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why are we here?

• Global optimization has been for several decades addressed by
algorithms and Mathematical Programming (MP) — branded as
Operations Research (OR), yet rooted at Theoretical CS [1].

• Also – it has been treated by dedicated heuristics (“Soft
Computing”) – where EC resides (!)

• These two branches complement each other, yet practically
studied under two independent CS disciplines
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further motivation

EC scholars become stronger, better-equipped researchers when
obtaining knowledge on this so-called “optimization complement”

Commonly-encountered misbeliefs:
• “if the problem is non-linear, there is no choice but to

employ a Randomized Search Heuristic”
• “if it’s a combinatorial NP-complete problem, EAs are

the only reasonable option to approach it”
• “neither Pareto optimization nor uncertainty is/are

addressed by OR”
• “OR is the art of giving bad answers to problems, to

which, otherwise worse answers are given”
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MP fundamentals

Mathematical Programming: fundamentals

based on (i) MIT’s “Optimization Methods” course material by D. Bertsimas,
(ii) “Combinatorial Optimization” by Ch. Papadimitriou & K. Steiglitz, and

(iii) IBM’s ILOG/OPL tutorials and documentation.
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MP fundamentals

the field of operations research

• Developed during WW-II: mathematicians assisted the US-army
to solve hard strategical and logistical problems; mainly planning
of operations and deployment of military resources. Due to the
strong link to military operations, the term Operations Research
was coined.

• Post-war: knowledge transfer into industry
• Roots: linear programming (LP), pioneered by George B. Dantzig
• Dantzig worked for the US-government, formulating the

generalized LP problem, and devising the Simplex algorithm for
tackling it. He also pursued an academic career (Berkeley,
Stanford)
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MP fundamentals

mathematical optimization

• Partitioning into 2 main approaches: constraints programming
(CP) versus mathematical programming (MP). CP is concerned
with constraints satisfaction problems, which possess no explicit
objective functions (sometimes because impossible to model)

• MP includes the following techniques:
linear programming (LP)
integer programming (IP)
mixed-integer programming (MIP)
quadratic programming (QP) and mixed-integer QP (MIQP)
nonlinear programming (NLP)
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MP fundamentals

the canonical optimization problem

The general nonlinear problem formulated in the canonical form [2]:

minimize~x f(~x)

subject to: g1(~x) ≥ 0
...
gm(~x) ≥ 0
h1(~x) = 0
...
h`(~x) = 0

(1)
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MP fundamentals

solving the general problem

• Convexity:
f : S → R
The function is convex iff ∀s1, s2 ∈ S, λ ∈ R

f (λs1 + (1− λ) s2) ≤ λf (s1) + (1− λ) f (s2)

f (~x) is concave if −f (~x) is convex.
• The problem is called a convex programming problem when

i f is convex
ii gi are all concave
iii hj are all linear

• Strongest property: local optimality implies global optimality
• Sufficient conditions for optimality exist (Kuhn-Tucker)
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MP fundamentals LP and polyhedra

linear programming: standard form

When f and the constraints are all linear, LP is formed by the
standard form (minimization, equality constraints, non-negative
variables):

minimize~x ~cT~x

subject to: A~x = ~b

~x ≥ 0

(2)
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MP fundamentals LP and polyhedra

polyhedra

• A hyperplane is defined by the set{
~x : ~aT ~x = ~b

}
• A halfspace is defined by the set{

~x : ~aT ~x ≥ ~b
}

• A polyhedron is constructed by
the intersection of many halfspaces.

• The finite set of candidate solutions
is the set of vertices of the convex
polyhedron (polytope) defined by
the linear constraints!

