
Sequential Experimentation by 
Evolutionary Algorithms

Ofer M. Shir 
Tel-Hai College and Migal Research Institute, Upper Galilee, Israel

Thomas Bäck
Natural Computing Group, Leiden University, The Netherlands

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the 
full citation on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s).
GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3207885

Instructors
• Ofer Shir is a Senior Lecturer at the Computer Science 

Department in Tel-Hai College, and a Principal Investigator at 

Migal-Galilee Research Institute, where he heads the Scientific 

Informatics and Experimental Optimization group – both 

located in the Upper Galilee, Israel.

• Thomas Bäck is Professor of Computer Science at the Leiden 

Institute of Advanced Computer Science (LIACS), Leiden 

University, The Netherlands, where he is head of the Natural 

Computing group since 2002.

Contributors and former-instructors:

• Joshua Knowles, University of Birmingham, UK.

• Richard Allmendinger, University of Manchester, UK.

Agenda

• What do we mean by “Sequential Experimentation”?

• Examples of what has been done

• Reference: Statistical Design of Experiments
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SEQUENTIAL 
EXPERIMENTATION

What do we mean by …



“Typical” Characteristics

• Experiments are time-consuming.

• Experiments are expensive.

• Only few experiments are possible.

• There are exceptions as well!
Quantum Control: Case-Study

• Evolution “in the loop”

• Thousands of experiments possible (“kHz regime”)

Further Challenges

• Noise and uncertainty of measurements
• Multiple objectives
• Dynamically changing requirements of   

experimentalists/stakeholders!
• Dynamically changing (resource) constraints
• Cost choices during optimization

 Some experiments may cost more than others
• Unusual constraints on population sizes and other 

hyperparameters

EXAMPLE APPLICATIONS

Examples:

- Flow Plate

- Bended Pipe

- Nozzle

- Nutrient Solutions

- Coffee Formulations

- Quantum Control

- Protein Expression
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Early Experiments I: Flow Plate

• A plate with 5 controllable angle brackets

• Measurable air flow drag (by a pitot tube) 
Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973



Early Experiments I: Flow Plate

Figures from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Number of mutations  and selected plate shapes Number of mutations  and selected plate shapes
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Experiment 1:
• Left / right supporting point at same  

y-coordinate.
• Horizontal flow.
• Minimize drag.

Experiment 2:
• Left supporting point 25% lower than 

right one.
• Horizontal flow.
• Minimize drag.

Start -30 -40 40 -30 40

End 0 4 0 6 -6

Start 0 0 0 0 0

End 16 6 2 0 -18

Early Experiments II: Bended Pipe

• A flexible pipe with 6 controllable bending devices

• Minimize bend losses of liquid flow 

• Measure drag by pitot tube
Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Early Experiments II: Bended Pipe

• Bend loss of final form reduced by 10%

• Including drag a total reduction of 2%

Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Number of mutations  and selected pipe shapes
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Initial (a) and optimized (b) pipe shape

Early Experiment III: Nozzle

• What can be done if physics, (bio-) chemistry, … of 
process unkown?

• No model or simulation program available!

• Idea: Optimize with the real object

• “Hardware in the loop”

• Example: Supersonic nozzle, turbulent flow, physical 
model not available.



Experimental Setup: Nozzle

• Production of differently formed conic nozzle parts (pierced 
plates).

• Form of nozzle part is value of decision variable.

choosing conic nozzle parts (by EA)
clamping of conic nozzle parts (manually)
steam under high pressure passed into nozzle 
degree of efficiency is measured!

„simulator 

replacement“

Nozzle Experiment (I) 

collection of conical nozzle parts

device for clamping nozzle parts

Figures courtesy of Hans-Paul Schwefel

Nozzle Experiment (II) 

Hans-Paul Schwefel 
while changing nozzle parts

Figures courtesy of Hans-Paul Schwefel

Nozzle Experiment (III) 

steam plant / experimental setup
Figures courtesy of Hans-Paul Schwefel



Nozzle Experiment (IV) 

the nozzle in operation …

… while measuring degree of efficiency
Figures courtesy of Hans-Paul Schwefel

• Illustrative Example: Optimize Efficiency
– Initial:

– Evolution:

• 32% Improvement in Efficiency !

