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Reinforcement Learning - Atari Games

Convolution
-

Convolution
v

Fully cgnnected

-n
=
<
8
‘3
S
@
Q
@
Q

A | =B
L] L] L]
L2 .
— @& o
L] L] .
. . .
. . . N+0
¥/ 1 d

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep

Why Reinforcement

Alpha Go Zero

Learning?
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Why Evolutionary
Reinforcement
Learning?

Flexible Design

Value Encoding (Array of Real, Binary or Mixed Types)
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Tree Encoding

a ° move forward while
obstacle in front

x+7ly

move ho obstacle
forward in front

Global Search
(Diversity + Population of Solutions)

Looking deeper...

Global Search Flexible Design

Value Encoding (Array of Real, Binary or Mixed Types)
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Global Search Classical Methods 1: Fitness Sharing

(Diversity + Population of Solutions)

! _ fz
fi=-t
m;
* New fitness (f’) is equal its fitness (f) divided by the
number of individuals with similar fitness in the
population (m)
- Requirement: A measure of similarity needs to be defined
together with a threshold to define which individuals are
close to each one (m)

— Problem: If a niche grows, all its members have their fitness
decreased which can impact evolution negatively

Sareni, B., & Krahenbuhl, L. {1998). Fitness sharing and niching methiodsrevisited. IEEE transactions on Evolutionary Computation, 2{3), 97-

106, 10

Classical Methods 2: Crowding Methods Classical Methods 3: Clearing

* Similar to fitness sharing however it preserves
the fithess of the best members in each
subpopulation (dominant individuals).

- Problem: niche radius (how close individuals should be
to be from the same niche) is hard to estimate.

* New individuals in the population competes with
(and possibly substitute) similar individuals.

— Requirement: Needs a measure of similarity between
individuals.

Sareni, B,, & Krahenbuhl, L. {1998). Fitness sharing and niching methiods revisited. IEEE ransactions on Evolutionary Computation, 2{3), 97-
106.

Sareni, B, & krahenbuhi, L. {1998). Fitness sharing and niching methods revisited. | EEE transactions on Evolutionary Computation, 2(3), 97-

106,




Another Problem: Curse of Dimensionality Spectrum-Diversity (General Distance based

on DNA’s histogram)

Neurons
® D t h l ttl f h h 1 d:2 id: 5 id: 7 1d: 3
istance measures have little use for hi
speed: 1 ion speed: 1 ion speed: 7 speed: 7 speed: 7
. )
type: input identity | | type: output identity | | type: control type: sigmoid type: sigmoid
dimensional chromosomes.
interface_index: 0 interface_index: 0 interface_incex: 0 interface_index: 1 interface_index: 1
Connections
from neureon id; 1 from neuron id: 1 from neuron id: 3 ‘rom neuron id: 2 from neuron Id: 7 from neuron id: 5
to neuron id; 1 to neuron id: 3 to neuron id: 2 0 neuron id: 7 to neuron id: 2 to neuron id: 7
weight: 1 weight: -1 weight: 1 meight -1 weight: 1 weight: 1
neuro i -1 neuro i 7 neuro i -1 neuro i -1 neuro i -1 neuro i -1
Spectrum
|
\
Number of Number of r of umbe* of ber of imber of Number of
13 Sigmoid Neurons Identity Neurons Threshold Neurons Random Neurons Control Neurons Control Neurons Slow Neurons 14

(adaptation speed
greater than one)

Spectrum-Diversity Spectrum-Diversity (Summary)

* Similarities to crowding: An individual compete with * In other words, it is clearing without the need of
another individual. defining a niche radius and with a pre-made

* Difference from crowding: Instead of competing with the distance measure for high dimensional
most similar individual it competes with the best chromosome.

individual of its niche.

* Similarities to clearing: The best individuals in each
niche are preserved.