• Thus, solving any LP reduces to
selecting a solution from a finite set
of candidates ⇒ the problem is
combinatorial in nature.
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MP fundamentals LP and polyhedra

geometry of LP
Given a polytope

P :=
{
~x : A~x ≤ ~b

}

• ~x ∈ P is an extreme point of P if

@~y, ~z ∈ P (~y 6= ~x, ~z 6= ~x) : ~x = λ~y + (1− λ)~z, 0 < λ < 1

• ~x ∈ P is a vertex of P if ∃~c ∈ Rn such that ~x is a unique optimum

minimize ~cT~y
subject to: ~y ∈ P

• ~x ≥ ~0 ∈ Rn is a basic feasible solution (BFS) iff A~x = ~b and
exist indices B1, . . . ,Bm such that:

(i) the columns AB1 , . . . ,ABm are linearly independent
(ii) if  6= B1, . . . ,Bm then x = 0
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MP fundamentals LP and polyhedra

polytopes and LP

“Corners” definitions: equivalence theorem

P :=
{
~x : A~x ≤ ~b

}
; let ~x ∈ P.

~x is a vertex ⇐⇒ ~x is an extreme point ⇐⇒ ~x is a BFS

See, e.g., [3] for the proof.

Conceptual LP search:

• begin at any “corner”
• while “corner” is not optimal hop to its neighbouring “corner”

as long as it improves the objective function value
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MP fundamentals simplex and duality

the basic simplex
1 t← 0; opt, unbounded← false, false
2 ~xt ← constructBFS(), B← [AB1 , . . . ,ABm ]
3 while !opt && !unbounded do
4 if c̄j := cj − ~cTBB−1Aj ≥ 0 ∀j then opt← true
5 else
6 select any j such that c̄j < 0
7 if ~u := B−1Aj ≤ ~0 then unbounded← true
8 else
9 ~xt+1 ← pivot on ~xt /* details omitted */

10 set new basis Aj /* details omitted */
11 t← t+ 1
12 end
13 end
14 end

output: ~xt
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MP fundamentals simplex and duality

duality
i. Every LP has an associated problem known as its dual; min turns
into max, each constraint in the primal has an associated dual variable:

minimize~x ~cT~x

subject to: A~x = ~b
~x ≥ 0

maximize~p ~pT~b

subject to: ~pTA ≤ ~cT

minimize~x ~cT~x

subject to: A~x ≥ ~b
maximize~p ~pT~b

subject to: ~pTA = ~cT

~p ≥ 0

ii. The dual of the dual is the primal.
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MP fundamentals simplex and duality

duality theorems [von Neumann, Tucker]

• Weak duality theorem
If ~x is primal feasible and ~p is dual feasible then

~pT~b ≤ ~cT~x

• Corollary: If ~x is primal feasible, ~p is dual feasible, and ~pT~b = ~cT~x,
then ~x is optimal in the primal and ~p is optimal in the dual.

• Strong duality theorem
Given an LP, if it has an optimal solution – then so does its dual –
having equal objective functions’ values.

⇒ The dual provides a bound that in the best case equals the
optimal solution to the primal – and thus can help solve
difficult primal problems.
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MP fundamentals simplex and duality

dual simplex

• Simplex is a primal algorithm: maintaining primal feasibility while
working on dual feasibility

• Dual-simplex: maintaining dual feasibility while working on primal
feasibility –
Implicitly use the dual to obtain an optimal solution to the primal as
early as possible, regardless of feasibility; then hop from one vertex to
another, while gradually decreasing the infeasibility while maintaining
optimality

• Dual-simplex is the first practical choice for most LPs.
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MP fundamentals simplex and duality

simplex: convergence

• Dantzig’s simplex finds an optimal solution to any LP in a finite
number of steps (avoiding cycles is easy, but not mentioned).

• Over half-century of improvements, its robust forms are very
effective in treating very large LPs.

• However, simplex is not a polynomial-time algorithm, even if it is
fast in practice over the majority of cases.

• Pathological LP-cases exist – where an exponential number of
steps is needed for this algorithm to converge.

