

Representations for Evolutionary Algorithms

Franz Rothlauf Johannes Gutenberg Universität Mainz D-55099 Mainz/Germany <u>rothlauf@uni-mainz.de</u> http://gecco-2018.sigevo.org/

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan © 2018 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-5764-7/18/07. https://doi.org/10.1145/3205651.3207881

About me

- Franz Rothlauf received a Diploma in Electrical Engineering from the University of Erlangen, Germany, a Ph.D. in Information Systems from the University of Bayreuth, Germany, a Habilitation from the University of Mannheim, Germany, in 1997, 2001, and 2007, respectively.
- He is currently Professor of Information Systems at Johannes Gutenberg-University Mainz, Germany. He has published more than 90 technical papers in the context of evolutionary computation, co-edited several conference proceedings, and authored the books "Representations for Genetic and Evolutionary Algorithms" and "Design of Modern Heuristics".
- Genetic and Evolutionary Algorithms" and "Design of Modern Heuristics".
 His main research interests are problem representations for heuristic search approaches especially EAs. He is currently a member of the Editorial Board of Evolutionary Computation Journal as well as Business & Information Systems Engineering (BISE). He has been organizer of several workshops on representations issues, chair of EvolWorkshops in 2005 and 2006, coorganizer of the European workshop series on "Evolutionary Computation in Communications, Networks, and Connected Systems", coorganizer of the European workshop series on "Evolutionary Computation in Transportation and Logistics", and co-chair of the program commitee of the GA track at GECCO 2006. He was conference chair of GECCO 2009. He is member of the executive board of SIGEVO and treasurer of SIGEVO since 2011.

JGU

JGU

Objectives of the Tutorial

- Illustrate the influence of representations on the performance of EAs.
- Illustrate the relationship between problem difficulty and used for representation/operator.
- · Focus on some properties of representations
 - Locality of representations
 - Redundant representations and neutral search spaces

- Synonymous and non-synonymous redundancy

Rothlauf: Representations for Evolutionary Algorithms

3

Agenda

- 1. A Short Intro to Representations
 - 1. Defining Representations
 - 2. Standard Genotypes
 - 3. Representations and Operators
 - 4. Direct versus Indirect Representations
 - 5. Design Guidelines for Representations
- 2. Locality of Representations
- 3. Redundant Represenations

Basics: Modern Heuristics

- Modern heuristics
 - Can be applied to a wide range of problems
 - Use intensification (exploitation) and diversification (exploration) steps
- · Intensification steps shall improve quality
- Diversification explores new areas of search space, also accepting complete or partial solutions that are inferior to current solution.

Rothlauf: Representations for Evolutionary Algorithms

5

Intro – Defining Representations

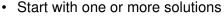
Defining Representations (1)

- A representation assigns genotypes to corresponding phenotypes.
- Every search and optimization algorithms needs a representation.
- The representation allows us to represent a solution to a specific problem.
- Different representations can be used for the same problem.
- Performance of search algorithm depends on properties of the used representation and how suitable is the representation in the context of the used genetic operators.
- There are many different representations like binary, realvalued vectors, messy encodings, trees ...

 \ldots and we assume that everybody has some experience at least with some of them.

Rothlauf: Representations for Evolutionary Algorithms

Basics: Modern Heuristics



- One solutions: Local search methods
- Population of solutions: Recombination-based methods
- In iterative steps, modify solution(s) to generate one or more new solution(s)
- New solutions are created by search operators (variation operators)
- Regularly perform intensification and exploration
 phases
 - During intensification, use objective function value and focus variation on high-quality solutions
 - During diversification, objective function less relevant. Modify solutions such that new areas of search space are explored.

Intro – Defining Representations

Defining Representations (2)

- Each optimization problem f(x) can be separated into a genotype-phenotype mapping f_g and a phenotype-fitness mapping f_v

 $egin{aligned} & f_g(oldsymbol{x}_g): \Phi_g o \Phi_p, \ & f_p(oldsymbol{x}_p): \Phi_p o \mathbb{R}, \end{aligned}$

where $f=f_n \circ f_a = f_n(f_a(x_a))$

- A change of f_a also changes the properties of f
- The genetic operators mutation and crossover are applied to x_q whereas the selection process is based on the fitness of x_p
- $f_p(x_p)$ determines the fitness and complexity of the problem
- $f_q(x_q)$ determines the used representations
- There are $||\Phi_{q}||$ different representations!

6

JGU

Rothlauf: Representations for Evolutionary Algorithms

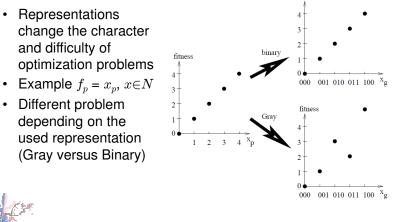
Representations make the Difference

 Representations change the character and difficulty of optimization problems

Different problem depending on the

used representation

(Gray versus Binary)



Rothlauf: Representations for Evolutionary Algorithms

Intro – Standard Genotypes

Binary Genotypes

9

JGU

- Commonly used in Genetic Algorithms
- Recombination is main operator, mutation used as background noise.
- Search space is $\Phi_a = \{0,1\}^l$ where I is length of a binary vector $x^{g} = (x^{g}, \dots, x^{g})$
- Representation (genotype-phenotype mapping) depends on problem to be solved
- Sometimes natural for combinatorial problems
- When using binary representations for integers (which is usually no good design choice), decide between unary, Gray, or binary.
- Are binary genotypes are good choice for continuous phenotypes?

Rothlauf: Representations for Evolutionary Algorithms

Intro - Defining Representations

Representations make the difference (2)

10

JGU

- Phenotype problem easy to solve for hill-climber.
- When using bit-flipping GA, the Gray-encoded problem is easier to solve than the binary-encoded problem.
- · Gray encoding induces less local optima (when used on problems of practical relevance; compare Free Lunch theorem (Whitley, 2000)).
- · Search performance depends on used search method. If other search methods (e.g. different operators) are used, then search performance is different (compare Reeves, 2000).