* Differences to clearing: Niches are automatically defined
by using a novelty measure which automatically adapts
itS n iche rad ius .to .th e popu lati0n d ivers i.ty \ll%gzas,o.v»&wmata)J.lZOl?LSpemumdiverseneuroevohnonwithumhed neuralmodels. IEEE transactions on neuralnetworks and learning sy stems, 28{8), 1759-




Flexible Design Example: Hoare logic-based Genetic

Programming

Value Encoding (Array of Real, Binary or Mixed Types)
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Skip statement: {P}skip{P}
Tree Encoding Assignment: {P[t/x]}x = t{P}
If-statement: P A_E}SI{Q}’ i £ ()
° {P} if e then S1 else S2{Q}

Repetition: L i Ui

{P} while e do S{P A —e}

P1S1{R}, {R}S
move o obstacle Chmipeslto g { }{;’{}S}); {}Qi{Q}
forward in front .

® O
P— P {P}S{@:1},Q1 = Q

Rewriting:
° o move forward while SRRTe {P}S{Q}

obstacle in front

X + 7/)’ }(-;lze;P, Kang L., Johnson, C.G.,&Ying, S.{2011). Hoare logic-based genetic programming. Scien ce China Information Sciences, 54{3), 623-

Example: Conditional Rule + Cyclic Graphs Example: Unified Neural Model

Neurons
. T - id: 1 id: 2 id: 5 id: 7 id: 3
Condition Action - —
adaptation speed adaptation ¢ adaptation s| adaptation speed adaptationsp_e;“f
‘ type: input identity | | type: outputidentity | | type: control type: sigmoid type: sigmoid
10410# interface_index: 0 intarface_index: 0 interface_index: 0 interface_index: 1 interface index: 1
Connections

from neuron id: 1 from neuron id: 1 from neuron id: 3 from neuron id: 2 from neuron id: 7 from neuron id: 5

to neuron id: 1 to neuron id: 3 to neuron id: 2 to neuron id: 7 to neuron id: 2 to neuron id: 7
weight: 1 weight: -1 weight: 1 weight :-1 weight: 1 weight: 1

neuro modul; 1| |neuro ion: -1 | neuro modulation: -1 neuro ion: -1 neuro ion: -1 neuro 1]

Vargas, D.V.,& Murata, J. {2017). Spectrum-diver se neuroevoluti on with unified neural models. 1EEE transaction s on neuralnetworksand learning systems, 28(8), 1759-
1773.

Igbal, M., Browne, W. N., & Zhang, M. {2017). Extendingxcswithcyclic graphs for scalability on complex bookean problems. Evolutionary computation, 25(2), 173-
204,



Example: Unified Neural Model Example: Unified Neural Model

Phenotype

<> i @ sigmoid
Neuron Representation
Random Adaptation Speed
n Input Identity
a=f(Q (wix))
i=1
1 ety @ Output Identity ;
Inst = Insg_1 + ———————(a — Ins;_1) Neuron Type Neuron |
adaptationSpeed
y= Ins; @ Threshold

How to make an

Evolutionary
Reinforcement
Learning Method?

Approaches...




Basic Idea: Divide & Conquer

Learning Classifier Systems

KevinHunte

r
@youtube

Basic Idea: Divide & Conquer

The Team Approach by Steven
Stowell

Unity Strength Dividing the problem

“



Specialization or Heterogeneous Agents

M. Learning Classifier Systems (Main Idea)
(Polymorphism in Ants)

l Environment |
\ A\ ¢
y oy \%
,‘ [ 0011 = Input data Perform action = 1
) l Prediction array
Action 1 =179 Reward
Population [N] Action 0 = 83 W
N \ / {C} {A} {F} Action
x_/ \% X 00#1: 1 88 selection Update
8 ; \ Yy, 1##1: 0 2 fitness
r I #010: 1 34 Match set [M]
/) X 1 ###1: 1 91 00#1:1 88 v
\ ‘ 0101: 1 66 [ o#£1:0 17 I Action set [A]
11#0: 0 7 ###1: 1 91 00#1:1 88
€t 001#:0 66 001#:1 91

Caste morphology, used under the GNU Free Documentation License version 1.3

|

“Correlated to specific tasks within the colony. These include small workers that undertake garden management and brood care,
medium workers that forage leaves, large workers that can serve as soldiers, and winged sexuals that lose their wings after mating.”