• An ellipsoid algorithm, guaranteed to solve every LP in a
polynomial number of steps, was devised in the late 1970’s by
Soviet mathematicians.
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MP fundamentals the ellipsoid algorithm

“high-level” ellipsoid [Shor-Nemirovsky-Yudin]
input : a bounded convex set P ∈ Rn

1 t← 0
2 Et ← ellipsoid containing P
3 while center ~ξt of Et is not in P do
4 let ~cT~x ≤ ~cT ~ξt be such that

{
~x : ~cT~x ≤ ~cT ~ξt

}
⊇ P

5 update to the ellipsoid with minimal volume containing
the intersected subspace:

Et+1 ← Et ∩
{
~x : ~cT~x ≤ ~cT ~ξt

}

6 t← t+ 1
7 end

output: ~xt ∈ P
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MP fundamentals the ellipsoid algorithm

ellipsoid aftermath

• Polynomial-time algorithm for obtaining ~x∗ within any given
bounded convex set

• Khachian first used it (1979) to show polynomial solvability of LPs
• Theorem: if there exists a polynomial-time algorithm for solving

a strict linear inequalities problem, then there exists a
polynomial-time algorithm for solving LPs (see [3] for the proof).

• Conceptual novelty: disregarding the combinatorial nature of LPs
• Unlike simplex, ellipsoid is slow and steady in practice.
• Yet, its theoretical “polynomiality” has strong implications also for

discrete optimization.
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MP fundamentals discrete optimization

discrete optimization
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MP fundamentals discrete optimization

roots of combinatorial optimization

Schrijver explored the history of combinatorial optimization:

• Assignment: Monge, 1784 the assignment problem is one of
the first discrete optimization problems to be investigated:

[assignment] minimize
n∑
i=1

ci,π(i) (3)

where (cij) ∈ Rn×n is the cost matrix, and the search is over
permutations π of order n.

• Bipartite matching: Frobenius, ∼1912; König, ∼1915
• Transportation/supply-chain: Tolstŏi, 1930

A. Schrijver, “On the history of combinatorial optimization (till 1960)”.
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MP fundamentals discrete optimization

from LP to ILP

• The introduction of integer decision variables into a linear
optimization problem yields a so-called (mixed)-integer linear
program ((M)ILP) [4, 5].

• A powerful modeling framework with much flexibility in describing
discrete optimization problems

• The general ILP is itself NP-complete — and yet, there are subsets
of “very easy” versus “very hard” problems

• p2p shortest path over a graph with n nodes has an O(n2)
algorithm, versus the traveling salesman problem...

• Unlike “pure-LP”, whose complexity is dictated by n+m
(variables+constraints), the choice of formulation in ILP is critical!
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MP fundamentals discrete optimization

integer linear optimization
• Pure integer:

maximize~x ~cT~x

subject to: A~x ≤ ~b
~x ∈ Zn

+

(4)

• Binary optimization (important special case): (4) where ~x ∈ {0, 1}n.
• Mixed-integer:

maximize~x ~cT~x+ ~hT~y

subject to: A~x+ B~y ≤ ~b
~x ∈ Zn

+, ~y ∈ Rm
+

(5)

• Integer decision variables, linear real-valued constraints:

maximize~x ~cT~x

subject to: B~y ≤ ~b
~x ∈ Zn

+, ~y ∈ Rm
+

(6)
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MP fundamentals discrete optimization

LP relaxations and the convex hull
• Given a discrete optimization problem, its consideration as a

“pure” (continuous) LP is called its LP relaxation; e.g., each
binary variable becomes continuous within the interval [0, 1]:

xi ∈ {0, 1}  0 ≤ xi ≤ 1

• Formally, given a valid ILP formulation
{
~x ∈ Zn+ | A~x ≤ ~b

}
, the

polytope
{
~x ∈ Rn | A~x ≤ ~b

}
constitutes its LP relaxation.

