>

<var> ::= X

(b) grammar B

Figure 1: Production rules in BNF. Balanced (left) and explosive variant (right).
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GE redundancy: 
Ten codons and grammar A

Redundancy

Rothlauf: Representations for Evolutionary Algorithms

A tree is characterized by its size
(number of nodes) and depth

A tree is characterized by its size
(number of nodes), depth, and
shape

from Thorhauer (2016)
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GE redundancy: 
20 codons and grammar A

Redundancy

Rothlauf: Representations for Evolutionary Algorithms

A tree is characterized by its size
(number of nodes) and depth

A tree is characterized by its size
(number of nodes), depth, and
shape

from Thorhauer (2016)
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GE redundancy: 
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(number of nodes), depth, and
shape

from Thorhauer (2016)
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Synonymous Redundancy

• Synonymously redundant representations can 

be described using

– order of redundancy

– over-, resp. underrepresentation r of the optimal 

solution due to the problem representation fg.

• When using the notion of BBs and binary 

representations:

–

– r: Number of genotype BBs of order kg that represent 

the optimal phenotype BB of order kp.

Redundancy
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Examples of Synonymously Redundant 
Representation

• k=2 (order of phenotype BBs)

• kr=2 (One allele of a phenotype is represented using 

two alleles of a genotype)

• Uniform redundancy: r=4 (the best BB (xp = 11) is 

represented by four genotype BBs)

Redundancy
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Examples of Synonymously Redundant 
Representation

• k=1 (order of phenotype BBs)

• kr=3 (One phenotype allele is represented using three 

genotype alleles)

• Non-uniform redundancy: r=1 (best BB (xp = 1) is 

represented by one genotypic BB (xg = 111))
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How do synonymous redundancy 
influence GA performance?

• Observation: Redundant representation change 
the initial supply x of BBs.

• For binary problem representation:

where N is the population size.

Redundancy

Rothlauf: Representations for Evolutionary Algorithms



65

Performance of GAs using synonymously 
redundant representations

• When using synonymously redundant 

representations, we get :

• The population size N that is necessary to find 

the optimal solution with probability Pn=1−α

goes with 

Redundancy
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Example: Trivial voting mapping

• The trivial voting mapping (TVM) assigns binary phenotypes 

to binary genotypes.

• One bit of the phenotype is represented by kr genotypic bits.

• In general, a phenotypic bit is 0 if less than u genotypic bits 

are zero. If more than u genotypic bits are 1 then the 

phenotypic bit is 1.

• For u=kr/2 the value of the phenotypic bit is determined by 

the majority of the genotypic bits (majority vote)

• In general: 

where u∈ {1,…,kr}.

Redundancy
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Examples of Trivial Voting Mappings

• k=1

• kr=3

• u=2

• k=1

• kr =3

• u=1

Redundancy
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Results for trivial voting mapping

Experimental and theoretical results of the proportion of 
correct BBs on a 150-bit one-max problem using the trivial 
voting mapping for kr=2.

Redundancy
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Results for trivial voting mapping (2)

Experimental and theoretical results of the proportion of 
correct BBs on a 150-bit one-max problem using the 
trivial voting mapping for kr=3.
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Results for trivial voting mapping (3)

Experimental and theoretical results of the proportion of 
correct BBs for ten concatenated 3-bit deceptive traps and kr

= 2.
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Results for trivial voting mapping (3)

Experimental and theoretical results of the proportion of 
correct BBs for ten concatenated 3-bit deceptive traps and kr
= 3.
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Summary: Synonymously Redundant 
Representations

• Redundant representations can change the performance 

of EAs.

• If representations are synonymously redundant:

– Uniformly redundant representations do not change the 

performance of EAs!

– If the optimal BB is overrepresented GA performance 

increases.

– If the optimal BB is underrepresented GA performance 

decreases.

• Redundant representations can not be used 

systematically if there is no problem-specific knowledge!

Redundancy
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Cookbook: How to deal with redundant 
representations?

1. How does the redundant representation change the 
size of the search space?

1. Are additional phenotypes encoded?

2. Are some phenotypes not encoded?

2. Is the representation non-synonymously redundant?
1. yes -> you have a problem: guided search fails and only 

traps can be solved!

2. no -> fine. We have a synonymously redundant 
encoding. Go to 3 

3. Is the representation uniformly redundant?
1. yes -> fine! EA performance is not (not much) affected by 

redundancy. 

2. no -> Be careful! Which types of solutions are 
overrepresented? EAs perform only well if high-quality 
solutions are overrepresented. 

Redundancy
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Take home message for redundant 
representations

• There are theoretical models that allow us 
to predict the expected GA performance 
when using redundant representations.

• Do not use non-synonymously redundant 
representations!

• If there is no knowledge about the optimal 
solution use a uniformly redundant 
representation.

Redundancy
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Doctoral class on Design and Application 
of Modern Heuristics

• Doctoral Class on "Design and Application of 
Modern Heuristics"

• University of Mainz, October 10-13, 2016.

• Topic: Application of Modern Heuristics:
– How to select among different metaheuristics?

– How to design efficient metaheuristics?

– How to consider problem-specific knowledge for 
the design of metaheuristics?

• http://vhbonline.org/veranstaltungen/doktoran
denprogramm/kursuebersicht/mh16/

Rothlauf: Representations for Evolutionary Algorithms 76

Thanks for your attention and interest!

Further reading

• Rothlauf, F. (2006). Representations for Genetic 

and Evolutionary Algorithms. Springer, Berlin.

• Rothlauf, F. (2011). Design of Modern Heuristics. 

Springer, Berlin.

Design Principles - Biasing
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