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Next Generation Genetic Algorithms

There is a book chapter that goes with this tutorial.
Send an email to whitley@cs.colostate.edu

SUBJECT: TUTORIAL2018

Next Generation Genetic Algorithms

What do we mean by “Next Generation?"

@ NOT a Black Box Optimizer.
@ Uses mathematics to characterize problem structure.
@ For many problems: NO MUTATION IS NEEDED

Next Generation Genetic Algorithms

What do we mean by “Next Generation?"

@ NOT cookie cutter.
Not a blind “population, selection, mutation, crossover” GA.

@ Uses deterministic move operators and crossover operators
@ Tunnels between Local Optima.
@ Scales to large problems with millions of variables.

@ Build on our expertise in smart ways.




Know your Landscape! And Go Downhill!

What if you could ...

recombine P1 and P2

“Tunnel” between local optima on a TSP,
or on an NK Landscape or a MAXSAT problem
and go the BEST reachable local optima!

Tunneling = jump from local optimum to local optimum

The Partition Crossover Theorem for TSP

Let G be a graph produced by unioning 2 Hamiltonian Circuits.

The Partition Crossover Theorem for TSP

Let G’ be a reduced graph so that all common subtours are removed.




Partition Crossover in O(n) time

The Partition Crossover for TSP

,
o -0

As a side effect: f(P1) + f(P2) = f(C1) 4 f(C2)

The Big Valley Hypothesis

is sometimes used to explain metaheuristic search

Distance from global
Distance from global
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Tour Evaluation Tour Evaluation

Local Optima are “Linked” by Partition Crossover " Tunnels”
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Generalized Partition Crossover in O(n) time
Generalize Partition Crossover is always feasible if the partitions have 2
exits (same color in and out). If a partition has more than 2 exits, the
“colors” must match.
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How Many Partitions are Discovered?

Instance || att532 nrwl379 rand1500 ul8l7
3-opt 10.5+0.5 | 11.3+0.5 | 24.94+0.2 | 26.2+0.7

Table: Average number of partition components used by GPX in 50
recombinations of random local optima found by 3-opt.

With 25 components, 22° represents millions of local optima.

With 1000 components, returns the best of 2190 |ocal optimal!!
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With Thanks to Gabriela Ochoa and Renato Tinds
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GPX, Cuts Crossing 4 Edges (IPT fails here)
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GPX, Complex Cuts ... Still O(n) time
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GPX, Complex Cuts ... Still O(n) time
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Tunneling Between Local Optima

Local Optima are “Linked” by Partition Crossover
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Thanks to G. Ochoa and N. Veerapen. 18

The Two Best TSP (solo) Heuristics

Lin Kernighan Helsgaun (LKH 2 with Multi-Starts, and IPT Crossover)
Iterated Local Search

EAX: Edge Assembly Crossover (Nagata et al.)
Genetic Algorithm

Combinations of LKH and EAX
using Automated Algorithm Selection Methods (Hoos et al.)

THE BEST INEXACT “TSP” SOLVERS USE CROSSOVER!
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Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.

LKH uses deep k-opt moves, clever data structures and a fast
implementation.

LKH-2 has found the majority of best known solutions on the TSP
benchmarks at the Georgia Tech TSP repository that were not solved by
complete solvers: http://www.tsp.gatech.edu/data/index.html.
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GPX Across Runs and Restarts

GPX Across Runs
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GPX Across Restarts

A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per
run. The circles represent local optima produced by LKH-2. GPX across
runs crosses over solutions with the same letters. GPX across restarts
crosses over solutions with the same numbers.
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LKH with Partition Crossover

Mulit-Start LKH compared to LKH+PX on 31K City Dimacs Cluster Instance
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Edge Assembly Crossover
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AB Cycles (the E-Set) The Subcircuits Offspring: New Edges -+