• The convex hull of a set of points is defined as the “smallest
polytope” that contains all of the points in the set; given a finite
set S :=

{
p(1), . . . , p(N)

}
, it is defined as

C (S) :=
{
q

∣∣∣∣∣q =
N∑
k

λkp
(k) ,

N∑
k

λk = 1, λk ≥ 0, p(k) ∈ S
}

(7)

• The integral hull is the convex hull of the set of integer solutions:
P̃ := C(X), X ⊂ Zn solution points
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MP fundamentals discrete optimization

quality of formulations
• The quality of an ILP formulation for a problem having a feasible

solution set X, is governed by the closeness of the feasible set of
its LP relaxation to C(X).

• Given an ILP with two valid formulations, {P1, P2}, let{
PLR1 , PLR2

}
denote the feasible sets of their LP relaxations:

we state that P1 is as strong as P2 if PLR1 ⊆ PLR2 , or that
P1 is better than P2 if PLR1 ⊂ PLR2 (strictly).

• Explicit knowledge of C(X) is thus very valuable!

• If the integral hull is attainable as P̃ =
{
~x ∈ Rn | Ã~x ≤ ~̃b

}
, the

problem is polynomially solvable (all vertices are integers!) [4]

• “Easy Polyhedra”: MILP with fully-understood integral hulls —
assignment, min-cost flow, matching, spanning tree, etc.
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MP fundamentals discrete optimization

branch-and-bound

One of the common approaches to address integer programming,
relying on the ability to bound a given problem.

It is a tree-search, adhering to the principle of divide-and-conquer :
(i) branch: select an active subproblem F̂
(ii) prune: if F̂ is infeasible – discard it
(iii) bound: otherwise, compute its lower bound L(F̂)
(iv) prune: if L(F̂) ≥ U , the current best upper bound, discard F̂
(v) partition: if L(F̂) < U , either completely solve F̂ , or further

break it to subproblems added to the list of active problems
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MP fundamentals discrete optimization

“high-level” LP-based branch-and-bound
input : a linear integer program F

1 Ω← {F}; U ←∞ /* active problems’ set; global upper bound */
2 while Ω is not empty do
3 let F̂ be a active subproblem, F̂ ∈ Ω; Ω← Ω\

{
F̂
}

4 compute its lower bound L(F̂) by solving its LP relaxation
5 if L(F̂) < U then
6 U ← L(F̂)
7 if exists heuristic solution ~ψ for F̂ then ~x∗ ← ~ψ

8 else given the LP relaxation’s optimizer, ~ξ, if it contains a
fractional decision variable ξi, construct 2 subproblems{
Ḟ , F̈

}
by imposing either one of the new constraints

xi ≤ bξic or xi ≥ dξie — and add them Ω← Ω ∪
{
Ḟ , F̈

}
9 /* selection rules needed if #fractional ξi > 2*/

10 end
11 end

output: ~x∗
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MP in practice

MP in practice
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MP in practice solving an LP

obtaining an LP standard form

• LP’s standard form (minimization, equality constraints,
non-negative variables):

minimize~x ~cT~x

subject to: A~x = ~b

~x ≥ 0

• Applicable transformations to obtain standard form (introducing
slack/surplus variables and accounting for unrestricted variables):
(a) max ~cT~x ⇔ −min

(
−~cT~x

)
(b) ~aTi ~x ≤ bi ⇔ ~aTi ~x+ si = bi, si ≥ 0
(c) ~aTi ~x ≥ bi ⇔ ~aTi ~x− si = bi, si ≥ 0
(d) −∞ < xj <∞ ⇔ xj := x+

j − x
−
j , x+

j ≥ 0, x−j ≥ 0
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MP in practice solving an LP

linear programming: solutions

minimize − x1 − x2

subject to: x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3
x1, x2 ≥ 0

dvar float+ x1,x2,s1,s2;
minimize

-x1 - x2;
subject to {

x1 + 2x2 + s1 == 3;
2x1 + x2 + s2 == 3;