Intro – Standard Genotypes

- Use χ -ary alphabet instead of binary, where $\{\chi \in \mathbb{N} | \chi > 2\}$
- Instead of coding 2^l solutions, size of search space becomes χ^l
- Fine for integer phenotypes.
- Definition of recombination operators can be difficult (e.g. permutation problems).

Rothlauf: Representations for Evolutionary Algorithms

Continuous Genotypes

- The search space is $\Phi_g = \mathbf{R}^l$ where I is the size of the real-valued vector
- Often used in evolution strategies, rely on local search
- Can also encode permutations, trees, schedules, or tours.

Rothlauf: Representations for Evolutionary Algorithms

13

Intro – Representations and Operators

Representations, Operators, and Metrics (2)

- Mutation:
 - The application of mutation to a genotype individual results in a new individual with similar properties. There is a small genotype distance between offspring and parent.
- What happens if mutation (small genotype change) does not result in a small
 phenotype change? ->low locality

Rothlauf: Representations for Evolutionary Algorithms

Intro – Representations and Operators

Representations, Operators, and Metrics

- Representation, metric defined on Φ_{g} and Φ_{p} , and genetic operators are closely related.
 - A representation is just a mapping from Φ_g to Φ_p . It assigns any possible $x_g \in \Phi_g$ to an $x_p \in \Phi_p$
 - In both search spaces, Φ_q and Φ_p , a metric is or has to be defined. The metric determines the distances between individuals and allows measuring similarities between individuals.
 - In general, the metric used for Φ_p is defined by the problem. The metric used for Φ_g is determined by the used search operators.
 - Genotype operators like mutation and crossover are defined based on the used metric.

Rothlauf: Representations for Evolutionary Algorithms

14

Intro – Representations and Operators

Representations, Operators, and Metrics (3)

- Crossover:
 - Crossover combines the genotype properties of two or more parents in an offspring. The genotype distance between offspring and parent should be equal or smaller than the distance between both parents. Often iterative application of crossover does not loose genetic material.
 - Basic idea of "geometric crossover" from Moraglio and Poli (2004); compare also Surry and Radcliffe (1996), Liepins and Vose (1990), or Rothlauf, (2002)
 - What happens if genotype and phenotype
 distance does not fit? -> low locality

Representations, Operators, and Metrics (4)

Summary

- Metric on Φ_g and used operators depend on each other. The one determines the other.
- Representations "transform" the metric on Φ_g to the (problem dependent) metric on Φ_p . (compare locality, causality, and distance distortion)

Rothlauf: Representations for Evolutionary Algorithms

17

Intro – Direct versus Indirect Representations

Genetic Programming (1)

- Representation issues are also relevant to Genetic Programming.
- Phenotypes: programs, logical expressions. Genotypes: Parse trees, bitstrings, linear structures, ...
- Neglecting proper genotype-phenotype mappings can result in low performance of GP approaches.

Rothlauf: Representations for Evolutionary Algorithms

19

Intro – Direct versus Indirect Representations

Direct Representations

 If genetic operators are applied directly to phenotypes, it is not necessary to specify a representation and the phenotypes are identical with the genotypes:

$$egin{aligned} &f_g(oldsymbol{x}_g):\Phi_g o \Phi_g, \ &f_p(oldsymbol{x}_p):\Phi_g o \mathbb{R}. \end{aligned}$$

This means, f_g is the identity function $f_g(x_g)=x_g$. Using direct representations do not make life easier:

- Design of proper operators is difficult
- How can we apply specific types or EAs (like EDAs)?
- Representation issues are not important any more ($\Phi_g = \Phi_p$ and $f_g(x_g) = x_g$).

Rothlauf: Representations for Evolutionary Algorithms

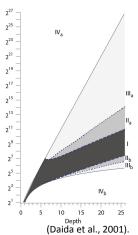
18

JG U

Intro – Direct versus Indirect Representations

Genetic Programming (2): Example

- Standard GP (expression tree representation and subtree swapping crossover) cannot solve problems where optimal solutions require very full or very narrow trees (Daida et al., 2001). This is an inherent problem of the construction of the phenotype from the genotype (Hoai et al., 2006).
- Linear GP (e.g. Grammatical Evolution) has larger problems finding optimal full trees. Some phenotypes can not be encoded (binary LID problem)
 See more later



Rothlauf: Representations for Evolutionary Algorithms

Benefits of indirect representations

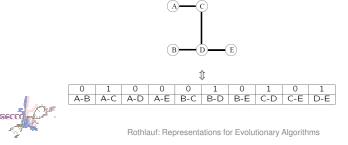
The use of an explicit genotype-phenotype mapping has some benefits:

- specific constraints can be considered.
- Standardized genetic operators with known behavior and properties can be used.
- An indirect representation is necessary if problem-specific operators are either not available or difficult to design.
- Representation can make problem easier by incorporating problem-specific knowledge.

Rothlauf: Representations for Evolutionary Algorithms

Specific constraints

- · Example: Tree optimization problems
- A tree is a fully connected graph with exactly *n*-1 links (for an *n* node network). There are no circles in a tree.
- A graph can be represented by its characteristic vector.



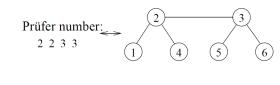
22

21

Intro - Direct versus Indirect Representations

Specific constraints (2)

- Prüfer numbers are a one-to-one mapping between trees and a sequence of integers (like other Cayley codes). A tree with *n* nodes is represented by a string of length *n*-2 over an alphabet of *n* symbols.
- Therefore, using Prüfer numbers allows us to consider the constraint that the graph is a tree (For other representations repair operators are necessary).



