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v Motivation and Background 
•  Fitness landscapes 
•  The notion of funnels 
•  Complex networks 

v Local Optima Networks  
•  Definition of Nodes & Edges 
•  Visualisation & Metrics 

v Case Studies 
•  Combinatorial optimisation  

–  Binary: NK landscapes, number partitioning (NPP) 
–  Permutation: TSP 

•  Genetic Improvement 

v Closing 

Outline 

Practical Sessions 
•  Sampling 
•  Visualisation 
•  Metrics 

Download Materials 
www.cs.stir.ac.uk/~goc/gecco2018tutorial 

MOTIVATION AND BACKGROUND 

•  Overall goal 
•  Fitness landscapes 
•  The notion of funnels 
•  Complex networks 



v To develop and  establish a set of sampling 
methodologies, visualisation techniques and 
metrics to thoroughly characterise the global 
structure of computational search spaces. 

 
v To lay the foundations for a new perspective to 

understand problem structure and improve 
heuristic search algorithms: 
Search Space Cartography. 

Overall goal 

(S, N, f ) 
 
S  Search space 
N  Neighbourhood structure 
f    Fitness function 
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Fitness landscapes 

Features of landscapes 

Multimodality, ruggedness, 
deceptiveness & neutrality

•  No. of local optima 
•  Avg. size of local basins 
•  Avg. size of global basin 
•  Fitness-distance correlation 
•  Auto-correlation length 
•  Neutral degree 
•  … 

 

v  Several studies in the 90s.   TSP (Boese et al, 1994), NK landscapes 
(Kauffman, 1993), graph bipartitioning (Merz & Freisleben, 1998) 
flowshop scheduling (Reeves, 1999) 

v  Distribution of local optima is not uniform. Clustered in a big-valley 
(globally convex) structure 

v  Many local optima, but easy to escape. Gradient at the coarse level 
leads to the global optimum. 

The big-valley structure in combinatorial optimisation  

TSP:  big-valley. Local optima confined 
to a small region 



“A key concept that has arisen within the protein folding 
community is that of a funnel consisting of a set of 
downhill pathways that converge on a single low-energy 
minimum.” 
 

What is a Funnel? 

Doye, J. P. K., Miller, M. A., & Wales, D. J . The double-funnel energy landscape of 
the 38-atom Lennard-Jones cluster. Journal of Chemical Physics, 1999 
 
Funnels in continuous optimisation 
•  Multilevel global structure (Locatelli, 2005) 
•  Dispersion metric (Lunacek & Whitley, 2006, 2008) 
•  Feature-based detection of (single) funnel structure (Kerschke et al., 2015) 
Funnels in combinatorial optimisation 
•  Related to the big-valley (central-massif) hypothesis  (previous slide) 
•  The big-valley re-visited (Hains, Whitley & Howe, 2011) 
•  Characterisation of funnels with Local Optima Networks (our contribution) 10 

global minimum 

local minima 

Best local minimum 
in this funnel 

What is a Funnel? 

Complex networks are 
everywhere! 

“Behind each complex system, there is an intricate 
network that encodes the interactions between the 

system’s components.” 
Albert-László Barabási, Network Science 

Topology (Degree distribution) 
•  Gives an idea of the spread in the 

number of links the nodes have 
•  p(k) is the probability that a randomly 

selected node has k links 

Distance 
•  Number of links that make up the path 

between two points 
•  “Geodesic” = shortest path 

Features of networks 

Cohesion   
•  Local: clustering coefficient or transitivity 
•  Global: components, community structure 



v  Binary strings of length N 
v  Fitness function   f: BN → R+ 
v  K (0 ≤ K < N) determines how many other bits in the string influence 

a given bit xi 

v  Interacting bits can be Adjacent or Random 
v  Fitness contribution of each bit is: 

•  Standard NK model: random real numbers [0,1] 
•  Quantized NKq model: integer numbers [0,q)   (plateaus and neutrality) 

NK landscapes (Kauffman, 93), NKq (Newman, 98) 

N=5, K = 2, Adjacent interaction Sum of sub-functions.  
maski:  selects the K+1 bits that will be accessed by 
sub-function fi 

LOCAL OPTIMA NETWORKS 

•  Overview 
•  Definition of Nodes 
•  Definition of Edges: basin, escape, monotonic, crossover 
•  Visualisation & Metrics 

v Bring the tools of  complex networks analysis to study the 
structure of combinatorial fitness landscapes 

v Goal. Understand problem difficulty, design effective 
heuristic search algorithms 

v Methodology. Extract a network that represents the 
landscape 
•  Nodes. Local optima 
•  Edges. Notion of adjacency/transition among local optima 

v Conduct a network analysis 
v Relate network features to search difficulty 
v Exploit knowledge to design better algorithms  

Overview Local Optima Networks (LONs) 

•  Nodes. Local optima 
according to a hill-
climbing heuristic 

•  Edges. Adjacency of 
basins. Transitions 
among optima.  

