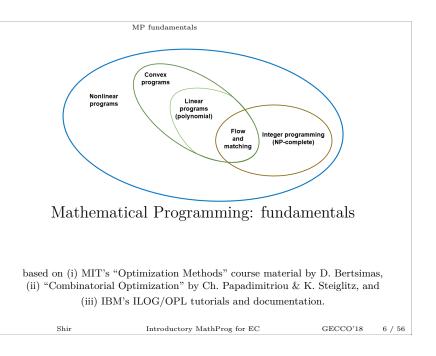


	outline		
1 MP fundamentals LP and polyhedr simplex and dua the ellipsoid algo discrete optimize	lity rithm		
2 MP in practice solving an LP basic modeling u QP TSP	sing OPL		
3 extended topics robust optimizat multiobjective ex hybrid metaheur	act optimization		
4 live demo			
5 discussion			
Shir	Introductory MathProg for EC	GECCO'18	5 / 56



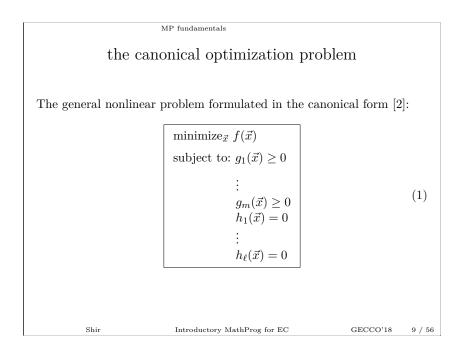
MP fundamentals

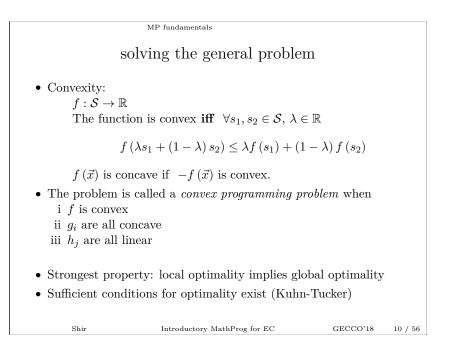
the field of operations research

- Developed during WW-II: mathematicians assisted the US-army to solve hard strategical and logistical problems; mainly planning of operations and deployment of military resources. Due to the strong link to military *operations*, the term *Operations Research* was coined.
- Post-war: knowledge transfer into industry
- Roots: linear programming (LP), pioneered by George B. Dantzig
- Dantzig worked for the US-government, formulating the generalized LP problem, and devising the Simplex algorithm for tackling it. He also pursued an academic career (Berkeley, Stanford)

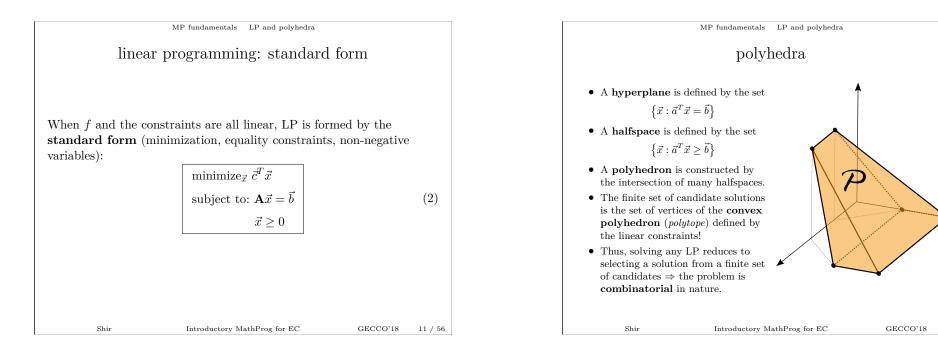
MP fundamentals mathematical optimization

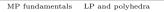
- Partitioning into 2 main approaches: constraints programming (CP) *versus* mathematical programming (MP). CP is concerned with constraints satisfaction problems, which possess no explicit objective functions (sometimes because impossible to model)
- MP includes the following techniques: linear programming (LP) integer programming (IP) mixed-integer programming (MIP) quadratic programming (QP) and mixed-integer QP (MIQP) nonlinear programming (NLP)





12 / 56





geometry of LP

Given a polytope

 $\mathcal{P} := \left\{ \vec{x} : \mathbf{A}\vec{x} \le \vec{b} \right\}$

• $\vec{x} \in \mathcal{P}$ is an **extreme point** of \mathcal{P} if

 $\nexists \vec{y}, \vec{z} \in \mathcal{P} \left(\vec{y} \neq \vec{x}, \vec{z} \neq \vec{x} \right) : \quad \vec{x} = \lambda \vec{y} + (1 - \lambda) \vec{z}, \ 0 < \lambda < 1$