AB-Cycles are extracted from the graph which is the Union of the

Parents. The AB-Cycles are used to cut Parent 1 into subcircuits.
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Iterations 22
Edge Assembly Crossover
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AB Cycles (the E-Set) The Subcircuits Offspring: New Edges o
The AB-Cycles are used to cut Parent 1 into subcircuits. These
subcircuits are reconnected in a greedy fashion to create an offspring.
The offspring is composed of edges from Parent 1, edges from Parent 2,
and completely new edges not found in either parent.
24




The EAX Genetic Algorithm Details

@ EAX is used to generate many (e.g. 30) offspring
during every recombination. Only the best offspring is retained
(Brood Selection).

@ There is no selection, just “Brood Selection.”
@ Typical population size: 300.

@ The order of the population is randomized every generation. Parent
i is recombined with Parent ¢ 4+ 1 and the offspring replaces Parent
i. (The population is replace every generation.)

The EAX Strategy

@ EAX can inherit many edges from parents,
but also introduces new high quality edges.

@ EAX disassembles and reassembles,
and focuses on finding improvements.

@ This gives EAX a “thoroughness” of exploration.

@ EAX illustrates the classic trade-off between
exploration and exploitation
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Edge Assembly Crossover: Typical Behavior
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Combining EAX and Partition Crossover

@ Partition Crossover can dramatically speed-up exploitation, but it
also impact long term search potential.

@ A Strategy: When EAX generates 30 offspring, recombine all of the
offspring using Partition Crossover.

@ This can help when EAX gets stuck and cannot find an
improvement.
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EAX and EAX with Partition Crossover

Standard EAX with restarts

Pop Evaluation Running Number

Dataset Size Mean S.D. | Time Mean S. D. | Opt. Sol.
rl5934 200 556090.8 50 1433 34 12/30
rl5915 200 565537.57 29 1221 30 23/30
rl11849 200 923297.7 8 8400 130 1/10
ja9847 800 491930.1 2 37906 618 0/10
pla7397 800 | 23261065.6 552 12627 344 2/10
usal3509 | 800 | 19983194.5 411 81689 1355 0/10

EAX with Partition Crossover

Pop Evaluation Running Number

Dataset Size Mean S.D. | Time Mean S. D. | Opt. Sol.
rl5934 200 556058.63 33 1562 248 21/30
rl5915 200 565537.77 21 1022 73 19/30
rl11849 200 923294.8 8 7484 105 4/10
ja9847 800 | 491926.33 2 30881 263 4/10
pla7397 800 23260855 222 11647 1235 4/10
usal3509 | 800 | 19982987.6 173 66849 818 2/10
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k-bounded Pseudo-Boolean Functions

m

fx)= > f,(x, mask)

i=1

10101l1001v100101010\010111\001

A General Result over Bit Representations

By Constructive Proof: Every problem with a bit representation and a
closed form evaluation function can be expressed as a quadratic (k=2)
pseudo-Boolean Optimization problem. (See Boros and Hammer)
xy==z iff axy—2xz—2yz+32=0
zy#z iff xy—2xz—2yz+32>0

Or we can reduce to k=3 instead:

f(Il, T2, T3, T4, 9057366)

becomes (depending on the nonlinearity):

f1(z1, 22, 23) + f2(21, ®1, w2) + f3(22, 23, 24) + f4(23, 25, T6)
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k-bounded Pseudo-Boolean functions

For example: A Random NK Landscape: n =10 and k = 3.
The subfunctions:
f0($07$17I6) f1($171'47$8) fQ(I2,$37CU5) f3(-73373327376)
fa(wg, 20, 21) Js(xs, 27, 04) fo(ze, s, 21)  fr(2r, 23, 5)
fs(@s,z7,23)  folwg, 27, 78)
But this could also be a MAXSAT Function,
or an arbitrary Spin Glass problem.
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Walsh Example: MAXSAT

Given a logical expression consisting of Boolean variables, determine
whether or not there is a setting for the variables that makes the
expression TRUE.