Genetic
algorithm

s into It e, J.H. ( Slete introduction, of Artificial Evolution and Applications

e Population [P]
Classifier, = condition : action :: parameter(s) <—+—{ Detectors )
Match set [M] o
Environment

Classifier,,

How to get continuous
states and actions?
(same problem as
standard Q-learning)

Action

perfogd { Effectors )

Action set [A] X

Classifier,

[l Discovery component
[ Performance component
[ Reinforcement component

wicz, R. 1, & Moore, J. H. (2009). Learning classifier systems: a complete introduction, review, and readmap. Journal of Artificial Evolution and Applications



Tile Coding (1996) - higher precision with

Learning Classifier Systems (Main Idea) : )
binary coding

I Environment ’

1

O\

0011 = Input data Perform action = 1 | I » | | I
l Prediction array o 8
- Action 1 =179 Reward % %
Fopulation [N] Action 0 = 83 Random s © ]
{ch {A} R} Action g . s s
; o [}
00#1: 1 88 selection, Update T 2 |
1##1: 0 2 fitness n n !
#010: 1 34 Match set [M] | | N
##1: 1 91 00£1:1 88 S [
0101: 1 66 [ o#t1:0 17 Action set [A] ) )
1H#0: 0 7 g1 9l oo#l:i 88 State Variable #1 State Variable #1
wites 001#:0 66 001#:1 91
J/ Sherstov, A. A, & Stone, P. (2005, July). Function approximation via tile coding: i choice. In i ium on Abstraction, Reformulation, and

Genetic = K Approximation (pp. 194-205). Springer, Berlin, Heidelberg.
algorithm overmg i;l;zo)n, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Advances in neural information processing systems (pp. 1038-

Adaptive Tile-coding (2007)
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Whiteson, S., Taylor, M. E., & Stone, P. (2007). Adaptive tile coding for value function approximation. Computer Science Department, University of Texas at
Lanzi, P. L., & Loiacono, D. {2015). XCSF with tile coding in disconti acti i luti y i 8(2-3), 117- Austin.




Problems

Self-Organizing Classifiers (2013)

* Learning becoming increasingly slow with the
number of tilings (states are visited inequally)

* Trade-off between granulity and value prediction
quality. In other words, many tilings approximate
better the real function but is harder to learn.

One of the few methods that solve noisy
mazes and the only one capable of solving
dynamic mazes.
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Vargas, D. V., Takano, H., & Murata, J. (2013). Self organizing classifiers: first steps in structured evolutionary machine learning. Evolutionary
Intelligence, 6(2), 57-72.

Clustering

\ Novelty Map

Best Individuals  Individual

Output

L (Action to be
Novel Individuals taken)

Input array Subpopulation

(observed state)

Self-Organizing Classifiers Dynamic state-table of Strength based
prediction values

Learning Classifier Systems Set of condition-action- Accuracy based
prediction rules

Standard Reinforcement Static state-action lookup Strength based
Learning tables

Vargas, D. V., Takano, H., & Murata, J. (2013). Self organizing classifiers and niched fitness. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation (pp. 1109-1116). ACM.

SOM’s issues

Fig. 2 Final Sl'lperposed SOM‘S (sq}.lares) land- Nmap_‘s Fig. 1 Accumulated SOM’s (above) and Nmap's (be-
(circles) welghl} array positions after 10° episodes in low) weight array positions during 10" episodes in the
the pole-balancing problem. pole-balancing problem.

ovelty-organizing team of classifiers-a team-individual multi-objec proach to reinforcement learning. In SICE Anfigial

). IEEE.