• $\vec{x} \in \mathcal{P}$ is a **vertex** of \mathcal{P} if $\exists \vec{c} \in \mathbb{R}^n$ such that \vec{x} is a unique optimum

minimize $\vec{c}^T \vec{y}$ subject to: $\vec{y} \in \mathcal{P}$

GECCO'18

13 / 56

x̄ ≥ 0 ∈ ℝⁿ is a basic feasible solution (BFS) iff Ax̄ = b̄ and exist indices B₁,..., B_m such that:
(i) the columns A_{B1},..., A_{Bm} are linearly independent

(ii) if $j \neq \mathcal{B}_1, \dots, \mathcal{B}_m$ then $x_j = 0$

- Shir
- Introductory MathProg for EC

MP fundamentals LP and polyhedra

"Corners" definitions: equivalence theorem

 $\mathcal{P} := \left\{ \vec{x} : \mathbf{A}\vec{x} \le \vec{b} \right\}; \text{ let } \vec{x} \in \mathcal{P}.$

 \vec{x} is a vertex $\iff \vec{x}$ is an extreme point $\iff \vec{x}$ is a BFS

See, e.g., [3] for the proof.

Conceptual LP search:

- begin at any "corner"
- while "corner" is not optimal hop to its neighbouring "corner" as long as it improves the objective function value
 - Shir

Introductory MathProg for EC

GECCO'18 14 / 56

	MP fundamentals simplex and duality
	the basic simplex
	$\leftarrow 0; opt, unbounded \leftarrow \texttt{false}, \texttt{false}$
2 \bar{x}	$\mathbf{b}_t \leftarrow \texttt{constructBFS()}, \ \ \mathbf{B} \leftarrow [\mathbf{A}_{\mathcal{B}_1}, \dots, \mathbf{A}_{\mathcal{B}_m}]$
3 V	hile lopt && lunbounded do
4	if $\bar{c}_j := c_j - \bar{c}_B^T \mathbf{B}^{-1} \mathbf{A}_j \ge 0 \forall j \text{ then } opt \leftarrow \texttt{true}$
5	else
6	select any j such that $\bar{c}_j < 0$
7	if $\vec{u} := \mathbf{B}^{-1} \mathbf{A}_j \leq \vec{0}$ then unbounded \leftarrow true
8	else
9	$\vec{x}_{t+1} \leftarrow \text{pivot on } \vec{x}_t$ /* details omitted */
10	set new basis \mathbf{A}_j /* details omitted */
11	$t \leftarrow t + 1$
12	end
13	end
14 e	nd
0	utput: \vec{x}_t
	Shir Introductory MathProg for EC GECCO'18 15 / 56

	MP fundamentals simple:	x and duality		
	duality			
i. Every LP has an as into max, each constr	-		<i>'</i>	
$\begin{array}{ll} \text{minimize}_{\vec{x}} & \vec{c}^T\\ \text{subject to: } \mathbf{A}\vec{x}\\ \vec{x} \geq \end{array}$		$\begin{array}{ll} \text{kimize}_{\vec{p}} & \vec{p}^T \vec{b} \\ \text{ject to: } \vec{p}^T \mathbf{A} \leq \end{array}$	\vec{c}^T	
$\begin{array}{ll} \text{minimize}_{\vec{x}} & \vec{c}^T\\ \text{subject to: } \mathbf{A}\bar{x} \end{array}$		$\begin{array}{ll} \text{kimize}_{\vec{p}} & \vec{p}^T \vec{b} \\ \text{ject to: } \vec{p}^T \mathbf{A} = \\ & \vec{p} \geq 0 \end{array}$	$= \overline{c}^T$	
ii. The dual of the du	al is the primal.			
Shir	Introductory MathProg	for EC	GECCO'18	16 / 56

MP fundamentals simplex and duality dual simplex

duality theorems [von Neumann, Tucker]

• Weak duality theorem

If \vec{x} is primal feasible and \vec{p} is dual feasible then

 $\vec{p}^T \vec{b} \le \vec{c}^T \vec{x}$

• Corollary: If \vec{x} is primal feasible, \vec{p} is dual feasible, and $\vec{p}^T \vec{b} = \vec{c}^T \vec{x}$, then \vec{x} is optimal in the primal and \vec{p} is optimal in the dual.