Literal: a variable or the negation of a variable

Clause: a disjunct of literals

A 3SAT Example
(—LTL‘Q Va V :L'[)) A (1‘3 V g V 3‘:1) A (.1‘3 Vo V —|:2’,'[))

recast as a MAX3SAT Example
(_uCQ \Y €Ty \ 117(]) + (1‘3 \ Xy A .?31) + (1173 \Y -y vV _l.’B(])
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BLACK BOX OPTIMIZATION

Don't wear a blind fold during search if you can help it!

34

GRAY BOX OPTIMIZATION

THEOREM: All of the following functions are solved in
1 evaluation in O(n) time.

ONEMAX

LEADING-ONES (TRAILING ZEROS)
TRAP functions

Multi-Modal UGLY Deceptive Problems
JUMP functions, (m << n)
UNITATION functions

All non-deceptive functions

Do we want to solve real problem?

Or just pretend to solve toy problems?

35

GRAY BOX OPTIMIZATION

We can construct “Gray Box" optimization for pseudo-Boolean
optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

f@) =2 fi(x)

Which can be expressed as a Walsh Polynomial

m
W(f(z)) =Y W(fi(x))
i=1
Or can be expressed as a sum of k& Elementary Landscapes

k

fl@) =YD W(f(x)

i=1
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Walsh Example: MAX-3SAT

Walsh Analysis of a Single Clause

Consider the example function consisting of a single clause
flx)=—ma v 2y Vg

F000) = 1 (~zT)
J001) = 1 (~zT)
JO10) = 1 (~zT)
1) = 1 (~zT)
F00) = 0 (~zoF Az F AxF)
Fa01) = 1 (x7)
faw) = 1 (x7)
fam) = 1 (@)
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Walsh Example: MAX-3SAT

177 1 1 1 1 1 1 1 1 0.875
|- 1 ] |- 1 -1 1 -1 1 -1 1 -1 -l [ —0.125 -l
1 1 1 -1 -1 1 1 -1 -1 —0.125
1 1 1 -1 -1 1 1 -1 -1 1 _ —0.125
8 0 1 1 1 1 -1 -1 -1 -1 - 0.125
1 1 -1 1 -1 -1 1 -1 1 0.125
1 1 i -1 -1 -1 -1 1 1 0.125
1 1 -1 -1 1 -1 1 1 -1 0.125

o All @;'s except ¢ have 4 1's and 4 —1's.
o g has all 1's.
o f for clauses of length 3 will contain one 0

Walsh Example: MAX-3SAT

Let neg( f) return a K -bit string with 1 bits indicating which variables in the
clause are negated.

F100) =0 (=22F A2 F A 2oF)

neg(f) = 100

Then the Walsh coefficients for f are:

Eu ifj=0

—gic¥y(neg(f)) if j#0

w; =

39
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Walsh Example

fi=(—z2 Ve Vay)

f2 = (1‘3 V —xg \/1,'1)

fg = (1‘3 V -z V "Z[))
T w; | W(fi)) W(fa) W(f) [ W(F(=)
0000 | wo 0.875 0.875 0.875 2,625
0001 | wy —0.125 0 0.125 0
0010 | wo —0.125 —0.125 0.125 —0.125
0011 | ws —0.125 0 —0.125 —0.250
0100 | wy 0.125 0.125 0 0.250
0101 | ws 0.125 0 0 0.125
0110 | we 0.125 0.125 0 0.250
0111 | we 0.125 0 0 0.125
1000 | ws 0 -0.125 —0.125 —0.250
1001 | wo 0 0 0.125 0.125
1010 | wio 0 —-0.125 0.125 0
1011 | wiy 0 0 —0.125 —0.125
1100 | wyo 0 0.125 0 0.125
1101 | wis 0 0 0 0
1110 | wiq 0 0.125 0 0.125
1111 | wis 0 0 0 0
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GRAY BOX OPTIMIZATION