Nozzle Results (I) 

Nozzle Results (II) 

• 250 experiments were made.
• 45 improvements found.
• Discrete ring segments, variable-dimensional optimisation
• Gene duplication and deletion as additional operators.

J. Klockgether and H.-P. Schwefel, “Two-phase nozzle and hollow core jet 
experiments,” in Proceedings of the 11th Symposium on Engineering Aspects of 
Magneto-Hydrodynamics, Caltech, Pasadena, California, USA, 1970.

Experiment: Coffee Formulations

• Optimize taste of a target coffee, 5 ingredients

• Subjective evaluation by human experts

• (1,5)-ES accepts deterioriations

• Experts do not !

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, 
Technical University of Berlin, Germany, 2000.



Target
coffee

Result
coffee

Coffee Formulations: Results

Optimum taste in 11 generations (55 evaluations) 

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, 
Technical University of Berlin, Germany, 2000.

Coffee Formulations: Results

• Coffee mixture differs a lot from target coffee !

• Taste is identical !

• Multiple realizations, but cost optimal !

• Approximation of cubic polynomial: 35 evals.

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, 
Technical University of Berlin, Germany, 2000.

EXPERIMENTAL OPTIMIZATION: 
FUNDAMENTALS

Experimental Requirements 
(for an Optimizer) 

1. Speed: fast convergence is required

2. Reliability: reproducibility of results within a margin

– Environmental parameters often hidden (temperature, pressure, …) 

3. Robustness: manufacturing feasibility

4. Reference solution (recommended): 

pre-designed reference item, robust and stable, having a 

known objective function value 



Convergence Speed

• Experiments are typically expensive: 

Goal: Drive the system towards finding large improvements 

with as few experiments as possible.

• Practical solutions: “greedy” variants of evolutionary 

algorithms, e.g.,

 Derandomized evolution strategies

 ParEGO

 Often “stochastic gradient search”

 Need to support parallel execution!

Reliability of Results

• Mostly algorithm-dependent

• Attained results must be reproducible 

• Scenarios of recording experimental outliers must be 
avoided (elitism is tricky…) 

• Perceived result versus a posteriori result

• Possible solutions:
– Employing comma (non-elitist) strategies

– In ES, the recombination operator assists in treating noise (The 
Genetic Repair (GR) Hypothesis, Beyer) 

– Increasing sampling rate of measurements (“signal averaging”)

Environmental Parameters

• As many as possible physical conditions should be 
recorded during the experiment

• Ideally, sensitivity of the system to the environment should 
be assessed

• Basic starting points: recording Signal/Noise, extracting 
power spectrum of the noise, etc.

Manufacturing Feasibility

• Mostly system-dependent

• Realization of the prescribed decision parameters of the 
experiment to equivalent systems, e.g., in a manufacturing 
stage

• To this end, sensitivity of the system must be assessed 
(electronics, for instance) 

• Upon obtaining reproducible results, they should be 
verified on equivalent systems



Noise “Colors”
Autocorrelation of the noise spectrum indicates the “memory 
property” of the disturbance –

• White Noise: (no correlation)

• Pink (Flicker) Noise: 

• Red (Brownian) Noise: (exp. distribution)

Tip: Assess the stability of your system by extracting the Power 
Spectral Density of its signal-free state.

M. Roth, J. Roslund, and H. Rabitz, “Assessing and managing laser system 
stability for quantum control experiments”, Rev. Sci. Instrum. 77, 083107 (2006) 

1
𝑓0ൗ → 𝛿(𝑡) 

1
𝑓1ൗ → unknown 

1
𝑓2ൗ → 𝑒−𝜆𝑡

APPLICATION AREAS

Basic Science: Discoveries as 
Combinatorial Optimization Problems

 A problem shared by scientists is to achieve 
optimal behavior of their systems and arrive 
at new discoveries while searching over an 
array of parameters