•  P. K. Doye. The network topology of a potential energy landscape:    
a static scale-free network. Physical Review Letter, 2002. 

•  G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. A study of NK 
landscapes' basins and local optima networks. GECCO 2008 

2D function landscape (left), and a contour plot of the local 
optima partition of space into basins of attraction (right). A 
simple regular network of six local maxima can be observed. 



v  Space S, Neigborhood N(s),  fitness f(s) 


v LON Model. Directed graph LON = (L, E) 

v h(s) stochastic operator that associates 
each solution s to its local optimum (Alg. 1) 

v The basin of attraction of a local optimum    
li ∈ L is the set Bi = {s ∈ S | h(s) = li} 

v Nodes (L). A local optima is a solution l 
such that ∀ s ∈ N(s), f(s) ≤ f(l) 

v Basin Edges (E). Two local optima are 
connected if their basins of attraction 
intersect. At least on solution within a basin 
has a neighbour within the other basin.  

LON original model 

NK landscape 
N=18, K=2 

●

●

●

●

●

●

●

●

wij  proportion of transitions 
from solutions s ∈ Bi to 
solutions s’ ∈ Bj  

v Account for the chances of escaping a local 
optimum after a controlled mutation (e.g. 1 or 2 
bit-flips in binary space) followed by hill-climbing 

v Given a distance function d and integer value D, 
there is and edge eij between li and lj f a solution s 
exists such that d(s,li) ≤ D and h(s) = lj 

v wij  cardinality of {s ∈ S | d(s,li) ≤ D and h(s) = lj} 

v Sampled networks. There is an edge eij between  
li and  lj  if  lj  can be obtained after applying a 
perturbation to  li  followed by hill-climbing. 
Weights are estimated by the sampling process. 

Escape edges 
NK landscape 
N=18, K=2 

D = 2 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● D = 1 

v Funnels can be loosely defined as groups of local optima, 
which are close in configuration space within a group, but 
well-separated between groups. 

v A funnel conforms a coarse-grained gradient towards a low 
cost optimum. 

v How to characterise funnels more rigorously using LONs? 
•  Connected components. Funnels are sub-graphs, connected components 

within LONs.  (EvoCOP, 2016) 
•  Communities. Funnels are communities within LONs. (GECCO, 2016, 2017) 
•  Monotonic sequences. Concept from energy landscapes. Conceptually sound 

characterisation, incorporating  both grouping and coarse-grained gradient. 
(EvoCOP 2017, 2018; JoH 2017) 

Characterisation 
of funnels 

X

f(X)

v  Monotonic edges. Keep only non-deteriorating edges 
l1→ l2, if  f(l2) ≤ f(l1) 

v  Monotonic sequence. Path of connected local optima     
l1→l2→l3 … →ls ,f(li) ≤ f(li-1) 

v  Sink. Natural end of the sequence, when there is no 
adjacent improving local optima 

v  Funnel.  Aggregation of all monotonic sequences 
ending at the same point (sink). Basin of attraction 
level of local optima 

Characterisation of funnels with LONs 

Sink. Node 
without outgoing 
edges 

S set of sinks 



Complex network tools  

v Force directed layout 
•  Position nodes in 2D 
•  Edges of similar length 
•  Minimise crossings 
•  Exhibit symmetries 

v Example algorithms  
•  Fruchterman & Reingold  
•  Kamada & Kawai 

v Software packages  
•  R igraph 
•  Gephi 

v Network metrics 
•  Number of nodes 
•  Number of edges (density) 
•  Number of global optima 
•  Weight of self-loops 
•  Avg. fitness of local optima 
•  Number of connected components 
•  Avg. path length to a global optimum 
•  Centrality (PageRank) of global optima  
•  Clustering coefficient 

v Funnel metrics 
•  Number of funnels (sinks) 
•  Normalised size of global funnel(s) 
•  Normalised incoming strength 

(weighted degree) of global sink(s)  

Visualisation Metrics  

CASE STUDIES 

•  NK landscapes, Grey-box optimisation & Tunnelling Crossover 
•  Number partitioning phase transition & multiple funnels 
•  TSP and multiple funnels 
•  Exploiting knowledge of the global structure 
•  Genetic improvement landscapes  

Crossover network model (XLON) 
v Partition Crossover (PX), deterministic and greedy 
v   NKq landscapes q=100; K={2, 3} and N ={20, 25, 30} 
v Fast extraction of all local optima using Grey-box 

optimisation (k-bounded additive functions).  