Novelty-Organizing Team of Classifiers Novelty-Organizing Team of Classifiers

(2015)

* First approach that joins the value-function and BN mn In]

policy search paradigms into one framework. l

3

* Introduces Novelty Map: keep top novel
individuals. Avoid problems with high frequency
states presentin SOM. :

Action Set 4 Current Team Fitness
Fitness H

Previous Action Set
Fitness

B [

Current Team Hall of Fame

Team Fitness
.

(@@

41

Vargas, D. V., Takano, H., & Murata, J. (2015). Novelty-organizing team of classifiers in noisy and dynamic environments. In Vargas, D. V., Takano, H., & Murata, J. (2015). Novelty-organizing team of classifiers in noisy and dynamic environments. In
Evolutionary Computation (CEC), 2015 IEEE Congress on (pp. 2937-2944). |IEEE. Evolutionary Computation (CEC), 2015 IEEE Congress on (pp. 2937-2944). |IEEE.

lllustration of Mountain Car
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Vargas, D. V., Takano, H., & Murata, J. (2015). Novelty-organizing team of classifiers in noisy and dynamic environments. In Evolutionary
Computation (CEC), 2015 IEEE Congress on (pp. 2937-2944). IEEE.




Fixed Topology (1989) GNARL (1994)

e S B ST 08) One of the first neuroevolution methods that
moation (3. 4,12,22.- 3,- 1,12, 63) evolves both the topology and the weights of the

(3.-4,12.8,-23,-1,.7-63) network.

and (-7.-9,13,4,18,21,- 2,-1.2)

Departs from GA and gets close to evolutionary
O g (7.0 4,13, 4.18,21,7.:63) programming or GP.

(3.-412.8,-3,-1.7.-63) * Removes crossover.

encoding __ (.3,-4,.3,1.2,.8,-3,-.1,.7,-63,1.7,-22)  Sodent (4. 212 70,2568
. * Allow for recurrency to occur.
Figure 1: Encoding a Network on a Chromosome Figure 2: Operation of the Operators

Angeline, P. J, Saunders, G.M., &Pollack, J.B. (1994). An evolutionary algorithm that tneural networks. |EEE transact Neural Networks, 5{L, 54-
Montana, D. J, & Davis, L. {1989, August}. Training Feedforward Neural Networks Using Genetic Algorithms. In 1JCAI (VoL 89, pp. T62- i RS L {994 Sgeming FRECIENENCLA nenores Ansctionson Neural Neldorics 1L

767). 45 46

Parent1 Parent2

4 5 3 4

NEAT (2002) Crossover e ezl el 5| il | afas

e Start from a network without hidden nodes. L {&

disjoint
* Mutation can only increase nodes parenti|i2a3e| B s3s| aSs
IDISA B
Genome (Genotype) Parent2ly Lol % | 3528 o A A
IDISAB| [DISA B

Node |node 1 |Node 2 |Node 3 [Node 4 [node 5 disjoint EXCESs EXcess

Genes | sensor |sensor |sensor |output |Hidden

- 1 2 3|4 5 6 7 8
G| PR In 2 In 3 In 2 In 5 In 1 In 4 Offspring] y Lol 5754 | 3704 255 355 | 455 | 136 654
Genes | °ut 4 out 4 out 4 out 5 out 4 out 5 out 5 ISAB IDISA B
Weight 0.7 [Weight-0.5 |Weight 0.5 |Weight 0.2 |Weight 0.4 | Weight 0.6| Weight 0.6
Enabled DISABLED Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11 *

Network (Phenotype)

N

Stanky, K. 0, &Miikkulainen, R. {2002). Evolvingneural networks through augmenting topologies. Evolutionary computation, 10{2}, 99-

47 = a8




Problems depend on the representation,

Crossover: to be or not to be? . o,
but the representation was limited to:

 Crossover is a complex problem-dependent
procedure which is often similar to a higher
mutation rate.

* Removing crossover making them only slightly
slower in the problem tested .