We can construct “Gray Box" optimization for pseudo-Boolean
optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

f@)=> filx)
i=1

Which can be expressed as a sum of k Eigenvectors:

k

fla) =D W(f(x))

=1
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The Eigenvectors of MAX-3SAT

f(@) = f1(2) + f2(2) + F3(x) + fA(x)

f1(z) = flo(z) + flo(z) + fle(z)
f2(z) = f2.(2) + f2(x) + f2:(2)
f3(z) = f3a(2) + f3u(z) + f3c(2)
fA(z) = flo(2z) + fho(z) + fhe()
e (@) = fla(@) + f24(7) + f3a(2) + fla(@)
e (x) = flp(x) + f2(x) + £3u(z) + f(2)
D (2) = fle(@) + f2e(2) + [3(2) + fhe(2)

f@)=a+ oW (@) + @ (@) + P ()
42

Constant Time Steepest Descent

Assume we flip bit p to move from z to y, € N(z). Construct a vector
Score such that

Score(z,yp) = —2 { Z 1bT””wb(:E)}

Vb, pCb

All Walsh coefficients whose signs will be changed by flipping bit p are
collected into a single number Score(z,yp).

In almost all cases, Score does not change after a bit flip. Only some
Walsh coefficient are affected.
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Constant Time Steepest Descent

Assume we flip bit p to move from z to y, € N(z). Construct a vector
Score such that

Score(x,y,) = f(yp) — f(x)

Thus, are the scores reflect the increase or decrease relative to f(x)
associated with flipping bit p.

In almost all cases, Score does not change after a bit flip. Only some
subfunctions are affected.

44




When 1 bit flips what happens?

m

f6)= > f (x, mask)

i=1

1010111001100101010010111001
t flip

The improving moves can be identified in O(1) time!
Mutation is not needed, except to diversify the search.
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The locations of the updates are obvious

Score(yp,y1) = Score(x,y1)
Score(yp,y2) = Score(z,ysz)
Score(yp,ys) = Score(z,ys) —2( Z wp(z))

Vb, (pA3)Chb
( ) = Score(x,ys)
( ) = Score(x,ys)
Score(yp,ys) = Score(z,ys)
( ) = Score(z,yr)

(- 95) )2

(> w@)

Vb, (pA8)Cb

= Score(z,ys

Score(yp,yo) = Score(x,yy)
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Some Theoretical Results: k-bounded Boolean

1) PROOF: Same runtime for BEST First and NEXT First search.

2) Constant time improving move selection under all conditions.

)
3) Constant time improving moves in space of statistical moments.
4) Auto-correlation computed in closed form.

5) Tunneling between local optima.
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Best Improving and Next Improving moves

“Best Improving” and “Next Improving” moves cost the same.

GSAT uses a Buffer of best improving moves

Buf fer(best.improvement) =< Mg, Mig19, Mgggg >

But the Buffer does not empty monotonically: this leads to thrashing.

Instead uses multiple Buckets to hold improving moves

Bucket(best.improvement) =< Mio, M1919, Moggg >
Bucket(best.improvement — 1) =< Mgzr1, Mygo1, Mgaz >
Bucket(all.other.improving.moves) =< Mg, Ms519, Mgr99 >
This improves the runtime of GSAT by a factor of 20X to 30X.
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Steepest Descent on Moments

Both f(z) and Avg(N(z)) can be computed with Walsh Spans.
3
f@) =3 (@)
z=0

Avg(N(x)) = f(x) = 1/dY_ 220" (2)

3

3
Avg(N@) = 36D (@) ~2/N S 263 (@)
z=0

z=0
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The Variable Interaction Graph

There is a vertex for each variable in the Variable Interaction Graph
(VIG). There must be fewer than 28 M = O(n) Walsh coefficients.
There is a connection in the VIG between vertex v; and v; if there is a

non-zero Walsh coefficient indexed by i and j, e.g., w; ;.