• Strong duality theorem

Given an LP, if it has an optimal solution – then so does its dual – having equal objective functions' values.

 \Rightarrow The dual provides a bound that in the best case equals the optimal solution to the primal – and thus can help solve difficult primal problems.

Shir

Introductory MathProg for EC

GECCO'18

17 / 56

Simplex is a primal algorithm: maintaining primal feasibility while working on dual feasibility
Dual-simplex: maintaining dual feasibility while working on primal feasibility –
Implicitly use the dual to obtain an optimal solution to the primal as early as possible, regardless of feasibility; then hop from one vertex to another, while gradually decreasing the infeasibility while maintaining optimality
Dual-simplex is the first practical choice for most LPs.

Shir

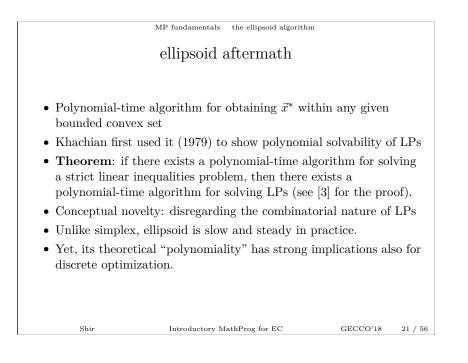
Introductory MathProg for EC

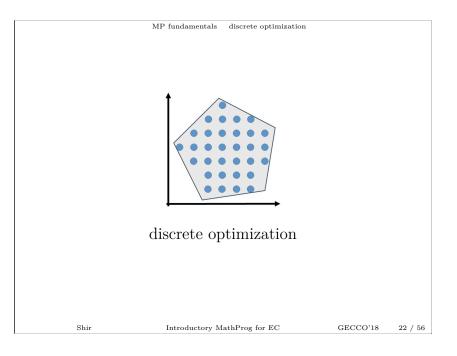
GECCO'18 18 / 56

MP fundamentals simplex and duality simplex: convergence

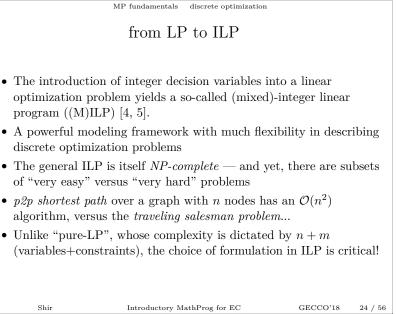
- Dantzig's simplex finds an optimal solution to any LP in a finite number of steps (avoiding cycles is easy, but not mentioned).
- Over half-century of improvements, its robust forms are very effective in treating very large LPs.
- However, simplex is not a polynomial-time algorithm, even if it is fast in practice over the majority of cases.
- *Pathological* LP-cases exist where an **exponential number of steps** is needed for this algorithm to converge.
- An ellipsoid algorithm, guaranteed to solve every LP in a polynomial number of steps, was devised in the late 1970's by Soviet mathematicians.

MP fundamentals the ellipsoid algorithm "high-level" ellipsoid [Shor-Nemirovsky-Yudin] **input** : a bounded convex set $\mathcal{P} \in \mathbb{R}^n$ 1 $t \leftarrow 0$ **2** $\mathcal{E}_t \leftarrow$ ellipsoid containing \mathcal{P} **3 while** center $\vec{\xi}_t$ of \mathcal{E}_t is not in \mathcal{P} do let $\vec{c}^T \vec{x} \leq \vec{c}^T \vec{\xi}_t$ be such that $\left\{ \vec{x} : \vec{c}^T \vec{x} \leq \vec{c}^T \vec{\xi}_t \right\} \supseteq \mathcal{P}$ $\mathbf{4}$ update to the ellipsoid with minimal volume containing $\mathbf{5}$ the intersected subspace: $\mathcal{E}_{t+1} \leftarrow \mathcal{E}_t \cap \left\{ \vec{x} : \vec{c}^T \vec{x} \le \vec{c}^T \vec{\xi}_t \right\}$ 6 $t \leftarrow t+1$ 7 end output: $\vec{x}_t \in \mathcal{P}$ Shir Introductory MathProg for EC GECCO'18 20 / 56