Rothlauf: Representations for Evolutionary Algorithms

23

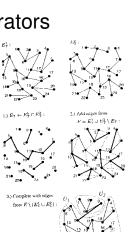
Intro – Direct versus Indirect Representations

Standardized operators

- When mapping many different types of phenotypes on only a few types of different genotypes (binary, integer, or continuous), it is possible to use standardized operators.
- Behavior of EAs for standard genotypes like binary (simple GAs) or continuous (evolution strategies) genotypes is well understood.
- Mapping phenotypes on binary genotypes allows the use of schemata and effective linkage learning GAs (under the assumption that the problem still remains decomposable and that binary encodings allow a natural encoding of the problem).

Problem-specific operators

Developing of problemspecific operators is difficult and often additional repair mechanisms must be used to ensure a valid solution



from Raidl (2000) Figure 2: An example for edge crossover (d = 3 Rothlauf: Representations for Evolutionary Algorithms

25

JG|U

Intro – Design Guidelines

Ultimate Goal for Design of Representations

Incorporate problem-specific knowledge such that EA performance increases:

- Increase the initial supply of solutions that are similar to the optimal solution.
- Use high-locality representations for easy problems.
- Consider specific properties of the optimal solution (e.g. stars and trees).
- Use representations that make a problem easier for a particular optimization method.

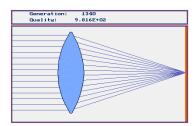
Rothlauf: Representations for Evolutionary Algorithms

27

Intro – Direct versus Indirect Representations

Problem-specific operators (2)

For some types of problems no problem-specific operators exist that can be applied to direct representations



Rothlauf: Representations for Evolutionary Algorithms

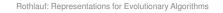
26

JGU

Intro – Design Guidelines

Radcliffe's recommendations

- Representation and operators belong together and can not be separated from each other (Radcliffe, 1992).
- Design of representation-independent EAs is possible if the following properties are considered (Surry and Radcliffe, 1996)
 - Respect: Offspring produced by recombination are members of all formae to which *both* their parents belong.
 - Transmission: Every gene is set to an allele which is taken from one of the parents.
 - Assortment: Offspring can be formed with any *compatible* characteristics taken from the parents.
 - Ergodicity: Iterative use of operators allows the search method to reach any point in the search space.



Representation Invariant Genetic Operators (Rowe et al., 2010)

- Fact: Performance of genetic algorithms using one-point crossover depends on order of objects (e.g. knapsack problem). Thus, one-point crossover is not invariant under changes in the order of objects.
- Evolutionary operators are invariant with respect to a set of representations if EA performance is independent of used representation (how objects are encoded).
- Rowe et al. (2010) proposed an approach to generate invariant search operators.
- Examples for appropriate (representation-independent) search operators for some types of problems (subset problems, permutation problems, and balanced partition problems).

Rothlauf: Representations for Evolutionary Algorithms

29

Locality

Locality of a Representation

- The locality of a representation describes how well neighboring genotypes correspond to neighboring phenotypes.
- Locality of a representation is high, if neighboring genotypes correspond to neighboring phenotypes.
- Locality describes how well the phenotype metric fits to the genotype metric. If they fit well, locality is high.
- Representations f_g that change the distances between corresponding genotypes and phenotypes modify the performance of particular optimization problems
 (method performance(f) ≠ method performance(f_n)).
- (meti

Locality

Locality

- Representations (genotype-phenotype mappings) can change the neighborhood and the structure of the fitness landscapes.
- A neighbor can be reached directly by a move (mutation, crossover, etc). Therefore, the neighborhood depends on the used operator/metric.
- The set of neighbors can be different for genotypes and phenotypes.
- The distance between two individuals is determined by the number of moves between both individuals.

Rothlauf: Representations for Evolutionary Algorithms

30

JGU

Locality

Be aware: There are different ideas of locality

- Representations have high locality if genotype distance correspond to phenotype distance (discussed here).
- Necessary for keeping easy problems easy.

Locality of Search Operators

- High-locality mutation operators generate offspring with low distance to parent.
- High-loality crossover operators generate offspring whose distance to each of his parents is lower or equal than the distance between both parents (equivalent to geometric crossover).
- Locality of Problem
 - In high-locality **problems**, neighboring solutions have similar solution quality; such problems are easy to solve for modern heuristics using mutation.
 - Can be defined on genotypes or phenotypes

Different Types of Problems (Phenotype-Fitness Mappings; Jones and Forrest, 1995)

- Class 1: Fitnes difference to optimal solution is positively correlated with the distance to optimal solution. Structure of the search space guides local search methods to the optimal solution \rightarrow easy for mutation-based search.
- Class 2: No correlation between fitness difference and distance to optimal solution. Structure of the search space provides no information for guided search methods \rightarrow difficult for guided search methods.
- · Class 3: Fitness difference is negatively correlated to distance to optimal solution. Structure of search space misleads local search methods to sub-optimal solutions \rightarrow deceptive problems

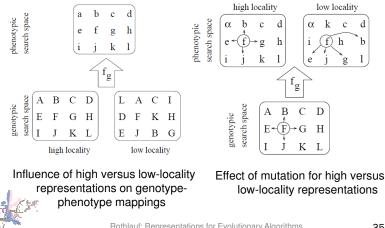

```
Rothlauf: Representations for Evolutionary Algorithms
```

33

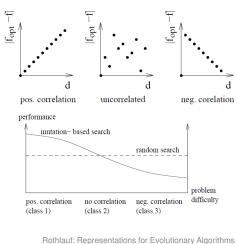
IG|U

Locality

Low-locality versus high-locality representations



Locality **Different Phenotype-Fitness Mappings** (2)



34

JGU

Locality

Low-locality versus high-locality representations (2)

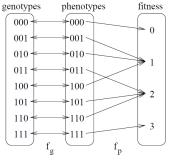
- Class 1:
 - High-locality representations preserve difficulty of problem. Easy problems remain easy for guided search.
 - Low-locality representations make easy problems more difficult. Resulting problem becomes of class 2.
- Class 2:
 - High-locality representations preserve difficulty of problem. Problems remain difficult for guided search.
 - Low-locality representations on average do not change class of problem. Problems remain difficult.
- Class 3:
 - High-locality representations preserve deceptiveness of problem. Traps remain traps.
 - Low-locality representations transform problem to class 2 problem. Deceptive problems become more easy to solve for guided search.