What if you want to flip 2 or 3 bits at a time?

Assume all distance 1 moves are taken.

There can never be an improving move flipping bits 2 and 7.

There can never be an improving move flipping bits 4, 6 and 9.

There can never be an improving move over combinations of bits where
there are no (non-zero) Walsh coefficients.

51
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What if you want to flip 2 or 3 bits at a time?
. 08 -1
- . o
Eos
5
=1
<04
2 =2
8 | e~ _______
5 02 . r=3
0.0 =4 777]_7:757 7,’,’::::::::7};’61;
0 5 10 15 20
time in seconds
12,000 bit k-bounded functions
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The Recombination Graph: a reduced VIG

(1)
@‘@
_® Y

O) \@ ®

When recombining the solutions Sp; = 000000000000000000 and
Spo = 111100011101110110, the vertices and edges associated with
shared variables 4, 5, 6, 10, 14 are deleted to yield the recombination
graph.

Tunneling Crossover Theorem:
If the recombination graph of f contains ¢ connected components,

then Partition Crossover returns the best of 27 solutions. 53

Decomposed Evaluation for MAXSAT

MAXSAT Number of recombining components

Instance N Min  Median Max
aaaillipch 308,480 7 20 38
AProVE0906 37,726 11 1373 1620
atcoenc3opt19353 | 991,419 | 937 1020 1090
LABSNno88goal008 | 182,015 | 231 371 2084
SATinstanceN111 | 72,001 34 55 1218

Tunneling “scans” 21990 |ocal optima and returns the best in O(n) time.

55
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Decomposed Evaluation
i@
A new evaluation function can be constructed:
9(x) = ¢+ g1(@0, 71, 72) + g2(29, 711, T16) + 92(¥3, 7, Ts, T12, T13, T15)
where g(x) evaluates any solution (parents or offspring) that resides in
the subspace ¥***(QQQ***(Q***(**,
In general:
q
glx)=c+ Z gi(x, mask;)
i=1
56




Partition Crossover and Local Optima

The Subspace Optimality Theorem: For any k-bounded
pseudo-Boolean function f, if Parition Crossover is used to recombine
two parent solutions that are locally optimal, then the offspring must be
a local optima in the hyperplane subspace defined by the bits shared in
common by the two parents.

Example: if the parents 0000000000 and 1100011101
are locally optimal, then the best offspring
is locally optimal in the hyperplane subspace ¥**¥000***0*.
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Percent of Offspring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N k Model | 2-point Xover  Uniform Xover PX

100 2 Adj 74.2 +£3.9 0.3 +£0.3 100.0 +0.0
300 4 Adj 30.7 +£2.8 0.0 +£0.0 94.4 +£4.3
500 2 Adj 78.0 £2.3 0.0 +£0.0 97.9 +£5.0
500 4 Adj 31.0 £2.5 0.0 +£0.0 93.8 +4.0
100 2 Rand 0.8 £0.9 0.5 £0.5 100.0 +£0.0
300 4 Rand 0.0 £0.0 0.0 +£0.0 86.4 +£17.1
500 2 Rand 0.0 £0.0 0.0 £0.0 98.3 £4.9
500 4 Rand 0.0 £0.0 0.0 £0.0 83.6 £16.8

Number of partition components discovered

N k Model Paired PX
Mean Max
100 2 | Adjacent | 3.34 £0.16 16
300 4 | Adjacent | 5.24 +£0.10 26
500 2 | Adjacent | 7.66 £0.47 55
500 4 | Adjacent | 7.52 +£0.16 41
100 2 | Random | 3.22 +0.16 15
300 4 | Random | 2.41 £0.04 13
500 2 | Random | 6.98 £0.47 47
500 4 | Random | 2.46 £0.05 13

Paired PX uses Tournament Selection. The first parent is selected by
fitness. The second parent is selected by Hamming Distance.