}
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MP in practice basic modeling using OPL

basic knapsack in OPL

// Data reading from external database (or sheet or flat file)
{int} N = ...;
{int} TOTAL = ...;

dvar int select_ind[N] in 0..1;
dvar float+ dev_plus;
dvar float+ dev_minus;

minimize
dev_plus + dev_minus;

subject to {
sum (n in N) (n * select_ind[n]) + dev_plus - dev_minus ==

TOTAL ;

}
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MP in practice basic modeling using OPL

solver operations

• Modern solvers allow the user to choose/tune their core
algorithms:

cplex.startalg = 1; //primal simplex; for LP relazation
cplex.lpmethod = 2; //dual simplex
cplex.epgap = 0.001; //relative mip optimality gap
cplex.IntSolLim = 100; //number of integer solutions to stop
cplex.polishtime = 1800; //polishing time; see text below
cplex.tilim = 1800; //computation time limit

• Some MILP solvers actually employ evolutionary operators in their
heuristic components, such as CPLEX’s polish subroutine [6].
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MP in practice QP

quadratic programming (QP)
• The simplest formulation of a QP has a quadratic objective

function and linear constraints:

minimize~x
1
2~x

TQ~x+ ~cT~x

subject to: A~x ≤ ~b
~̀≤ ~x ≤ ~u

(8)

• Renowned QP: the Markowitz portfolio – minimizing risk while
ensuring minimal ROI, subject to a bounded portfolio investment:

Q : portfolio’s covariance matrix, representing RISK
~c = ~0
~ρ : stochastic return, representing ROI
constraints: ~ρT~x ≥ ROImin∑

i xi = INVESTtotal

(9)

Shir Introductory MathProg for EC GECCO’18 35 / 56

MP in practice QP

QP (QCP) and MIQP (MIQCP)
• A Quadratically-Constrained Program (QCP) has quadratic terms

in its constraints (possibly no quadratic terms in the objective)
• Mixed-integer QP and QCP involve also integer decision variables
• Renowned MIQP: the quadratic assignment problem (QAP)
• A basic QCP formulation:

dvar float x[0..2] in 0..40;
minimize

0.5* (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[2] -
12*x[0]*x[1] - 23*x[1]*x[2]) - x[0] + 2*x[1] +
3*x[2];

subject to {
-x[0] + x[1] + x[2] <= 20;
x[0] - 3*x[1] + x[2]<= 30;
x[0]*x[0] + x[1]*x[1] + x[2]*x[2] <= 1.44;

}
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MP in practice TSP

the traveling salesman problem

• The archetypical Traveling Salesman Problem (TSP) is posed as
finding a Hamilton circuit of minimal total cost. Explicitly, given
a directed graph G, with a vertex set V = {1, . . . , |V |} and an edge
set E = {〈i, j〉}, each edge has cost information cij ∈ R+.

• Black-box formulation: permutations

[TSP-perm] minimize
n−1∑
i=0

cπ(i),π((i+1)modn)

subject to:
π ∈ P (n)

π

(10)

• But this is clearly not an MP, since it does not adhere to the
canonical form!

Shir Introductory MathProg for EC GECCO’18 37 / 56

MP in practice TSP

ILP formulation [Miller-Tucker-Zemlin]
TSP as an ILP utilizes n2 binary decision variables xij :

[TSP-ILP] minimize
∑
〈i,j〉∈E

cij · xij

subject to:∑
j∈V

xij = 1 ∀i ∈ V∑
i∈V

xij = 1 ∀j ∈ V

xij ∈ {0, 1} ∀i, j ∈ V

(11)

But is this enough? What about inner-circles?
n integers ui are needed as decision variables to prevent inner-circles:

. . .
ui − uj + 1 ≤ (|V | − 1) (1− xij) ∀i, j ∈ 1 . . . |V |
|V | ≥ ui ≥ 2 ∀i ∈ {2, 3, . . . , |V |}

(12)
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MP in practice TSP

the EC perspective
• Unlike GAs, which require effective mutation and crossover

operators for permutations, the challenge here is mostly about
obtaining an effective formulation

• Perhaps counter-intuitively, increasing the order of magnitude of
constraints does not necessarily render the problem harder to be
solved as MP.