Rothlauf: Representations for Evolutionary Algorithms

Rothlauf: Representations for Evolutionary Algorithms

An Example

- Both, genotypes and phenotypes are binary.
- We use the bit-flipping operator as a move (Hamming distance).
- One-max problem (class 1).
- All building blocks (regarding genotypes and phenotypes) are of size k=1. Therefore, problem is easy for Gas using recombination.



Rothlauf: Representations for Evolutionary Algorithms

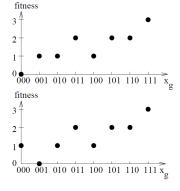
37

JGU

JGU

Locality

An Example



High-locality representation. Problem easy f

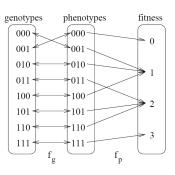
- Problem easy for Selectorecombinative GAs.
- Different fitness values for genotypes 000 and 001.
- Problem more difficult for selectorecombinative GAs.
- Neighborhood not preserved by representation.

39

Locality

An Example

- A representation with lower locality.
- The neighborhood structure changes.
- Not all genotype building blocks are of size 1. Although f_p remains unchanged, f becomes more difficult for guided
 search.



Rothlauf: Representations for Evolutionary Algorithms

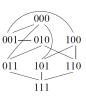
38

JGU

Locality

An Example

- Neighborhood structure of the genotypes
- Resulting neighborhood structure of phenotypes



An Example: comparing representations

- We compare the performance of a GA using only crossover and selection over all different representations for the one-max problem.
- When focusing on binary bitstrings and assigning *l*-bit genotypes to *l*-bit phenotypes, there are 2^{*l*}! different representations.
- For *l*=3 there are 8 different genotypes and phenotypes, resp., and 8! = 40,320 different representations.
- 36 different representations result in the same overall problem *f* (for the one-max problem).
- To reduce problem complexity, $x_q = 111$ is always assigned to $x_p=111$. Therefore, we consider 7! = 5.040 different representations.
- We concatenate ten 3-bit problems and use a GA with tournament selection of size 2, uniform crossover, and *N*=16.

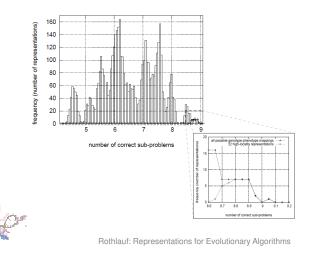
Rothlauf: Representations for Evolutionary Algorithms

```
41
```

JG|U

Locality

An Example: Results



42

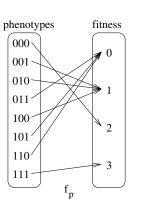
JGU

Locality

GECC

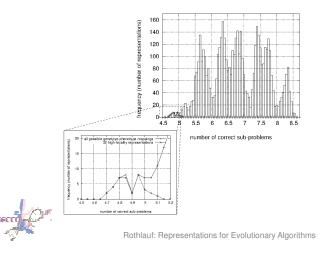
An Example: Deceptive Trap

- We compare the performance of a GA using only crossover and selection over all different representations of the deceptive trap problem.
- To reduce problem complexity, $x_g = 111$ is always assigned to $x_p = 111$. Therefore, there are 7! = 5040 different representations.
- We concatenate ten 3-bit problems and use a GA with tournament selection of size, uniform crossover, and N = 16.



Locality

An Example: Results for Deceptive Traps JGU



Conclusions on Locality

- When using high locality representations, genotype neighbors correspond to phenotype neighbors.
- High locality representations do not change the structure and difficulty of the problem.
 - Easy problems remain easy.
 - Difficult problems remain difficult.
- Locality depends on the used distance metrics (which depend on the used operators).

Rothlauf: Representations for Evolutionary Algorithms

45

Redundancy

Redundant Representations (2)

There are different opinions regarding the influence of redundant representation on the performance of EAs.

- Redundant representations reduce EA performance due to loss of diversity (Davis, 1989; Eshelman and Schaffer, 1991; Ronald et al., 1995)
- Redundant representations increase EA performance (Gerrits and Hogeweg, 1991; Cohoon et al., 1988; Julstrom, 1999)

Redundant Representations

- Representations are redundant if the number of genotypes is larger than the number of phenotypes.
 - Using redundant representations f_g means changing $f = f_p (f_g)$. There are additional plateaus in the fitness landscape.
 - Redundant representations are more "inefficient" encodings which use a higher number of alleles but do not increase the amount of encoded information.
 - Redundant representations are not an invention of AI
 researchers but are commonly used in nature.
 - Rothlauf: Representations for Evolutionary Algorithms

46

Redundancy

Redundancy

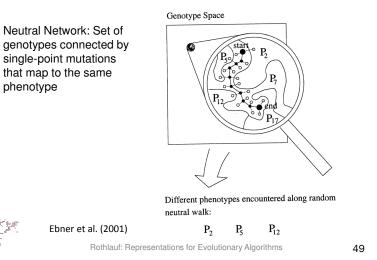
Redundant Representations (3)

- Some work follow the neutral theory (Kimura, 1983). This theory assumes that not natural selection fixing advantageous mutations but the random fixation of neutral mutations is the driving force of molecular evolution.
- Following these ideas, redundant representations (neutral networks) have been used in EAs with great enthusiasm.
- There was hope that increasing the "evolvability of a system" (reachability of solutions) also increases the performance of the system (Barnett, 1997; Barnett, 1998; Shipman, 1999; Shipman et al., 2000b; Shackleton et al., 2000; Shipman et al., 2000a; Ebner et al., 2001; Smith et al., 2001c; Smith et al., 2001a; Smith et al., 2001b; Barnett, 2001; Yu and Miller, 2001; Yu and Miller, 2002; Toussaint and Igel, 2002).