Method Evaluations | Failure Rate

No-Growth NEAT (Fixed-Topologies) 30,239 80%

Non-speciated NEAT 25,600 25%

Initial Random NEAT 23,033 5%

Nonmating NEAT 5,557 0

Full NEAT 3,600 0
Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting tepelogies. Evelutionary computation, 10(2), $9-

127, 49 '

Higher level behavior need slower neurons Higher level behavior need slower neurons
(2008)

A Move up and down (x 3)

Reach for object Move left and right (x 3)

N -.m

Sensory prediction .-~ o

. '\ Q.

N o o, P

; g
Sensory feedback <J‘§' 5

S S s Home position Back to home position
Input-output Fast context Slow context !

Move backytard and forward (x 3|
unit unit unit ;
B . Goal .
Teaching Sensory sz T Touch with one hand S
signal prediction S —o<=. . 3 A

* * P
M0 ST My St

w

Clap hands (x 3) B
i s 3 e d ¥ : Note: this work does ,
_____ M & L DD ol ] L/ 9 not use EAs J 0 1 2 3 4 5 6
Virtual X <—>x
2cm 8cm 2cm

sensory feedback -~
Input-output Fast context Slow context
unit unit unit 51 52
nanoid robot experim & Tanl, J e neura model:a humanoid robot experiment, PLoS compuf ology, 4(11}

id robot experiment. PLoS computational biology, 4(11}




Neur0m0dl||ati0n (2008) Plastic = all weights change
adaptation: learning and memory

Modularity = weights’ change depend on activation

m; = E lL‘J,‘ -O]‘ s T T T

jeMod @ =
Awj; = tanh(m;/2) - 6;; H "
3 r)l,, = [An.,u, + Boj + Co; + D]
R} A =]
0 3
W24 Connection change
depends on previous and “ — = = M ———
post neurons output. i . 1«
W34 - o
ESis used to find the & ==
parametersA,B,CandDof ~ L
all neurons. « “

Evolution: f neuromodulated plasticity in dynamic, reward-base: narios. In Proceedingsiofithe Solt A, Bullinal ., Diirr, P., & Floreano, 0s. In Proceedings of the

11th international col e b 0 12, pp. 11th international confel on artificial life (Alife X1} (No. LIS-

How to create a system that can generalize
to any problem?

Different Models - Different Applications

Sensory prediction

Sensory prediction
(Target joint angle}

(Target oint

i =N T,
Environment ) Environment )
\Emroanen ) C CTonmen.
hi YA &b ’
Sensory feedback e / / Sensory feedback
Ipukoutpt  Fascarion  Sow contex oot Fasicoriod  Slow context
ot = " (o] nt = - {wo]

T Yty ety
= P N [wia] o o A Wil
‘ : o / O
(M.IWD X =
=
Com s
s

8,
Virtual .
sensory feedback
Inputoutput  Fasicontext  Slow context Input-output  Fasicontext  Slow context

unit unit unit unit unit unit




Spectrum-diverse Neuroevolution Algorithm

o SUNA (2017) - Unified Neural Model
SUNA (2017) - Unified Neural Model

- neurons with different speed - neuromodulation of connections Senauie
=, Neuron B
- memory (internal state) - neuromodulation of neurons
- different activation functions @ - loops allowed
Actigation Fuictcns - unbounded input
@ o
@ -
@ Toreshold
Lege
@ sigmaia Neuron Types

Neuron Representation
Random Adaptation Speed
Input Identity
lentty Output Identity
Neuron Type Neuron Id

Threshold

a=f(Q (wix))
i=1

i
Inst = Insy_1 + —— F——(a— Inss_
£ il adaptationSpeed ( 1)

OO ®)

y = Ins¢

V., & Murata, J. (2017). Spectrum-diverse neuroevolution with unified neural mod EEE transacti on neural networks and learning s 'S 8), 1759 v s, D. V 2017). Spect serse neuroevolution with unified neural models. IEEE transactions on neural networks and learning systems,

SUNA (2017): Unified Neural Model

Structural Mutation:

Neurons

id: 1 id: 2 id: 5 id: 7 id: 3

adaptation d adaptation speed: adaptation s| adaptation spei adaptation speed ° ° °

type: input identity type: outputidentity | | type: control type: sigmoid type: sigmoid AddNoda c Remove Node

interface_index: 0 interface_index: 0 interface_index: 0 interface_index: 1 interface_index: 1

Connections @ @ @ @ @ @

from neuron id: 1 from neuron id: 1 from neuron id: 3 from neuron id: 2 from neuron id: 7 from neuron id: 5
to neuron id: 1 to neuron id: 3 to neuron id: 2 to neuron id: 7 to neuron id: 2 to neuron id: 7

weight: 1 weight: -1 weight: 1 weight :-1 weight: 1 weight: 1 ° ‘ n u
neuro modulation: -1 neuro ion: -1 neuro modulation: -1 neuro modulation: -1 neuro modulation: -1 neuro modulation: -1 Remove Connection
° Add Connection o ° °
—

Ordinal Mutation: Weight Perturbations

D. V, & Murata, J. (2017). Spectrum-diverse neuroevolution with unified neural models. IEEE transactions on neural networks and learning systems, B), 1759- D. Vi, & Murata, J. (2017). Spectrum-diverse neuroevolution with unified neural models. IEEE transactions on neural networks and learning systems,




How to evolve such a
complex model?

Spectrum-Diversity

(General Distance based on DNA’s

Initialization

SUNA: Evolution

Calculate Spectrum Diversity
/ N -
' 'y Il

spectrum diversity  spectrum diversity  spectrum diversity
| /

lha.

spectrum diversity

| /
Insert in Novelty Map Population
1
|

7@\ .
[subpop 1 subpop 2
U *
<]
subpop 3|
@
Novelty Map Population
Selection
- Parents
=]
@ \ Parents L
{subpop 1 subpop 2 g
] @
-8 Children
@
@ (]
@
subpop 3| Reproduction @ ——
=]
(]

Novelty Map Population

Problems Tackled - The Algorithm Can Learn 5 Completely Different Control Problems
Without Changing Any Parameters

Neurons
id: 1 d: 2 id:5 id: 7 id: 3 A E
speed: 1 speed: 1 speed: 7 speed: 7 speed: 7
type: input identity | | type: output identity | | type: control type: sigmoid type: sigmoid
interface_index: 0 interface_index: 0 interface_index: 0 interface_index: 1 interface_index: 1
Data |
Connections Ll
from neuron id: 1 from neuron id: 1 from neuron id: 3 from neuron id: 2 from neuron Id: 7 from neuron id: 5
to neuron id: 1 to neuron id: 3 to neuron id: 2 to neuron id: 7 to neuron id: 2 to neuron id: 7
weight: 1 weight: -1 weight: 1 weight -1 weignt: 1 weight: 1 Dats
Select
neuro modulation: -1| [ neuro neuro ion: -1 | neuro ion: 1| | neuro ion: 1| | neuro Bt ®nary)
Spectrum
g /
/
/
3 o -
- — 8
—J = Lt — §
Number of Number of Number of Number of Number of Number of Number of
Sigmoid Neurons  Identity Neurons ~ Threshold Neurons ~ Random Neurons  Control Neurons ~ Control Neurons  Slow Neurons
(adaptation speed =
greater than one) g |




SUNA - Tackling 5 completely different SUNA: Are all the neuron types important?