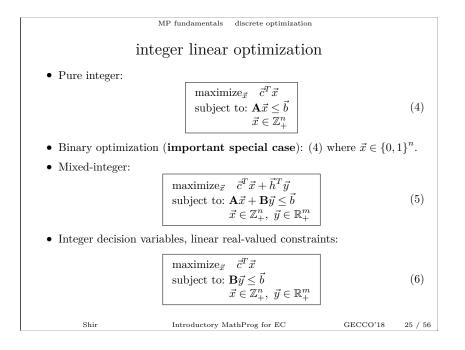


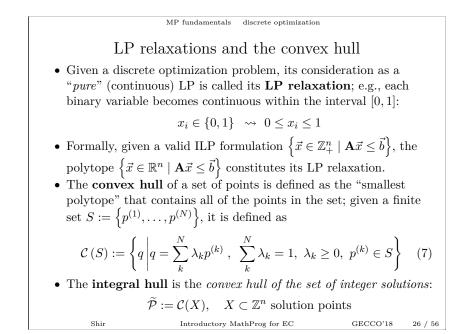
MP fundamentals discrete optimization roots of combinatorial optimization Schrijver explored the history of combinatorial optimization: • Assignment: Monge, 1784 the assignment problem is one of the first discrete optimization problems to be investigated: [assignment] minimize $\sum_{i=1}^{n} c_{i,\pi(i)}$ (3)where $(c_{ij}) \in \mathbb{R}^{n \times n}$ is the cost matrix, and the search is over permutations π of order n. • Bipartite matching: Frobenius, ~1912; König, ~1915 • Transportation/supply-chain: Tolstoi, 1930 A. Schrijver, "On the history of combinatorial optimization (till 1960)".



Shir

GECCO'18 23 / 56





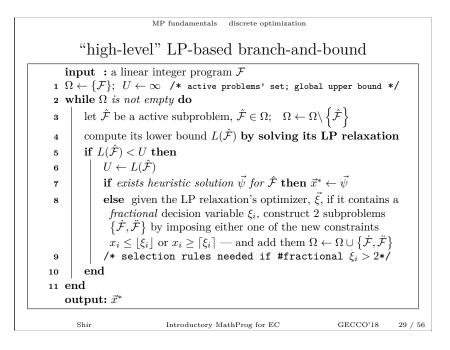
MP fundamentals discrete optimization branch-and-bound relying on the ability to bound a given problem. (i) **branch**: select an active subproblem $\hat{\mathcal{F}}$ (ii) **prune**: if $\hat{\mathcal{F}}$ is infeasible – discard it (iii) **bound**: otherwise, compute its lower bound $L(\hat{\mathcal{F}})$

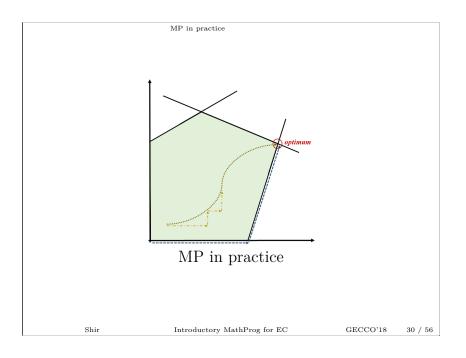
One of the common approaches to address integer programming, It is a tree-search, adhering to the principle of *divide-and-conquer*: (iv) **prune**: if $L(\hat{\mathcal{F}}) > U$, the current best upper bound, discard $\hat{\mathcal{F}}$ (v) **partition**: if $L(\hat{\mathcal{F}}) < U$, either completely solve $\hat{\mathcal{F}}$, or further break it to subproblems added to the list of active problems