This goal was not reached! (Knowles and Watson, 2002)

phenotype

Redundant Representations (4)



Redundancy

Synonymous and Non-Synonymous Redundancy

We study

- how to distinguish between synonymously and non-synonymously redundant encodings,
- how synonymous redundancy changes performance of EAs (quantitative predictions) (Rothlauf and Goldberg, 2003), and
- the properties of non-synonymously redundant representations (Choi and Moon, 2003; Choi and Moon, 2008).

Redundancy

Redundant Representations (5)

50

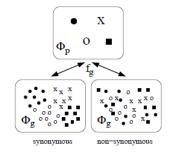
JGU

- Benefits of Neutral Networks
 - Population can drift along these neutral networks.
 - Reducing the chance of being trapped in sub-optimal solutions.
 - Population is guickly able to recover after a change has occurred.
 - Evolvability and connectivity of the system increases.
- Problems
 - Redundancy can lead to higher evolvability and connectivity. However, this can randomize search. No guided search would be possible any more.
 - Genetic drift?

Redundancy

Categorization of Redundancy

- For redundant representations, we can distinguish between:
 - Synonymously redundant representations: All genotypes that encode the same phenotype are similar to each other.
 - Non-synonymously redundant representations: Genotypes that encode the same phenotype are not similar to each other.



Rothlauf: Representations for Evolutionary Algorithms

Non-synonymous Redundancy

- Non-synonymously redundant representations do not allow guided search.
- EA search becomes random.
- Same effect as low locality representations.

 $\begin{array}{c} & & \mathbf{x} \\ & & \mathbf{y}_{p} \in \mathbf{0}^{\bullet} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$

Rothlauf: Representations for Evolutionary Algorithms

53

JG|U

IG|U

Redundancy

Non-synonymous Redundancy

Some examples for problems with maximally nonsynonymous redundant encodings :

- Partitioning problems in graphs: k subsets are represented by integers from 0 to k-1, where nodes are contained in the same group if they are represented by the same number. Each phenotype is represented by k! different genotypes.
- HIFF problems (Watson et al., 1998): binary encoding where each phenotype is represented by a pair of bitwise complementary genotypes.
- TSP: Order-based crossover, in which vertices are indexed from 1 to n and each tour is represented by a permutation of the vertex indices. Each phenotype is represented by 2n genotypes

55

Redundancy

Non-synonymous Redundancy

- Choi and Moon (2003) defined uniformly redundant encodings that are maximally non-synonymous and proved that such encodings induce uncorrelated search spaces (fitness distance correlation (nearest neighbor) is equal to zero).
- For a maximally non-synonymous redundant encoding, the expected distance between any two genotypes that correspond to the same phenotype is invariant and about equal to the problem size *n*.
- Normalization (transformation of one parent to be consistent with the other) can transform uncorrelated search spaces into correlated search spaces with higher locality (Choi and Moon, 2008).

Redundancy

Example: Redundancy in GE (1)

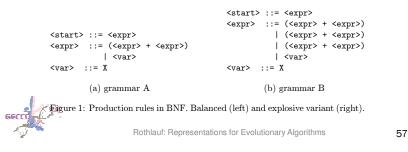
JG

- Grammatical Evolution encodes trees
 (phenotypes) using strings of fixed length
- Does GE uses a redundant encoding?
 Obviously yes
- Are all phenotypes encoded? – Obviously no $(|\Phi_p| > |\Phi_g|)$
- Is the encoding non-synonymous redundant?
 Yes, to some extend (Thorhauer and Rothlauf, 2014)
- Is the encoding uniformly redundant?
 Probably not (Daida et al., 2001)
 - What types of trees are overrepresented?

Rothlauf: Representations for Evolutionary Algorithms

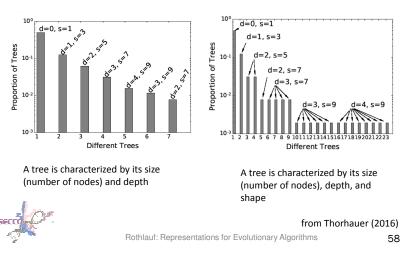
Redundancy in GE (2)

- Thorhauer (2016) studied genotypes with either 10 or 20 codons → Size of the genotype space |Φ_q|= 2¹⁰ or |Φ_q|=2²⁰
- · Two types of grammar (balanced versus explosive)
- She examined the different types of possible phenotypes by generating **all** possible phenotypes (binary trees)



JG|U

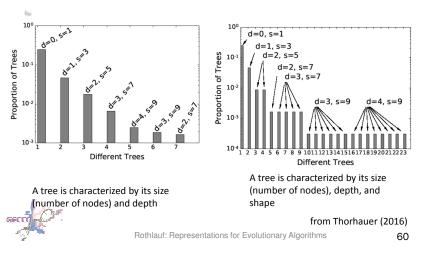
GE redundancy: Ten codons and grammar A



Redundancy GE redundancy: 20 codons and grammar A lín 10 100 10-1 10 of Trees oportion of Trees 10-2 portion (10-3 10 5 10-5 10⁻⁶ 1000 2000 3000 4000 5000 6000 **Different Trees** Different Trees A tree is characterized by its size A tree is characterized by its size (number of nodes) and depth (number of nodes), depth, and shape from Thorhauer (2016) Rothlauf: Representations for Evolutionary Algorithms 59

Redundancy: GE redundancy: Ten codons and grammar B

JGU



Synonymous Redundancy

- Synonymously redundant representations can be described using
 - order of redundancy $k_r = \frac{\log |\Phi_p|}{\log |\Phi_g|}$
 - over-, resp. underrepresentation r of the optimal solution due to the problem representation f_q .
- When using the notion of BBs and binary representations:
 - $k_r = \frac{k_g}{k_p}$
 - r: Number of genotype BBs of order k_g that represent the optimal phenotype BB of order k_n .