•  N = 20, K = 2 
•  220 = 1,048,576 
•  Adjacent: 60 nodes, 

1 component 
•  Random: 50 nodes,  

7 components 
 

Example XLON: 

(Ochoa, Chicano, Tinos, 
Whitley. GECCO 2015) 

XLON 

1. Local optima identification 

2. Network construction 

•  Score Si(x) is the change in fitness 
from x to solution flipping bit i 

•  x is a local optimum  if all Si(x) are 
lower than or equal to zero 

•  Efficient incremental calculation of 
Score. Overall complexity O(2N) 

Definition Graph (V,EPX) where nodes are local 
optima end edges link parents to 
offspring via partition crossover 
  

Construction 

•  All x, y pairs nv*(nv-1)/2 
•  PX and fast deterministic HC 
•  If z different to parents, two 

edges (x,z) and (y,z) are added 
to the network 



Results  N = 30, q=100, 30 replicas 
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●
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v Given a set of n positive integers A={a1, a2, ..,an}, drawn at 
random from the set {1, 2, .., M}, find a disjoint partition (S1, 
S2) of A such that the discrepancy D between their sums is 
minimised 

v A partition is perfect if D = 0, where  D = | ΣS1 ai – ΣS2 ai  | 
v Easy-hard phase transition, k = log2(M)/n 

 

Number Partitioning (NPP) 

NPP fitness landscape  

•  Stadler, P., Hordijk, W., & Fontanari, J. (2003). Phase transition and landscape 
statistics of the number partitioning problem. Physical Review E 

•  K. Alyahya, J. Rowe (2014). Phase Transition and Landscape Properties of the 
Number Partitioning Problem. EvoCOP. 
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What features of the fitness 
landscape are responsible for 
the widely different behaviours? 

Most fitness landscape metrics 
are insensitive/oblivious to the 
easy/hard phase transition! 

v Full enumeration and extraction of LONs 
v N = {10, 15, 20}, k in [0.4, 1.2] step 0.1 
v 30 instances for each N and k 
v LON. 1-flip local search, 2-flip perturbation  (D = 2) 
v MLON. Monotonic LON, worsening edges pruned  
v CMLON. compressed MLON, LON plateaus 

contracted in a single node  
v Empirical search performance: ILS success rate 

Methodology 



k = 0.4 

LON  V = 104, E = 2844 MLON  V = 104, E = 2010 CMLON   V = 14, E = 35 

N =10 

LON  V=104, E=2514 MLON: V=104, E=1386 CMLON: V = 96, E = 1290 

k = 1.0 

k = 0.4 

30 

k = 0.6 

k = 0.8 k = 1.0 

N = 20 
CMLON 

LON metrics & Search Performance 

(Ochoa, Veerapen,  Daolio, 
Tomassini. EvoCOP 2017) 

v A prominent combinatorial optimisation problem 
v Given n cities and the pairwise distance between them: 

what is the shortest possible route that visits each city 
and returns to the origin city? 

v After over 50 years of intense study maintains its 
theoretical and practical relevance 

v Successful exact solver: Concorde (Applegate et al., 2006)  

v Successful heuristic solvers 
•  Chained-LK. Iterated local search using Lin-Kernighan heuristic 

and double-bridge perturbation (Martin, Otto, Felten, 1992) 
•  LKH. Improved implementation of Lin-Kernighan heuristic 

(Helsgaun, 2000,2009)    

•  EAX. Evolutionary algorithm with edge exchange crossover 
(Nagata and Kobayashi, 2013)    

Travelling Salesman Problem (TSP)  



LON definition and sampling  

•  Nodes.  Lin-Kernighan 
•  Edges.  Double-bridge 

Chained Lin-Kernighan         
(Martin, Otto, Felten, 1992) 
•  Form of Iterated Local Search 
•  Diversification & Intensification stages 

Global minimum 

Random initial solution 

Local search 
Perturbation 

C755 Clustered Cities

Funnels: 1, Success: 100%


DIMACS random instances !