59

58
Optimal Solutions for Adjacent NK
2-point | Uniform || Paired PX
N k|| Found | Found Found
300 2 18 0 100
300 3 0 0 100
300 4 0 0 98
500 2 0 0 100
500 3 0 0 98
500 4 0 0 70
Percentage over 50 runs where the global optimum was Found in the
experiments of the hybrid GA with the Adjacent NK Landscape.
60




Tunneling Local Optima Networks

Multimodal problems are not always difficult
NK Landscapes: Ochoa et al. GECCO 2015
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.o
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Adjacent (easy) NK Landscapes have more optima.
But Random (hard) NK Landscapes have disjunct “funnels.”
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NK and Mk Landscapes, P and NP

NK and Mk Landscapes, P and NP

Random Mk Landscapes

NP

/ Structured Mk N
Landscapes

Localized Mk ¢
. Landscapes

Closed
P Problems
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Decomposed Evaluation for MAXSAT
atco_enc3_opt1_13_48
Air traffic controller shift scheduling problem: 1087 components.
PX returns the best of 2197 offsprings.
N= 1,067,657
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Decomposed Evaluation for MAXSAT

LABS_n088_goal008

Finding low autocorrelation binary sequence: 371 components

PX returns the best of 237! offsprings.

N= 182,015 65

atco_enc3_opt1_13_48 LABS_n088_goal008

SAT_instance_N=49 aaail0-ipc5

MAXSAT Number of recombining components

Instance N Min  Median Max
32ailOipch 308,480 7 20 38
AProVE0906 37,726 11 1373 1620
atcoenc3opt19353 | 991,419 | 937 1020 1090
LABSNno88goal008 | 182,015 | 231 371 2084
SATinstanceN111 72,001 34 55 1218

Imagine:
crossover "scans” 2109 Jocal optima and returns the best in O(n) time

67

66
What’s (Obviously) Next?
per|
SO A O
Deterministic Recombination lterated Local Search (DRILS)
This exploits contant time deterministic improving moves selection and
deterministic partition crossover.
68




Early MAXSAT Results

20000~

15000-

o8
A px

Evaluation

10000~

5000

oelo0 2el08 selon Gelos 20108
step
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Early MAXSAT Results

One Million Variable NK Landscapes

Random solutions

TITT

TN )

[s_ evel-1 P ]

This configuration is best for Adjacent NK Landscapes with low K value.

We can now solve 1 million variable NK-Landscapes to optimality in
approximately linear time. This exploits contant time deterministic

improving moves selection and deterministic partition crossover. -

1
8
g oLs
5 A Px
| S l
- 1
70
One Million Variable NK Landscapes
e QT - Q2 s Q3 —— Mean
2500
2000,
H
E
E
0 200000 400000 600000 800000 1x10°
N
Scaling for runtime, Adjacent NK Landscapes with K = 2 (k = 3).
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One Million Variable NK Landscapes

Too e

This DRILS configuration is best for Random NK Landscapes,

and in general problems with higher values of K.

This exploits constant time deterministic improving moves selection and
deterministic partition crossover.

NK Landscapes and MAXSAT

Black Box Optimization is HOPELESSLY inefficient.

In expectation, for N= 1,000,000, with 1 improving move available:
In the worst case,

for the 1 improving move made by a Black Box Optimizer
a Gray Box Optimizer can make 1,000,000 improving moves.
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Cast Scheduling: K. Deb and C. Myburgh.
A foundry casts objects of various sizes and numbers by melting metal on
a crucible of capacity W. Each melt is called a heat.
Assume there N total objects to be cast, with r; copies of the 4t object.
Each object has a fixed weight w;, thereby requiring M = Zjvzl TW;
units of metal.
DEMAND: Number of copies of the j** object.
CAPACITY of the crucible, W.
75