Rothlauf: Representations for Evolutionary Algorithms

61

Redundancy

Examples of Synonymously Redundant Representation

- k=1 (order of phenotype BBs)
- k_r=3 (One phenotype allele is represented using three genotype alleles)
- Non-uniform redundancy: r=1 (best BB (x_p = 1) is represented by one genotypic BB (x_g = 111))

genotypes x_g	x_p
000, 001, 010, 100, 101, 110, 011	0
111	1

Redundancy

Examples of Synonymously Redundant JGU Representation

- *k*=2 (order of phenotype BBs)
- k_r=2 (One allele of a phenotype is represented using two alleles of a genotype)
- Uniform redundancy: r=4 (the best BB (x_p = 11) is represented by four genotype BBs)

genotypes x_g	x_p
00 00, 00 01, 01 00, 01 01	00
10 00, 10 01, 11 00, 11 01	10
00 10, 01 11, 00 11, 01 11	01
10 10, 10 11, 11 10, 11 11	11

62

Redundancy

How do synonymous redundancy influence GA performance?

- Observation: Redundant representation change the initial supply x_{o} of BBs.
- For binary problem representation:

$$x_0 = N \frac{r}{2^{kk_r}}$$

where N is the population size.

Rothlauf: Representations for Evolutionary Algorithms

Performance of GAs using synonymously IGU redundant representations

 When using synonymously redundant representations, we get :

$$N \approx -\frac{2^{k_r k - 1}}{r} \ln(\alpha) \frac{\sigma_{BB} \sqrt{\pi m'}}{d}$$

• The population size N that is necessary to find the optimal solution with probability $P_n = 1 - \alpha$ goes with $O\left(\frac{2^{k_r}}{r}\right)$

Rothlauf: Representations for Evolutionary Algorithms

65

Redundancy

Examples of Trivial Voting Mappings

- genotypes x_q x_p 000, 001, 010, 100 0 1
- *u*=2
- 110, 101, 011, 111

• k=1 • $k_r = 3$

genotypes x_g	x_p
000	0
001, 010, 100,110, 101, 011, 111	1

Redundancy

Example: Trivial voting mapping

- The trivial voting mapping (TVM) assigns binary phenotypes to binary genotypes.
- One bit of the phenotype is represented by k_{x} genotypic bits.
- In general, a phenotypic bit is 0 if less than u genotypic bits are zero. If more than *u* genotypic bits are 1 then the phenotypic bit is 1.
- For $u=k_x/2$ the value of the phenotypic bit is determined by the majority of the genotypic bits (majority vote)
- In general:

 $x_i^p = \begin{cases} 0 \text{ if } & \sum_{j=0}^{k_r-1} x_{k_ri+j}^g < u \\ 1 \text{ if } & \sum_{j=0}^{k_r-1} x_{k_ri+j}^g \ge u, \end{cases}$

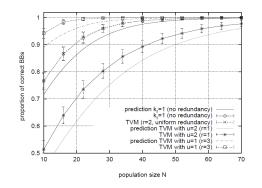
where $u \in \{1, \dots, k_r\}$.

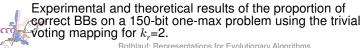
66

Redundancy

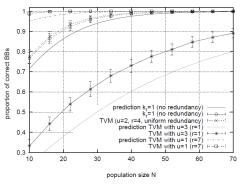
Results for trivial voting mapping

JGU





Results for trivial voting mapping (2)



Experimental and theoretical results of the proportion of correct BBs on a 150-bit one-max problem using the trivial voting mapping for k,=3. Rothlauf: Representations for Evolutionary Algorithms 69

Redundancy

0

0.6

0.2

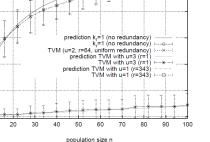
0

10

Bas

5 0.4

Results for trivial voting mapping (3)



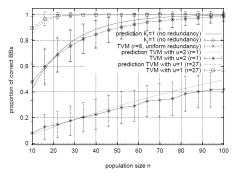
Experimental and theoretical results of the proportion of correct BBs for ten concatenated 3-bit deceptive traps and k_r = 3

Rothlauf: Representations for Evolutionary Algorithms

JGU

Redundancy

Results for trivial voting mapping (3)



Redundancy

Summary: Synonymously Redundant Representations

- Redundant representations can change the performance of EAs.
- If representations are synonymously redundant:
 - Uniformly redundant representations do not change the performance of EAs!
 - If the optimal BB is overrepresented GA performance increases.
 - If the optimal BB is underrepresented GA performance decreases.
- Redundant representations can not be used systematically if there is no problem-specific knowledge!

Cookbook: How to deal with redundant representations?

- 1. How does the redundant representation change the size of the search space?
 - 1. Are additional phenotypes encoded?
 - 2. Are some phenotypes not encoded?
- 2. Is the representation non-synonymously redundant?
 - 1. yes -> you have a problem: guided search fails and only traps can be solved!
 - 2. no -> fine. We have a synonymously redundant encoding. Go to 3
- 3. Is the representation uniformly redundant?
 - 1. yes -> fine! EA performance is not (not much) affected by redundancy.
 - no -> Be careful! Which types of solutions are

overrepresented? EAs perform only well if high-quality solutions are overrepresented.