 It is commonly visualized in terms of a 
‘landscape’, in which a candidate solution is 
mapped onto a ‘position’, its quality onto an 
‘altitude’

 The task is translated into efficiently 
navigating within this search-space, which 
scales exponentially with the number of 
variables

Kell, D.B., Scientific discovery as a combinatorial optimisation problem: How best to 
navigate the landscape of possible experiments? BioEssays, 2012. 34(3): p. 236-244.
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Nozzle

Bended pipe
Flow plate

Coffee

Quantum control

CLADE

Chocolate

Crop-Breeding

Chromatography

Drug discovery

Instrument setup optimization

Material design optimization



Potential Application Areas

• Cosmetics / Detergent Formulation Optimization

• Catalyst Formulation Optimization (Cost, Effectiveness, …) 

• Subjective Evaluation Applications based on Human Taste 
or other Senses

• Engineering Applications Requiring Real-World 
Experiments for Measurement

• Concrete Formulation Optimization

• Glue Formulation Optimization

• Plant Startup Process

• Chemical Compound Synthesis Processes (e.g., Drugs) 

• Instrument Setup Optimization

STATISTICAL DESIGN OF 
EXPERIMENTS

Reference/State-of-the-Art:

Charts are based on Joshua Knowles’ Jyvaskyla Summer School Course (2016)..

DoE: The Industry’s Golden Standard Experimentation terminology

Factor, x

Response, y

DoE
Response: also known as effect
Factor = independent variable
Factors have levels
A Factor at a particular level is a treament
The regression line is a model, fit or 
response surface

Machine Learning
Factors are features
The response is the class or output

Optimization
Factors are decision variables
Response is objective value, cost, benefit, utility or fitness



From classical to modern

• Classical • Modern

 Are modern experiments asking too much?

Classical statistical question

• One factor, also known as a 
treatment, at two different 
levels, giving two groups

• One effect, also known as 
dependent variable, outcome, 
objective value

• Question: does the factor 
influence the effect?

The NIST Engineering Handbook calls this a comparative design.

Classical method: ANOVA (Fisher)

• ANOVA compares the 
variance between groups 
and within groups, with total 
variance

• If variance between groups 
is dominant then the 
statistic is significant 

Modern experiment 1

• N factors, N>>2, e.g. genes

• M effects, M>1, e.g. disease, + other effects

• P>1 nuisance factors, ages, gender, etc

• Question: which genes are most responsible for the 
disease, which groups of genes 
work together, and are other effects involved in explaining 
the disease?



Modern experiment 2

• Many factors

• Several effects

• Several nuisance 
variables

• Limited number of 
samples

• Noise (variance)

• Purpose: Optimize
the effect

Classical DoE: topics

• Statistical models and fitting

• Control experiments and Blocking

• Randomization and Balance

• Bias and Blinding

• OFAT

• Full factorial

• Fractional factorial

• Optimal design, e.g. D-optimal

• Other designs

Variation

• Experiments involve measurements of quantities that are 
assumed to be random variables

• To determine if any observed effects are due to a factor 
(independent variable), we must account for the natural 
variation

Wikimedia Commons: Ron, S.; Venegas, P. J.; Toral, E.; Read, V. M.; Ortiz, D.; Manzano, A. (2012)

Statistical models

• To estimate model parameters from a set of experimental 
results is often a regression problem:

Even assuming a linear
model as here, there is no
unique solution.

The method of 
Least Squares has
statistical support.
It is the best linear
unbiased estimator (blue)

(Laplace, Legendre, Gauss)

y = α+ β.x1 + γ.x2 +ε   (Solve system of equations) 



Statistical models

• To estimate model parameters from a set of experimental 
results - a regression problem

NOTICE: We can fit nonlinear
surfaces using linear regression!
We just need to assume the 
functions f g, etc

The method of 
Least Squares has
statistical support.
It is the best linear
unbiased estimator (blue)

y = α+ β.f(x1) + γ.g(x2) +ε   (Solve system of equations) 