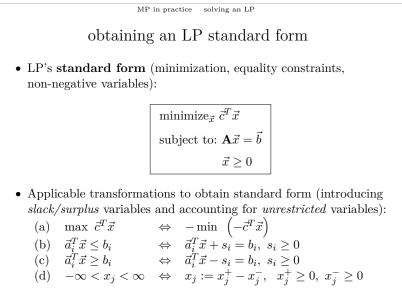
MP fundamentals discrete optimization

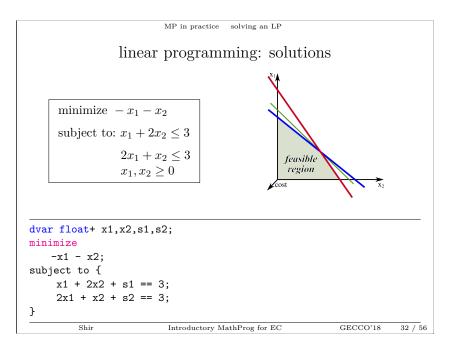
quality of formulations

- The quality of an ILP formulation for a problem having a feasible solution set X, is governed by the **closeness** of the *feasible set of* its LP relaxation to $\mathcal{C}(X)$.
- Given an ILP with two valid formulations, $\{P_1, P_2\}$, let $\{P_1^{LR}, P_2^{LR}\}$ denote the feasible sets of their LP relaxations: we state that P_1 is as strong as P_2 if $P_1^{LR} \subseteq P_2^{LR}$, or that P_1 is better than P_2 if $P_1^{LR} \subset P_2^{LR}$ (strictly).
- Explicit knowledge of $\mathcal{C}(X)$ is thus very valuable!
- If the *integral hull* is attainable as $\widetilde{\mathcal{P}} = \left\{ \vec{x} \in \mathbb{R}^n \mid \widetilde{\mathbf{A}} \vec{x} \leq \widetilde{\vec{b}} \right\}$, the problem is polynomially solvable (all vertices are integers!) [4]
- "Easy Polyhedra": MILP with fully-understood integral hulls assignment, min-cost flow, matching, spanning tree, etc.





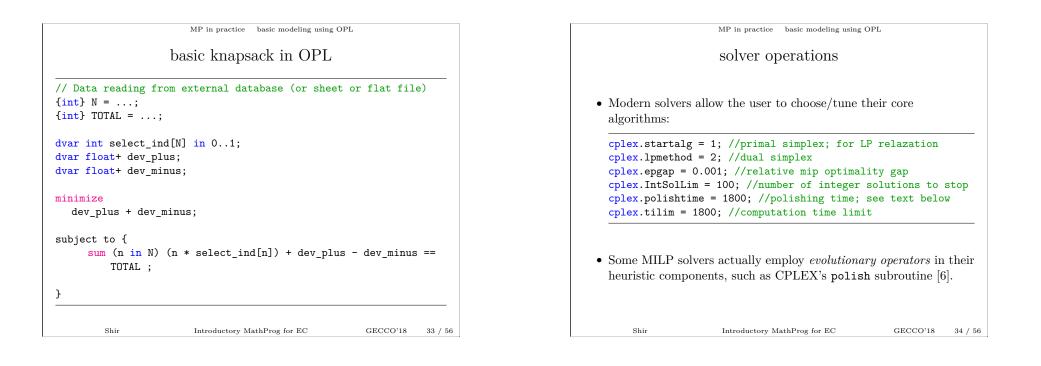


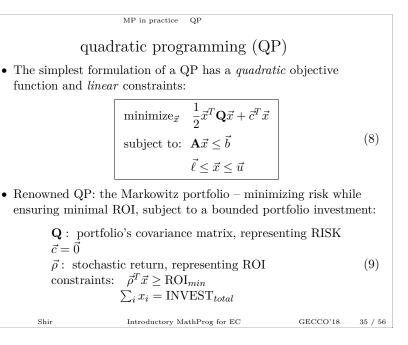


Shir

GECCO'18

31 / 56





	MP in practice QP		
QP (G	PCP) and MIQP (MIQ	CP)	
in its constraints (• Mixed-integer QP	Constrained Program (QCP) h possibly no quadratic terms is and QCP involve also integer the quadratic assignment pro- nulation:	in the objective r decision varia	e)
	2] in 040; *x[0] + 22*x[1]*x[1] + 11*x [1] - 23*x[1]*x[2]) - x[0]		
x[0] - 3*x[+ x[2] <= 20; 1] + x[2]<= 30; x[1]*x[1] + x[2]*x[2] <= 1	. 44;	
}		•	
Shir	Introductory MathProg for EC	GECCO'18	36 / 56

the traveling salesman problem

- The archetypical Traveling Salesman Problem (TSP) is posed as finding a Hamilton circuit of minimal total cost. Explicitly, given a directed graph G, with a vertex set $V = \{1, \ldots, |V|\}$ and an edge set $E = \{\langle i, j \rangle\}$, each edge has cost information $c_{ij} \in \mathbb{R}^+$.
- Black-box formulation: permutations

[TSP-perm] minimize
$$\sum_{i=0}^{n-1} c_{\pi(i),\pi((i+1)_{\text{mod}n})}$$

subject to:
 $\pi \in P_{\pi}^{(n)}$ (10)

- But this is clearly not an MP, since it does not adhere to the canonical form!
 - Shir
- Introductory MathProg for EC