Rothlauf: Representations for Evolutionary Algorithms

Doctoral class on Design and Application JGU of Modern Heuristics

73

- Doctoral Class on "Design and Application of Modern Heuristics"
- University of Mainz, October 10-13, 2016.
- Topic: Application of Modern Heuristics:
 - How to select among different metaheuristics?
 - How to design efficient metaheuristics?
 - How to consider problem-specific knowledge for the design of metaheuristics?
- http://vhbonline.org/veranstaltungen/doktoran denprogramm/kursuebersicht/mh16/

Rothlauf: Representations for Evolutionary Algorithms

Redundancy

Take home message for redundant representations

- There are theoretical models that allow us to predict the expected GA performance when using redundant representations.
- Do not use non-synonymously redundant representations!
- If there is **no** knowledge about the optimal solution use a uniformly redundant representation.

Rothlauf: Representations for Evolutionary Algorithms

74

JGU

Thanks for your attention and interest!

Further reading

Design Principles - Biasing

- Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algorithms. Springer, Berlin.
- Rothlauf, F. (2011). Design of Modern Heuristics. Springer, Berlin.

References

- JG
- Bäck, T., Michalewicz, Z., and Yao, X., editors (1997). Proceedings of the Fourth International Conference on Evolutionary Computation, Piscataway. IEEE Service Center.
- Barnett, L. (1997). Tangled webs: Evolutionary dynamics on fitness landscapes with neutrality. Master's thesis, School of Cognitive Sciences, University of East Sussex, Brighton.
- Barnett, L. (1998). Ruggedness and neutrality: The NKp family of fitness landscapes. In Adami, C., Belew, R. K., Kitano, H., and Taylor, C. E., editors, Proceedings of the 6th International Conference on Artificial Life (ALIFE-98), pages 18–27, Cambridge. MIT Press.
- Barnett, L. (2001). Netcrawling optimal evolutionary search with neutral networks. In (Kim et al., 2001), pages 30–37.
- Beasley, D., Bull, D. R., and Martin, R. R. (1993). Reducing epitasis in combinatorial problems by expansive coding. In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 400–407, San Francisco. Morgan Kaufmann.
- Choi, S.-S. and Moon, B.-R. (2003). Normalization in genetic algorithms. In Can'u-Paz, E., Foster, J. A., Deb, K., Davis, D., Roy, R., O'Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harmani, M., Wegener, J., Dasgupta, D., Potter, M. A., Schultz, A. C., Dowsland, K., Jonoska, N., and Miller, J., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2003, pages 862–873, Heidelberg. Springer.

Rothlauf: Representations for Evolutionary Algorithms

77

- Choi, S.-S. and Moon, B.-R. (2008). Normalization for genetic algorithms with nonsynonymously redundant encodings. IEEE Trans. Evolutionary Computation, 12(5):604–616.
- Cohoon, J. P., Hegde, S. U., Martin, W. N., and Richards, D. (1988). Floorplan design using distributed genetic algorithms. In IEEE International Conference on Computer Aided-Design, pages 452–455, Piscataway. IEEE.
- Daida, J. M., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., Chaudhri, O., and Polito, J. (2001). What makes a problem GP-hard? Analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines, 2(2):165–191.
- Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In Schaffer, J. D., editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 61–69, Burlington. Morgan Kaufmann.
- Ebner, M., Langguth, P., Albert, J., Shackleton, M., and Shipman, R. (2001). On neutral networks and evolvability. In (Kim et al., 2001), pages 1–8.
- Eshelman, L. J. and Schaffer, J. D. (1991). Preventing premature convergence in genetic algorithms by preventing incest. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 115–122, Burlington. Morgan Kaufmann.
- Feller, W. (1957). An Introduction to Probability Theory and its Applications, volume 1. John Wiley & Sons, New York, 1st edition.

Rothlauf: Representations for Evolutionary Algorithms

78

- Fogel, D. B. and Stayton, L. C. (1994). On the effectiveness of crossover in simulated evolutionary optimization. BioSystems, 32:171–182.
- Fonseca, C., Kim, J.-H., and Smith, A., editors (2000). Proceedings of 2000 IEEE Congress on Evolutionary Computation, Piscataway. IEEE Press.
- Fox, B. R. and McMahon, M. B. (1991). Genetic operators for sequencing problems. In Rawlins, G. J. E., editor, Foundations of Genetic Algorithms, pages 284–300, San Mateo. Morgan Kaufmann.
- Gerrits, M. and Hogeweg, P. (1991). Redundant coding of an NP-complete problem allows effective genetic algorithm search. In Schwefel, H.-P. and Manner, R., editors, Parallel Problem Solving from Nature - PPSN I, volume 496 of LNCS, pages 70–74, Berlin. Springer.
- Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading.
- Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Systems, 5(2):139–167.
- Harik, G. R., Cant'u-Paz, E., Goldberg, D. E., and Miller, B. L. (1997). The gambler's ruin problem, genetic algorithms, and the sizing of populations. In
 (Bäck et al., 1997), pages 7–12.

Rothlauf: Representations for Evolutionary Algorithms

- Hoai, N. X., McKay, R. I., and Essam, D. L. (2006). Representation and structural difficulty in genetic programming. IEEE Trans. Evolutionary Computation, 10(2):157–166.
- Jones, T. and Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. Proceedings of the Sixth International Conference on Genetic Algorithms, pages 184–192.
- Julstrom, B. A. (1999). Redundant genetic encodings may not be harmful. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '99, page 791, Burlington. Morgan Kaufmann.
- Kim, J.-H., Zhang, B.-T., Fogel, G., and Kuscu, I., editors (2001). Proceedings of 2001 IEEE Congress on Evolutionary Computation, Piscataway. IEEE Press.
- Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.
- Knowles, J. D. and Watson, R. A. (2002). On the utility of redundant encodings in mutationbased evolutionary search. In Merelo, J. J., Adamidis, P., Beyer, H.-G., Fernandez-Villacanas, J.-L., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature– PPSN VII, pages 88–98, Berlin. Springer.
- Liepins, G. E. and Vose, M. D. (1990). Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence, 2:101–115.