Replication

• The bedrock of experimentation is repetition or 
replication
– In the simplest case this entails repeating a 

measurement, keeping all factors the same and taking 
the mean of the response

– More generally, we wish to replicate some factors and 
let others vary. One way to control this is called 
blocking...[see later] 

Randomization

• Several unwanted effects can be reduced by 
shuffling before assigning to treatment groups

• Let’s say we have three treatments A,B,C and
N=21 trials to do
– Nonrandom:

AAAAAAABBBBBBBCCCCCCC

– Complete Randomization: 
ABAABCCCBABBCCABBCCCB

– Permuted Block Randomization:
ABC|CAB|BCA|ACB|ACB|BAC|CBA 

Blocking

• Randomization is ok, 
but blocking can 
help even more

• We mitigate the 
disruptive effects of 
each potentially 
confounding factor by 
splitting the data into 
groups (or blocks) by 
that factor

Note: Randomized block designs can get quite sophisticated with several factors



Handling multiple factors

• It is typical that we have N>1 factors to control

• The high-school solution to this is called

OFAT
(or one-factor-at-a-time)

• You hold all but one factor constant and vary that. Then you 
go onto the second factor ... and so on

OFAT

An OFAT design in two variables

Weaknesses of OFAT
1. OFAT requires more* runs for the same precision in effect estimation
2. OFAT cannot estimate interactions between factors
3. OFAT can miss optimal settings of factors

*compared with experimental designs like Plackett-Burman

Factor 1

Factor 2

Why OFAT is poor: correlations

*compared with experimental designs like Plackett-Burman

With several factors, the factors can confound each other, 
which means that one factor causes an increase while others 
cause a decrease.

The way to overcome this efficiently (in number of trials) is to 
change several variables at once!

Consider the 12 coins problem:
You have 12 coins, one of which is heavier or lighter 
than the others. 
Determine which it is, and whether it is heavy or light.
You have only 3 weighings on a balance!!!

SOLUTION

Full Factorial design



Fractional Factorial Design Other fractional designs

Latin hypercube screening design

Latin Hypercube

Orthogonal

Random design

EAs versus DoE comparison



Comparing LHS and (1+1)-Cholesky-
CMA-ES

• Comparison on BBOB, 5-d and 20-d, 80 repetitions, ECDF plots

• Above 10d FEs, (1+1)-Cholesky-CMA-ES always outperforms LHS

1000 function 
evaluations

5-d

500d function 
evaluations

20-d

1000 function 
evaluations

500d function 
evaluations

QUANTUM CONTROL 
EXPERIMENTS

Case-Study:

Altering the Course of Quantum Phenomena
Quantum Control Experiments



The QCE Arena: The Optical Table

Figure courtesy of Jonathan Roslund Figure courtesy of Jonathan Roslund

The Optical Table: Shaping the Pulse

QCE: Sources of Noise/Uncertainty
Single-Objective QCE

• CMA-ES was observed to perform extremely well with 
small population sizes

• Recombination is indeed necessary (GR, Beyer)

• Robust, reproducible, reliable solutions

Roslund, J., Shir, O.M., Bäck, T., Rabitz, H.: 
Accelerated Optimization and Automated Discovery 
with Covariance Matrix Adaptation for Experimental 
Quantum Control. Physical Review A (Atomic, 
Molecular, and Optical Physics) 80(4) (2009) 043415

Figure courtesy of Jonathan Roslund



(a) Experimental Pareto frontier for the Total Ionization problem approximated by MO-
CMA-ES, displaying the perceived frontier of a single experiment, the reference frontier
of the intensity based non-shaped pulse, as well as a sampling of the Pareto optimal set. 

(b) Experimental Pareto frontier for the Molecular Plasma Generation problem 
approximated by MO-CMA-ES remedied with occasional re-evaluation, displaying the 
perceived frontier, the reference frontier, and the reproduction of the Pareto optimal set.