GECCO'18 37 / 56

ILP formulation [Miller-Tucker-Zemlin] TSP as an ILP utilizes n^2 binary decision variables \mathbf{x}_{ij} :

$$[\mathbf{TSP-ILP}] \quad \text{minimize} \sum_{\langle i,j \rangle \in E} c_{ij} \cdot \mathbf{x}_{ij}$$

subject to:
$$\sum_{\substack{j \in V \\ \sum_{i \in V}} \mathbf{x}_{ij} = 1 \quad \forall i \in V$$

$$\sum_{\substack{i \in V \\ \mathbf{x}_{ij} \in \{0,1\}} \quad \forall j \in V$$

$$\mathbf{x}_{ij} \in \{0,1\} \quad \forall i, j \in V$$

$$(11)$$

But is this enough? What about inner-circles?

n integers u_i are needed as decision variables to prevent inner-circles:

$ \begin{array}{c} \dots \\ \mathbf{u}_i - \mathbf{u}_j + 1 \leq \\ V \geq \mathbf{u}_i \geq 2 \end{array} $	$ \begin{array}{l} \leq \left(V - 1 \right) \left(1 - \mathbf{x}_{ij} \right) & \forall i, j \in \\ \forall i \in \{2, 3, \dots, V \} \end{array} $	$1 \dots V $	(12)
Shir	Introductory MathProg for EC	GECCO'18	38 / 56

MP in practice TSP

the EC perspective

- Unlike GAs, which require effective mutation and crossover operators for permutations, the challenge here is mostly about obtaining an effective formulation
- Perhaps *counter-intuitively*, increasing the order of magnitude of constraints does not necessarily render the problem harder to be solved as MP.
- The given MTZ formulation for TSP is itself of a polynomial size; an alternative formulation possesses $\mathcal{O}\left(2^{|V|}\right)$ subtour elimination constraints, though impractical for large graphs.
- In any case, TSP's integral hull is unknown; NP-hard problem.
- Note that EC researchers also started to look at TSP and other problems in a gray-box perspective: Darrell Whitley's tutorial on "Next-Generation Genetic Algorithms" !

h	i	r

TSP on undirected graphs: OPL implementation

Addressing the undirected TSP by means of "node labeling" – assuming a single visit per node – which may be irrelevant in low-connectivity graphs:

// Data preparation

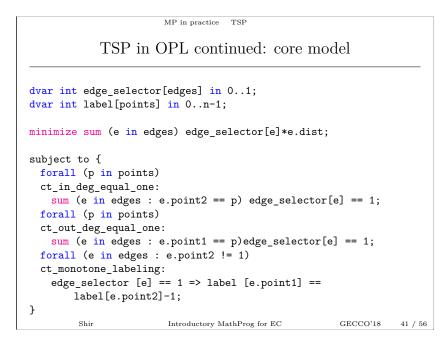
tuple Raw_Edge {int point1; int point2; int dist; int active;}
{Raw_Edge} raw_edges = ...;

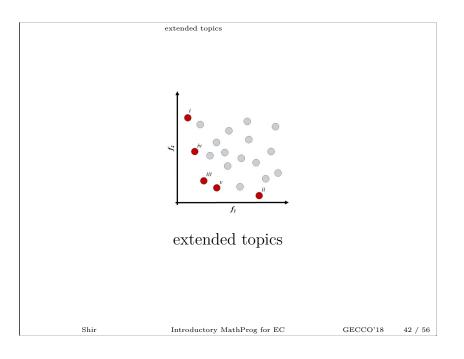
//Every edge is taken in both directions due to the graph nature, using 'union': tuple Edge {int point1; int point2; int dist;} {Edge} edges = {<e.point1, e.point2, e.dist> | e in raw_edges : e.active == 1}

union {<e.point2, e.point1, e.dist> | e in raw_edges :
 e.active == 1};

{int} points = {e.point1 | e in edges};

int n = card (points); //set cardinality, i.e., number of cities





extended topics robust optimization

1. robust optimization

• In Stochastic Optimization, some numerical data is uncertain and associated with (partially-)known probability distributions; e.g.,

$$\min_{\vec{x},t} \left\{ t: \operatorname{Prob}_{(\vec{c},\mathbf{A},\vec{b})\sim\Pi} \left\{ \vec{c}^T \vec{x} \le t \land \mathbf{A} \vec{x} \le \vec{b} \right\} \ge 1 - \epsilon \right\}$$

- with Π denoting the data distribution and $\epsilon \ll 1$ being the tolerance.
- In Robust Optimization [7], an uncertain LP is defined as a collection

$$\left\{\min_{\vec{x}}\left\{\vec{c}^T\vec{x}: \ \mathbf{A}\vec{x} \leq \vec{b}\right\} \ : \ \left(\vec{c}, \mathbf{A}, \vec{b}\right) \in \mathcal{U}\right\}$$

of LPs sharing a common structure and having the data varying in a given *uncertainty set* \mathcal{U} .