JG

- Moraglio, A. and Poli, R. (2004). Topological interpretation of crossover. In Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P. L., Spector, L., Tettamanzi, A., Thierens, D., and Tyrrell, A., editors, gecco2004, pages 1377–1388, Heidelberg. Springer.
- Palmer, C. C. (1994). An approach to a problem in network design using genetic algorithms. PhD thesis, Polytechnic University, Brooklyn, NY.
- Radcliffe, N. J. (1992). Non-linear genetic representations. In Manner, R. and Manderick, B., editors, Parallel Problem Solving from Nature – PPSN II, pages 259–268, Berlin. Springer.
- Radcliffe, N. J. (1997). Theoretical foundations and properties of evolutionary computations: Schema processing. In Bäck, T., Fogel, D. B., and Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages B2.5:1–B2.5:10. Institute of Physics Publishing and Oxford University Press, Bristol and New York.
- Raidl, G. R. (2000). An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem. In (Fonseca et al., 2000), pages 43–48.
- Reeves, C. R. (2000). Fitness landscapes: A guided tour. Joint tutorials of SAB 2000 and PPSN 2000, tutorial handbook.
- Ronald, S. (1997). Robust encodings in genetic algorithms: A survey of encoding issues. In (Bäck et al., 1997), pages 43–48.

Rothlauf: Representations for Evolutionary Algorithms

81

- Ronald, S., Asenstorfer, J., and Vincent, M. (1995). Representational redundancy in evolutionary algorithms. In Fogel, D. B. and Attikiouzel, Y., editors, Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, volume 2, pages 631–636, Piscataway. IEEE Service Center.
- Rothlauf, F. (2002). Representations for Genetic and Evolutionary Algorithms. Number 104 in Studies on Fuzziness and Soft Computing. Springer, Heidelberg, 1st edition.
- Rothlauf, F. and Goldberg, D. E. (2003). Redundant representations in evolutionary computation. Evolutionary Computation, 11(4):381–415.
- Rowe, J. E., Vose, M. D., and Wright, A. H. (2010). Representation invariant genetic operators. Evolutionary Computation, 18(4):635–660.
- Shackleton, M., Shipman, R., and Ebner, M. (2000). An investigation of redundant genotypephenotype mappings and their role in evolutionary search. In (Fonseca et al., 2000), pages 493–500.
- Shipman, R. (1999). Genetic redundancy: Desirable or problematic for evolutionary adaptation? In Dobnikar, A., Steele, N. C., Pearson, D. W., and Albrecht, R. F., editors, Proceedings of the 4th International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA), pages 1–11, Berlin. Springer.
- Shipman, R., Shackleton, M., Ebner, M., and Watson, R. (2000a). Neutral search spaces for artificial evolution: A lesson from life. In Bedau, M., McCaskill, J., Packard, N., and Rasmussen, S., editors, Proceedings of Artificial Life VII, page section III (Evolutionary and Adaptive Dynamics). MIT Press.

Rothlauf: Representations for Evolutionary Algorithms

82

- Shipman, R., Shackleton, M., and Harvey, L. (2000b). The use of neutral genotypephenotype mappings for improved evoutionary search. British Telecom Technology Journal, 18(4):103–111.
- Smith, T., Husbands, P., and O'Shea, M. (2001a). Evolvability, neutrality and search space. Technical Report 535, School of Cognitive and Computing Sciences, University of Sussex.
- Smith, T., Husbands, P., and O'Shea, M. (2001b). Neutral networks and evolvability with complex genotype-phenotype mapping. In Proceedings of the European Converence on Artificial Life: ECAL2001, volume LNAI 2159, pages 272–281, Berlin. Springer.
- Smith, T., Husbands, P., and O'Shea, M. (2001c). Neutral networks in an evolutionary robotics search space. In (Kim et al., 2001), pages 136–145.
- Surry, P. D. and Radcliffe, N. (1996). Formal algorithms + formal representations = search strategies. In Voigt, H.-M., Ebeling, W., Rechenberg, I., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature – PPSN IV, pages 366–375, Berlin. Springer.
- Thorhauer (2016): On the Non-uniform Redundancy in Grammatical Evolution. In PPSN 2016. pages 292-302. Berlin. Springer

Rothlauf: Representations for Evolutionary Algorithms

- Thorhauer, Ann; Rothlauf, Franz: On the Locality of Standard Search Operators in Grammatical Evolution. In: Thomas Bartz-Beielstein and Juergen Brank and Jim Smith editors, 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014), Liubljana, Slovenia, 2014.
- Toussaint, M. and Igel, C. (2002). Neutrality: A necessity for self-adaptation. In Fogel, D. B., El-Sharkawi, M. A., Yao, X., Greenwood, G., Iba, H., Marrow, P., and Shackleton, M., editors, Proceedings of 2002 IEEE Congress on Evolutionary Computation, pages 1354– 1359, Piscataway. IEEE Press.
- Watson, R. A., Hornby, G. S., and Pollack, J. B. (1998). Modeling building-block interdependency. In Eiben, A. E., B'ack, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature – PPSN V, volume 1498 of LNCS, pages 97–106, Berlin. Springer.
- Whitley, L. D. (2000). Walsh analysis, schemata, embedded landscapes and no free lunch. Joint Tutorials of SAB 2000 and PPSN 2000.
- Yu, T. and Miller, J. (2001). Neutrality and evolvability of Boolean function landscapes. In Miller, J., Tomassini, M., Lanzi, P. L., Ryan, C., Tetamanzi, A. G. B., and Langdon, W. B., editors, Proceedings of the Fourth European Conference on Genetic Programming (EuroGP-2001), volume 2038 of LNCS, pages 204–217, Berlin. Springer.
- Yu, T. and Miller, J. (2002). Finding needles in haystacks is not hard with neutrality. In Foster, J. A., Lutton, E., Miller, J., Ryan, C., and Tettamanzi, A. G. B., editors, Proceedings of the Fifth European Conference on Genetic Programming (EuroGP- 2002), volume 2278 of LNCS, pages 13–25, Berlin. Springer.