Multi-Observable QCE

Shir, O.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary 
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491

Radar Optimal Dynamic Discrimination

• Competition: maximizing free electron number vs. minimizing SHG

• Pay-off over unshaped (TL) reference (HV ratio): 24.5%

Shir, O.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary 
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491

Extended Features: Statistical Learning (FOCAL) 

• QCE and Derandomized ES enjoy a happy marriage

• However, the default CMA-ES does not learn a covariance 
matrix reflective of the inverse Hessian

• FOCAL, for experimental Hessian retrieval

Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal 
covariance adaptive learning. Physical Review E 89(6) (2014) 063306

FOCAL: Experimental Results

(a) Retrieving the Hessian by FOCAL for rank-deficient atomic Rubidium
(b) 5 most important Hessian eigenvectors; Physical form is corroborated

Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal 
covariance adaptive learning. Physical Review E 89(6) (2014) 063306



PROTEIN EXPRESSION

Hot-off-the-lab-bench
Four genes are required for ApcA heterologous expression in E. coli.

Goal: maximize the heterologous expression level

Heterologous Protein Expression

ApcA Expression System: Four Genes in Two Plasmids

 Controls (10 categorical decision variables):
4 growth temp., 5 expression temp., 3 growth volumes, 
6 IPTG concent., 5 O.D. values, 4 induction durations, 
7 gamma-ALA concent., 2 gamma-ALA timings, 
11 FeCl_3 concent., 3 Medium types

 Search-space cardinality: ~3×106 possible combinations

Closed Feedback Loop

A scheme of a typical single iteration (step) in a proposed optimization run of a 
production system. The input variables for each well are prescribed by the algorithm, 
whereas the output (feedback) of each produced molecule is provided by the assay -
altogether closing a feedback loop.



ApcA Expression in E. Coli: Assay

Preliminary experiment of ApcA expression in E. coli with varying parameters. 
Left: fluorescence from a 96-well plate containing lysates of E. coli cells expressing ApcA. Right: 
evaluation of expression quality based on the ratio of absorption at 620 nm vs 280 nm, 
represented as a heat map corresponding to the 96-well plate.

ApcA Expression in E. Coli: 4 generations

DISCUSSION

Evolutionary Algorithms Used

Evolutionary Algorithms

Evolution Strategies Genetic Algorithms
GP, EP, DE,

PSO, ACO,...

•Nozzle Experiments:
Two-Membered Evolution 
Strategy [Rechenberg; 1973]

•Quantum Control Experiments:
Derandomized Evolution 
Strategies [Hansen et al.; 1994-
2008]

•Protein Expression 
Experiments: Categorical ES 
[unpublished] 



Some Practical Principles for 
Closed-Loop Optimization

• Keep experimentalists in 
the loop

• Understand the 
experimental platform

• Simulate the platform, and 
compare algorithms

• Do it for real – and get 
feedback

Keep experimentalists in the loop

• Explain EAs, manage 
expectations of outcomes.

• Understand the variables 
and objectives. Confirm 3 
times at least.

• Still be prepared to change 
objectives half-way through!

• Enable them to use familiar 
software for viewing results.

Objectives shown above were changed
during optimization

Understand the experimental platform

• Variables, constraints, 
measurements, noise

• Financial costs, time lags

• Resource constraints

• Batch size of platform 
dictates/constrains 
population size of EA

Simulations prior to the real thing

• Really helpful to manage 
expectations of stakeholders

• Tune your algorithms for weird 
and wonderful population 
sizes, constraints, budget 
limitations of real experimental 
platform

• If possible, use domain 
experts to design test 
problems that are similar to 
the real problem



Conclusions

• Experimental Optimization is hard – but an Evolutionary 

approach is feasible!

• EAs should be given a chance in new application areas

• The human/psychological factor among the 

experimentalists plays a dominant role in making a 

decision on starting a campaign

• Fundamental research in EAs is much needed

Goals and Open Questions

• Given a budget of k experiments – what strategy should be 
taken?

• NFL holds more than ever – there will be no winner 
algorithm handling all experimental scenarios!

• How do statistical approaches perform in comparison?
– Especially DoE

• The preliminary comparison presented earlier is a fine 
starting point (slide #57)

• Holy Grail: A package of strategies to drive an 
experimental system to a reliable maximum with minimum 
experiments
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