Casts: Multiple Objects, Multiple Copies

76




Cast Scheduling: Deterministic Recombination

Parent 1:
Weight 154 136 57 55 67 83 187 20 123
0 1 0 0 0 0 1 0
0 0 2
10 1 0
0 2 1 1
2 2

wln s o

1
0
0
2

wlorn
slowr
wlv oo w

Metal
50 Used
343

629

Demand 2 3

Fitness:

Parent 2:

Weight 154 136 57 55 67 83 187 20 123

1 0 1 2 2 0 0 1 0
0 [

3

0

1
()
11
2

e oo
slkon
wln e

12
[
10
2 3

wlom m

4 0.953 Infeasible
636

Metal

50 Used
625

580

Demand 2 3

Fitness:

Offspring:
Weight 154 136 57 55 67 83 187 20 123

4 0.953 Infeasible
0.269

Metal
50 Used

1 0 1

0
1 [
1 0
0 0
Demand 3

2
0
o
3

580
4 0.962 Infeasible
0.278

Recombination is illustrated for a small problem with N =10, H = 4,
with capacity W = 650. Demand (r;) is shown in the final row.

Cast Scheduling: Deterministic Recombination

Parent 1: Metal
Weight 154 136 57 55 67 83 187 20 123 50 Used
0 1 0 0 0 0 1 1 0 0 343
00 0 1 0 1 0 2 0
1 1 0 1 3 1 0 0 0 of 629
0 0 2 1 0 2 0 2 1 4
Demand 3 2 2 2 4 3 2 3 3 4 0953 Infeasible
Fitness:  -63.6
Parent 2: Metal
Weight 154 136 57 55 67 83 187 20 123 50 Used
1 0 1 2 2 0 0 1 0 3 62
1 1 0 0 1 1 1 2 0 0
1 0 0 0 0 1 0 0 3 of 606
0 1 1 0 1 1 1 0 o 1 s8
Demand 3 2 2 2 4 3 2 3 3 4 0953 Infeasible
Fitness:  0.269
Offspring: Metal
Weight 154 136 57 55 67 83 187 20 123 50 Used
1 2 2 0 3| 62
0 0 1 [
0o 1 3 0 o 629
10 1 0 1| 580
Demand 2 4 0.962 Infeasible
0.278

Parent 2 has a better metal

utilization for rows 1, 2 and 4. Row 3 is

taken from Parent 1. Recombination is greedy.
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Cast Scheduling:

Deterministic Recombination

Repair 2: Metal

Weight 154 136 57 55 67 83 187 20 123 50 Used
i1 0 1 2 1 0 0O 2 0 3| 578

1 0 0 1 1 1 1 0| 634

1 1 0 0 2 1 0 0 1 0| 630

0 1 1 0 O 1 1 0 1 1 636

Demand 3 2 2 2 4 3 2 3 3 4 0.953
Fitness: 0.953
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Cast Scheduling: Deterministic Recombination
Repair 1:
Weight 154 136 57 55 ﬁ 83 187 20 123
1 0 1 2 0 0 1 3
18 o o 1 1 1 2 0
1 1 0 1 0 0 o| 630
0 1 1 0 1 1 0 1| 636
Demand 3 2 2 2 4 3 2 3 3 4 0953
Fitness: 0.915
Repair operators are applied to offspring solution.
Repair 1: The respective variables are increased (green) or decreased
(blue) to meet Demand.
79

Repair operators are applied to offspring solution.

Repair 2: Objects are moved to different heats within the individual
columns to reduce or minimize infeasibility.
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One Billion Variables
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Number of Variables

Breaking the Billion-Variable Barrier in Real World Optimization Using a
Customized Genetic Algorithm. K. Deb and C. Myburgh. GECCO 2016.
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What'’s (Obviously) Next?

To po LIST:

1.WATT FOR TORTGHT

Ry To TAKE QVER
RN R

o Put an End to the domination of Black Box Optimization.
o Wait for Tonight and Try to Take over the World.
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