E755 Uniform Cities

Funnels: 4, Success: 13%


(Ochoa & Veerapen, JoH 2017) 

TSP Synthetic Instances 
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DIMACS random instances !
Same layout, 3D projection where z coordinate is fitness 

TSP Synthetic Instances 

E755 Uniform Cities

Funnels: 4, Success: 13%


C755 Clustered Cities

Funnels: 1, Success: 100%


2D layout and 3D projection where z coordinate is fitness 

TSPLIB City Instance att532 

att532 (cities in the US)

Funnels: 2, Success: 44%




v Instances of several combinatorial optimisation 
problems have a multi-funnel structure 

v Sub-optimal funnels act as traps to the search 
process 

v Can we devise mechanisms for escaping sub-
optimal funnels? 
•  Restarts 
•  Stronger perturbation in ILS implementations 
•  Crossover 

Exploiting knowledge of the global structure Increasing perturbation strength 
•  Chained-LK, Perturbation: 1 to10 double-bridge kicks  
•  TSP synthetic instances DIMACS: Uniform & Clustered 
•  Sizes 506, 755, 1010 

(McMenemy, Veerapen & 
Ochoa. EvoCOP 2018) 

TSP Uniform E755  

TSP Clustered C755  

p = 1 p = 5 p = 10

39 

34%
 54% 29%

43%
 32% 3%

Other types of edges 
v The LON model is not restricted to basin 

transition edges or escape edges. 
v The model can also accommodate more than 

one type of edge. 
v One example are LONs for Hybrid Evolutionary 

Algorithms. 



v  Consider a Hydrid EA which incorporates a local search component 
to generate local optima. 

v  Two types of edges 
•  Crossover (followed by local search) 
•  Mutation (followed by local search) 

LONs for Hybrid EAs 

Crossover 

Mutation 

(Veerapen, Ochoa, Tinós, Whitley. PPSN 2016) 

v Hybrid GA vs ILS 

Contrasting LONs from two solving methods 

Hybrid GA 
Partition Crossover (PX) 

Success: 100%  

Chained LK 
Success: 0% 

Asymmetric TSP 
Instance rbg323 LONs 
 
Only edges and global 
optima are plotted. 

v Grey-box hybrid EA, 1 million variables NK 

Contrasting LONs from two solving methods 

Hybrid ILS, PX + Perturbation Hierarchical GA, Partition Crossover (PX) 

(Chicano, Whitley, Ochoa, Tinos. GECCO 2017) 

v Genetic improvement (GI) uses automated search to 
find improved versions of existing software 

v GI is different from Genetic Programming since it 
modifies existing code 

v  It is not necessary to use Genetic Programming 
v Other methods such a Genetic Algorithms may be used 
v Local Search is used in this case study  

Genetic Improvement of Software 



v  Introduce random mutations to a bug free-program  
v Try to recover a version passing all test cases 

(Competent programmer hypothesis, DeMillo et al., 1978) 
v Mutations restricted to Comparison (<, <=, ==, !=, >=, >) 

and Boolean operators (&&, ||) 
v Objective function: Minimise number of failed test cases 

Program Search Test Bench 

Input 1 Input 2 Input 3 Expected 
Output Output Failed 

1 1 2 3 3 FALSE 

1 2 1 3 4 TRUE 

1 2 2 1 1 FALSE 

+ 
+ 

v Mutations of comparison operators  
(<, <=, ==, !=, >=, >) 

v Mutations of Boolean operators (&&, ||) 
v Representation: vector of integers 

Program Search Test Bench 

if ( side1 == side2 ) { 
 triang = triang + 1 ; 

} 
if ( side1 == side3 ) { 

 triang = triang + 2 ; 
} 

== == >= < || && 2 2 4 0 7 6 

v Program and search space characteristics 

Program Search Test Bench 

triangle.c tcas.c 
Lines of code 40 135 
Number of comparison operators 17 14 
Number of Boolean operators 7 16 
Number of input parameters 3 12 
Number of output values 1 3 
Number of test cases 14 1578 
Size of search space with  
comparison operators only 1.69 x 1013 7.84 x 1010 

Size of search space with  
comparison and Boolean operators 2.17 x 1015 5.14 x 1015 

success: 87% success: 31% 

success: 94% success: 98% 

(Veerapen, Daolio, Ochoa. GECCO comp. 2017) 
(Langdon, Veerapen, Ochoa. EuroGP 2017) 

triangle.c 

tcas.c 

Comparison Operators Only Comparison and Boolean Operators 



CLOSING 

•  More accessible (visual) approach to heuristic understanding 
•  Rigorous characterisation of funnels 
•  Global structure impacts search 
•  New code available to assist researchers 
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