• A rich variety of MP techniques exist for robust/stochastic optimization; e.g., the Robust Stochastic Approximation Approach [8].

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski: *Robust Optimization*. Princeton University Press, 2009. Shir Introductory MathProg for EC GECCO'18 43 / 56 multiobjective exact optimization
 Diversity Maximization Approach (DMA) [9] key features:

 Iterative-exact nature: obtains a new exact non-dominated solution per each iteration
 Criteria exist for the attainment of the complete Pareto frontier
 Fine distribution of the existing set already found is guaranteed
 Optimality gap is provided – what may be gained by continuing constructing the Pareto frontier
 Importantly, DMA is MILP if the original problem is MILP

 Masin and Y. Bukchin, 2008, "Diversity Maximization Approach for Multi-Objective Optimization", *Operations Research*, 56, 411-424.

extended topics multiobjective exact optimization

"high-level"	DMA for M -objectives line	ear problems
input : a lin	ear program featuring M objectives	
1 Find an optim	nal solution for a weighted sum of m	ultiple objectives
with any rea	sonable strictly positive weights. If t	there is no
	tion – Stop .	
	l efficient frontier equal to the found	optimal
· ·	oose optimality gap tolerance and m	*
3 If the maxima	al number of iterations is reached – S	Stop. otherwise
	ary variables and $(M+1)$ linear	• /
	is MILP model.	
-	proposed diversity measure. If the c	liversity measure
	the optimality gap tolerance $-$ Stop ,	v
	solution to the partial efficient fronti	
· ·	solution to the partial encient from	ler and go to
Step 3.		
output: Pare	to set, Pareto frontier	
L		
Shir	Introductory MathProg for EC	GECCO'18 45 / 5

3. hybrid metaheuristics

- Bridging between the "formal/OR" to "heuristic/SoftComp" and aiming to share expertise gained from each end.
- Hybrids are a trendy route which has proven powerful and has recently accomplished a great deal.
- MP-solvers occasionally "hit-a-wall" on discrete optimization problems and that is when hybrids prove useful.
- A powerful hybrid theme that follows two principles: neighborhood search and solution construction

Ch. Blum and G. R. Raidl: *Hybrid Metaheuristics - Powerful Tools for Optimization*. Springer, 2016, ISBN: 978-3-319-30882-1.

Shir	Introductory MathProg for EC	GECCO'18	46 / 56

extended topics hybrid metaheuristics

a hybrid outperforming an MP-solver

MP formulation of the Multidimensional Knapsack Problem (MKP), utilizing *n* binary decision variables \mathbf{x}_i for items' selection (relying on instance-specific data for the *m* knapsacks' capacities c_k , the profits of the *n* items, p_i , as well as the resources' consumptions $r_{i,k}$ of items per knapsacks):

$$[\mathbf{MKP}] \quad \text{maximize} \sum_{i=1}^{n} p_{i} \cdot \mathbf{x}_{i}$$

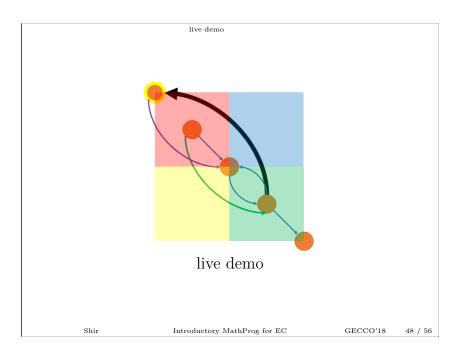
subject to:
$$\sum_{\substack{i=1\\\mathbf{x}_{i} \in \{0,1\}}}^{n} r_{i,k} \mathbf{x}_{i} \ge c_{k} \quad \forall k \in 1 \dots m$$