• The given MTZ formulation for TSP is itself of a polynomial size;
an alternative formulation possesses O

(
2|V |

)
subtour elimination

constraints, though impractical for large graphs.
• In any case, TSP’s integral hull is unknown; NP-hard problem.

• Note that EC researchers also started to look at TSP and other
problems in a gray-box perspective: Darrell Whitley’s tutorial
on “Next-Generation Genetic Algorithms” !
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MP in practice TSP

TSP on undirected graphs: OPL implementation
Addressing the undirected TSP by means of “node labeling” –
assuming a single visit per node – which may be irrelevant in
low-connectivity graphs:

// Data preparation
tuple Raw_Edge {int point1; int point2; int dist; int active;}
{Raw_Edge} raw_edges = ...;

//Every edge is taken in both directions due to the graph
nature, using ‘union’:

tuple Edge {int point1; int point2; int dist;}
{Edge} edges = {<e.point1, e.point2, e.dist> | e in raw_edges :

e.active == 1}
union {<e.point2, e.point1, e.dist> | e in raw_edges :

e.active == 1};
{int} points = {e.point1 | e in edges};
int n = card (points); //set cardinality, i.e., number of cities

Shir Introductory MathProg for EC GECCO’18 40 / 56



MP in practice TSP

TSP in OPL continued: core model

dvar int edge_selector[edges] in 0..1;
dvar int label[points] in 0..n-1;

minimize sum (e in edges) edge_selector[e]*e.dist;

subject to {
forall (p in points)
ct_in_deg_equal_one:

sum (e in edges : e.point2 == p) edge_selector[e] == 1;
forall (p in points)
ct_out_deg_equal_one:

sum (e in edges : e.point1 == p)edge_selector[e] == 1;
forall (e in edges : e.point2 != 1)
ct_monotone_labeling:

edge_selector [e] == 1 => label [e.point1] ==
label[e.point2]-1;

}
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extended topics

extended topics
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extended topics robust optimization

1. robust optimization
• In Stochastic Optimization, some numerical data is uncertain and

associated with (partially-)known probability distributions; e.g.,

min
~x,t

{
t : Prob(~c,A,~b)∼Π

{
~cT~x ≤ t ∧A~x ≤ ~b

}
≥ 1− ε

}
with Π denoting the data distribution and ε� 1 being the tolerance.

• In Robust Optimization [7], an uncertain LP is defined as a collection{
min

~x

{
~cT~x : A~x ≤ ~b

}
:
(
~c,A,~b

)
∈ U

}
of LPs sharing a common structure and having the data varying in a
given uncertainty set U .

• A rich variety of MP techniques exist for robust/stochastic optimization;
e.g., the Robust Stochastic Approximation Approach [8].

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski: Robust Optimization. Princeton
University Press, 2009.
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extended topics multiobjective exact optimization

2. multiobjective exact optimization

Diversity Maximization Approach (DMA) [9] key features:
• Iterative-exact nature: obtains a new exact non-dominated

solution per each iteration
• Criteria exist for the attainment of the complete Pareto frontier
• Fine distribution of the existing set already found is guaranteed
• Optimality gap is provided – what may be gained by continuing

constructing the Pareto frontier
• Importantly, DMA is MILP if the original problem is MILP

M. Masin and Y. Bukchin, 2008, “Diversity Maximization Approach for
Multi-Objective Optimization”, Operations Research, 56, 411-424.
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“high-level” DMA for M -objectives linear problems

input : a linear program featuring M objectives
1 Find an optimal solution for a weighted sum of multiple objectives

with any reasonable strictly positive weights. If there is no
feasible solution – Stop.

2 Set the partial efficient frontier equal to the found optimal
solution. Choose optimality gap tolerance and maximal number
of iterations.