problems without any preprocessing

Notice that the range of input and output vary from problem to problem. This needed to be Table: Percentage of improvement (positive) or worsening (negative) of the ablation results in relation to
treated for NEAT but no preprocessing was done for SUNA. the qriginal one. The problems are Double Pole (DP), Function Approximation (FA), Mountain Car (MA),
. ) Multiplexer (MU) and Non Markov Double Pole (NMDP).
] I —— e S~
[ N 7 . I Test Type DP FA MC | MU NMDP
i1 i3 7 I Sowe No control neuron 0% 5.87% 0% | —10.55% | 15.76%
: == i, =% Iy _ No linear neuron 0% —2238% | 0% | —1.76% | 11.18%
; NI i | No neuromodulation | 0% 6.92% 0% | —66.17% | 7.88%
iy, L No random neuron —6.28% | 7.37% 0% | 8.26% —56.54%
i e R S No real weights —3.20% | 9.43% 0% | 6.16% —99.85%
. e e No sigmoid neuron 0% —-3.73% 0% | —3.35% 1.97%
No slow neuron —6.46% | —32.69% | 0% | 12.61% —35.94%
// No threshold neuron | —3.13% | 6.43% 0% | 1.56% 11.77%
: .
il - Threshold neuron is similar to sigmoid neuron outside of a the [0,1] range. Therefore,
1l " 4 removing one makes no difference.
2l £ - Control neuron was not usefult, although having an interesting representation power. Are
T e T e T the problems still too easy? This remains as an open question.

Figure: Results on Mountain Car, Double Pole, Non-Markov Double Pole, Multiplexer and Function
Abproximation

D. V., & Murata, J. (2017). Spectrum-diverse neuroevolution with unified neural models. |EEE transactions on neural networks and learning systems, 28(8), 1759 3 Vargas, D. V., & Murata, J. (2017). Spectrum-diverse neuroevolution with unified neural models. IEEE transactions on neural networks and learning systems, 28(8), 1759-
gk

HyperNEAT (2009) -
Indirect Encoding with NEAT

O=N0

(x1,¥1,21) (x2,¥2,22)

Vision Based Reinforcement Learning =

CPPN

Wikipedia:
EvilxFish




HyperNEAT - Atari Games (2014)

2000

2) Feed each coordinate 119:18

1) Query each potential pair into CPPN
connection on substrate X, =X,y XY X,

—- 'l T

-1,1 T CPPN
@ +0,0.5—1, 1
o, (evolved)
. sl ~~‘
T " 205,0—>1,05
@ @ © o (0 | T,
__,.---}l’ -1—1 y O (a) Freeway (b) Asterix (c) Space Invaders (d) Pitfall

@ O
-1,-1 0,-1 1,-1 3) Set weight of connection
Substrate between (x1,y1) and (x2,y2)
to value of output

Stanley, brosio, D. B., & Gauci, J. (2009). A hypercube-based encoding for evol scale neural networks. Artificial life. echt, M., Lehman, J., Miikkulainen, R., & Stone, P. (2014). A neuroevolution approach to general atari game playing. IEEE Transactions on Computational Intelligence and AN
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HyperNEAT - Atari Games (2014)
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Figure 5: Visual TORCS network controller pipeline. At each time-step a raw 64x64 pixel image, taken from

the driver’s perspective, is split into three planes (hue, saturation and brightness). The saturation plane is

then passed through Robert’s edge detector [12] and then fed into the 16x16=256 recurrent neurons of the

i ' | controller network, which then outputs the three driving commands.

Object Noise Pixel Koutnik, J., Cuccu, G., Schmidhuber, J., & Gomez, F. (2013, July). Evolving large-scale neural networks for vision-based reinforcement
Representation learning. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 1061-1068). ACM.
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Visual RNN

* Indirect encoding + image pre-processing +
internal memory (RNNs)

* Huge Network - “With this architecture, the
networks have a total of 1,115,139 weights,
organized into 5 weight matrices. The weights
are encoded indirectly by 200 DCT
coefficients...”

Unsupervised MPCNN + 33-weight RNN
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Figure 6: Max-Pooling Convolutional Neural Network (MPCNN) with 8 layers alternating between convolu-
tion (C) and downsampling (MP; using max-pooling). The first layer convolves the input 64x64 pixel image
with a bank of 10x10 filters producing 10 maps of size 63x63, that are down-sampled to 21x21 by MP layer 2.
Layer 3 convolves each of these 10 maps with a filter, sums the results and passes them through the nonlinear
function f, producing 10 maps of 20x20 pixels each, and so on until the input image is transformed to just 3
features that are passed to the RNN controller, see Figure 3.