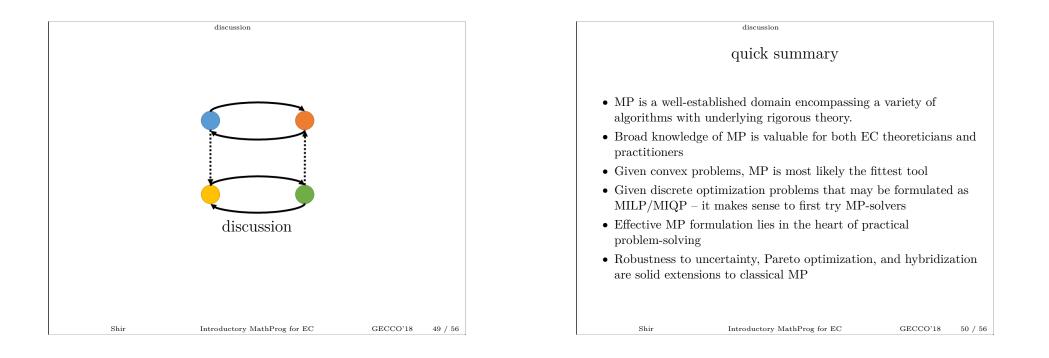
$$\mathbf{x}_{i} \in \{0,1\} \quad \forall i \in 1 \dots n$$

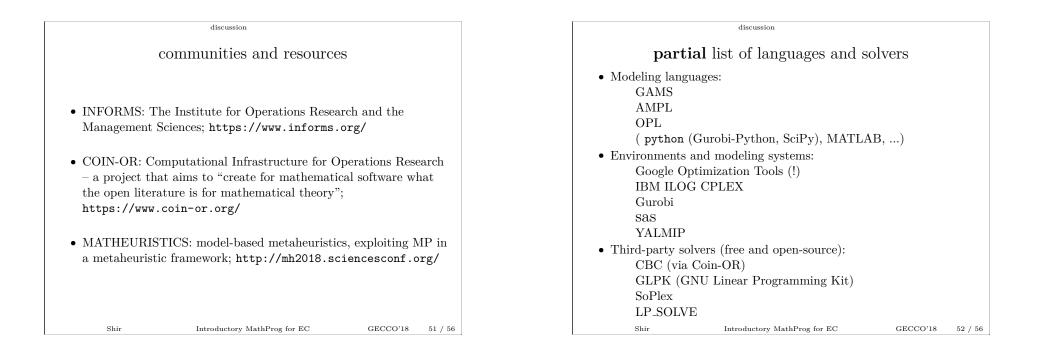
$$(13)$$

IBM's CPLEX was demonstrated to be outperformed when deployed alone on the complete problem, within a practical CPU time-limit – in comparison to a proposed hybrid [10].

Shir







benchmarking and competitions

- MIPLIB: the Mixed Integer Programming LIBrary http://miplib.zib.de/
- CSPLib: a problem library for constraints http://csplib.org/
- SAT-LIB: the Satisfiability Library Benchmark Problems http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
- TSP-LIB: the Traveling Salesman Problem sample instances http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Shir	

Introductory MathProg for EC GECCO'18

discussion

link to EC benchmarking

- Drawing a comparison between Randomized Search Heuristics (RSHs) to MP techniques is problematic, due to the fact that MILP-solvers enjoy a white-box perspective, while RSHs are subject to either gray- or black-box perspectives.
- Yet, a question could be raised within the context of benchmarking:

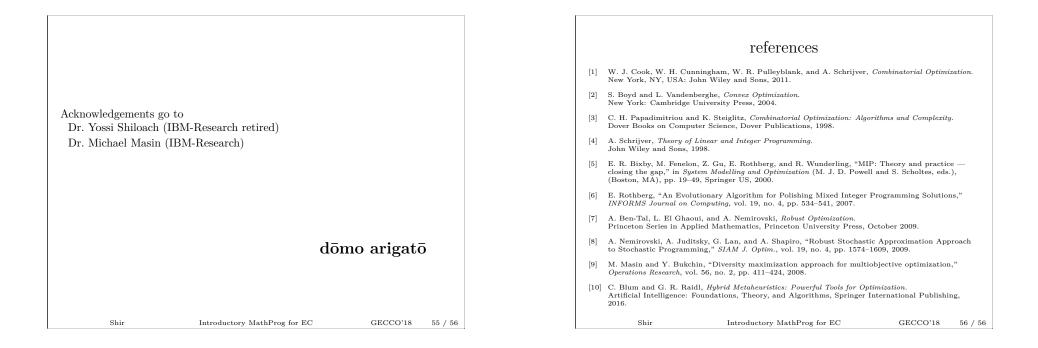
Should RSHs' performance be evaluated on problems that are known to be effectively treated as MPs in practice?

• Intrigued? You are invited to attend GECCO's workshop on "Discrete Black-Box Optimization Benchmarking" to address this and other related questions.

Shir		

Introductory MathProg for EC

GECCO'18 54 / 56



53 / 56