3 If the maximal number of iterations is reached – Stop, otherwise
add M binary variables and (M + 1) linear constraints to
the previous MILP model.

4 Maximize the proposed diversity measure. If the diversity measure
is less than the optimality gap tolerance – Stop, otherwise add
the optimal solution to the partial efficient frontier and go to
Step 3.

output: Pareto set, Pareto frontier
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3. hybrid metaheuristics

• Bridging between the “formal/OR” to “heuristic/SoftComp” and
aiming to share expertise gained from each end.

• Hybrids are a trendy route which has proven powerful and has
recently accomplished a great deal.

• MP-solvers occasionally “hit-a-wall” on discrete optimization
problems – and that is when hybrids prove useful.

• A powerful hybrid theme that follows two principles:
neighborhood search and solution construction

Ch. Blum and G. R. Raidl: Hybrid Metaheuristics - Powerful Tools for
Optimization. Springer, 2016, ISBN: 978-3-319-30882-1.
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a hybrid outperforming an MP-solver
MP formulation of the Multidimensional Knapsack Problem (MKP),
utilizing n binary decision variables xi for items’ selection (relying on
instance-specific data for the m knapsacks’ capacities ck, the profits of
the n items, pi, as well as the resources’ consumptions ri,k of items per
knapsacks):

[MKP] maximize
n∑
i=1

pi · xi

subject to:
n∑
i=1

ri,kxi ≥ ck ∀k ∈ 1 . . .m

xi ∈ {0, 1} ∀i ∈ 1 . . . n

(13)

IBM’s CPLEX was demonstrated to be outperformed when deployed
alone on the complete problem, within a practical CPU time-limit – in
comparison to a proposed hybrid [10].
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quick summary

• MP is a well-established domain encompassing a variety of
algorithms with underlying rigorous theory.

• Broad knowledge of MP is valuable for both EC theoreticians and
practitioners

• Given convex problems, MP is most likely the fittest tool
• Given discrete optimization problems that may be formulated as

MILP/MIQP – it makes sense to first try MP-solvers
• Effective MP formulation lies in the heart of practical

problem-solving
• Robustness to uncertainty, Pareto optimization, and hybridization

are solid extensions to classical MP
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communities and resources

• INFORMS: The Institute for Operations Research and the
Management Sciences; https://www.informs.org/

• COIN-OR: Computational Infrastructure for Operations Research
– a project that aims to “create for mathematical software what
the open literature is for mathematical theory”;
https://www.coin-or.org/

• MATHEURISTICS: model-based metaheuristics, exploiting MP in
a metaheuristic framework; http://mh2018.sciencesconf.org/
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partial list of languages and solvers
• Modeling languages:

GAMS
AMPL
OPL
( python (Gurobi-Python, SciPy), MATLAB, ...)

• Environments and modeling systems:
Google Optimization Tools (!)
IBM ILOG CPLEX
Gurobi
sas
YALMIP

• Third-party solvers (free and open-source):
CBC (via Coin-OR)
GLPK (GNU Linear Programming Kit)
SoPlex
LP SOLVE
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benchmarking and competitions

• MIPLIB: the Mixed Integer Programming LIBrary

http://miplib.zib.de/

• CSPLib: a problem library for constraints

http://csplib.org/

• SAT-LIB: the Satisfiability Library - Benchmark Problems

http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

• TSP-LIB: the Traveling Salesman Problem sample instances

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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link to EC benchmarking

• Drawing a comparison between Randomized Search Heuristics
(RSHs) to MP techniques is problematic, due to the fact that
MILP-solvers enjoy a white-box perspective, while RSHs are
subject to either gray- or black-box perspectives.

• Yet, a question could be raised within the context of
benchmarking:

Should RSHs’ performance be evaluated on problems that
are known to be effectively treated as MPs in practice?

• Intrigued? You are invited to attend GECCO’s workshop on
“Discrete Black-Box Optimization Benchmarking” to address this
and other related questions.
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