Koutnik, J., Schmidhuber, J., & Gomez, F. (2014, July). Evolving deep unsupervised convolutional networks for vision-based reinforcement

Do networks need to
be big?

EJ Saélljration — [0—— Turn Left
lane H
> Tumn Right
——> Throttle/Brake

Figure 3: Visual TORCS network controller pipeline. At each time-step a raw 64x64 pixel image, taken
from the driver’s perspective, is split into three planes (hue, saturation and brightness). The saturation
plane is fed into the max-pooling convolutional network (MPCNN), that generates features for the recurrent
neural network (RNN) controller, that drives the car by controlling the steering, brakes, and accelerator.

Generation

Figure 4: Evolving MPCNN features. Each plot shows the feature vectors for each of the 40 training images
on the unit sphere. Initially (generation 0), the features are clustered together. After just a few generations
spread out so that the MPCNN discriminates more clearly between the images.

Koutnik, J., Schmidhuber, J., & Gomez, F. (2014, July). Evolving deep unsupervised convolutional networks for vision-based reinforcement

learning. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 541-548). ACM. a learning. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 541-548). ACM. a



Problem Tackled: TORCS Racing Simulation MPCNN and Visual RNN’s Results

controller d [m] Umae |km/h] ]
olethros 570 147
bt 613 141
berniw 624 149
tita 657 150
inferno 682 150
visual RNN[13] 625 144
MPC-RNN 547 97

Table 2: Maximum distance, d, in meters and max-

S t imum speed, V.., in kilometers per hour achieved
(a) J by hand-coded controllers that come with TORCS
which enjoy access to the state variables (the five up-
per table entries), a million-weight RNN controller

Figure 2: Visual TORCS environment. (a) The 1st-person perspective used as input to the RNN controllers
(figure 3) to drive the car around the track. (b), a 3rd-person perspective of car. The controllers were
evolved using a track (c) of length of 714.16 m and road width of 10 m, that consists of straight segments of that drives using pl‘e-processed 64 x64 pixel images
length 50 and 100 m and curves with radius of 25m. The car starts at the bottom (start line) and has to as input, evolved indirectly in the Fourier domain,
drive counter-clockwise. The track boundary has a width of 14 m.

and the MPC-RNN agent with just 33 weights in its
RNN controller.

Reinforcement Learning -
Standard Exploration

* € -greedy
- ActionAis:

° A with probability 1- €
* Random Action with probability €

Exploration



Dyna-Q+ (1990) Abandoning Objectives (2011)

Not an evolutionary approach.

* Perhaps one of the first results where an agent is
guided by novelty.

 State-action pairs have their interest increased if
they are not frequently taken.

(c) Medium Map Fitness (d) Hard Map Fitness

Using the novelty of a behavior (user defined feature vector) asfitness.

Sutton, R. 5.{1990). Firstresults with Dyna, an integrated architecturefor leaming, planning and reacting, Neural Networks for Control 179-189. = shman, . & Stanley, K. 0. {2011, Aband oning lution through the searchfor novetty alone. Evolitionary computation, 19{2), 189~

Alpha Go Zero (2017):
Monte Carlo Tree Search + DNN

Not an evolutionary approach.

The Building Blocks

MCTS is mapping and exploring the environment similar to a novelty search.



Building Blocks of ERL: Incomplete

Summary

Model (Representation of State, Action, World)
= Model Generality: should be able to deal with any problem

- Model Adaptability: should be able to adapt to problem dynamics (problems also
changel).

- Multi-Agent System: break the problem. Many but simple models.
Search for Good Policies (Policy Search Approach)

- Diversity Procedure: increase exploration and avoid deleterious competition.
= Indirect Encoding: decrease search space.

Evaluate State-Action Pairs (Value Function Approach)
Explore Environment

= Curiosity, Novelty detenction, Novelty search
- Monte Carlo Tree Search

—



