
Hyper-heuristics Tutorial
Daniel R. Tauritz (dtauritz@acm.org)

Natural Computation Laboratory, Missouri University of Science and
Technology (http://web.mst.edu/~tauritzd/nc-lab/)

John Woodward (J.Woodward@qmul.ac.uk)
Operations Research Group, Queen Mary

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the Owner/Author.
GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.

https://doi.org/10.1145/3205651.3207868

25 April, 2018

Instructors
Daniel R. Tauritz is an Associate Professor and Associate Chair for
Undergraduate Studies in the Department of Computer Science at
the Missouri University of Science and Technology (S&T), a Contract
Scientist for Los Alamos National Laboratory (LANL) and Sandia National
Laboratories, the founding director of S&T's Natural Computation
Laboratory, and founding academic director of the LANL/S&T Cyber Security
Sciences Institute. He received his Ph.D. in 2002 from Leiden University. His
research interests include the design of hyper-heuristics and self-
configuring evolutionary algorithms and the application of computational
intelligence techniques in cyber security, critical infrastructure protection,
and program understanding.

John R. Woodward is a Lecturer at the Queen Mary University of Londn and
is employed on the DAASE project, and for the previous four years was a
lecturer with the University of Nottingham. He holds a BSc in Theoretical
Physics, an MSc in Cognitive Science and a PhD in Computer Science, all
from the University of Birmingham. His research interests include
Automated Software Engineering, particularly Search Based Software
Engineering, Artificial Intelligence/Machine Learning and in particular
Genetic Programming. He has worked in industrial, military, educational and
academic settings, and been employed by EDS, CERN and RAF and three UK
Universities.

25 April, 2018 John R. Woodward, Daniel R. Tauritz 2

John’s perspective of hyper-
heuristics

3John R. Woodward, Daniel R. Tauritz25 April, 2018

Metaheuristic

000, 001, …,
110,111

(Meta)heuristic

Solution
Space
(set of
Possible
solutions)

A metaheuristic
-Sample solutions
-Generates
solutions

Hyper-heuristic

000, 001, …,
110,111

Solution
Space
(set of
Possible
solutions)

Hyper-heuristic

Hyper-heuristic
operated on
- Other heuristics
- On the solution

space indirectly

H1, H2, …, HnSet of
heuristics

Small set,
Atomic heuristics

Domain Barrier

Hyper-heuristic

000, 001, …,
110,111

Solution
Space
(set of
Possible
solutions)

Hyper-heuristic

Hyper-heuristic
operated on
- Other heuristics
- On the solution

space indirectly
Space of Programs

(heuristic)
Set of
heuristics

Large (infinite) set,
decomposable heuristics

Conceptual Overview
Combinatorial problem e.g. Travelling Salesman
Exhaustive search ->heuristic?

Single tour NOT EXECUTABLE!!!

Genetic Algorithm
heuristic – permutations

Travelling Salesman

Tour

Genetic Programming
code fragments in for-loops.

Travelling Salesman Instances

TSP algorithm

EXECUTABLE on MANY INSTANCES!!!

Give a man a fish and he
will eat for a day.
Teach a man to fish and he
will eat for a lifetime.

8

Scalable? General?
New domains for GP

John R. Woodward, Daniel R. Tauritz25 April, 2018

Program-Complexity Spectrum

9

Automatically
designed heuristics
(this tutorial)

First year university course
On Java, as part of a computer
Science degree

Increasing “complexity”

LARGE
Software
Engineering
Projects

Genetic Programming
{+, -, *, /}
{AND, OR, NOT}

John R. Woodward, Daniel R. Tauritz25 April, 2018

Theoretical Motivation 1

1. A search space contains the set of all possible solutions.
2. An objective function determines the quality of solution.
3. A (Mathematical idealized) metaheuristic determines the sampling

order (i.e. enumerates i.e. without replacement). It is a (approximate)
permutation. What are we learning?

4. Performance measure P (a, f) depend only on y1, y2, y3
5. Aim find a solution with a near-optimal objective value using a

Metaheuristic . ANY QUESTIONS BEFORE NEXT SLIDE?

10

x1

X1.

X2.

X3.

x1

Y1.

Y2.

Y3.

x1

1.

2.

3.

Search
space

Objective
Function f

Metaheuristic a

SOLUTION PROBLEM

P (a, f)

John R. Woodward, Daniel R. Tauritz25 April, 2018

Theoretical Motivation 2

x1

1.

2.

3.

x1

1.

2.

3.

x1

1.

2.

3.

Search
space

Objective
Function f

Metaheuristic a

x1

1.

2.

3.

x1

1.

2.

3.

σି𝟏

permutation
σ

P (a, f) = P (a 𝛔,𝛔ି𝟏 f) P (A, F) = P (A𝛔,𝛔ି𝟏F) (i.e. permute bins)
P is a performance measure, (based only on output values).
𝛔,𝛔ି𝟏 are a permutation and inverse permutation.
A and F are probability distributions over algorithms and functions).
F is a problem class. ASSUMPTIONS IMPLICATIONS
1. Metaheuristic a applied to function 𝛔𝛔ି𝟏𝒇 (that is 𝒇)
2. Metaheuristic a𝛔 applied to function 𝛔ି𝟏𝒇 precisely identical.

11John R. Woodward, Daniel R. Tauritz25 April, 2018

One Man – One/Many Algorithm
1. Researchers design heuristics by

hand and test them on problem
instances or arbitrary benchmarks
off internet.

2. Presenting results at conferences
and publishing in journals. In this
talk/paper we propose a new
algorithm…

Heuristic1

Heuristic2

Heuristic3

12

1. Challenge is defining an algorithmic
framework (set) that includes useful
algorithms. Black art
2. Let Genetic Programming select the
best algorithm for the problem class at
hand. Context!!! Let the data speak for
itself without imposing our assumptions.
In this talk/paper we propose a 10,000
algorithms…

Heuristic2

Heuristic1

Heuristic10,000

Automatic
Design

John R. Woodward, Daniel R. Tauritz25 April, 2018

Daniel’s perspective of hyper-
heuristics

13John R. Woodward, Daniel R. Tauritz25 April, 2018

Real-World Challenges

• Researchers strive to make algorithms
increasingly general-purpose

• But practitioners have very specific needs
• Designing custom algorithms tuned to

particular problem instance distributions
and/or computational architectures can be
very time consuming

14John R. Woodward, Daniel R. Tauritz25 April, 2018

Automated Design of Algorithms

• Addresses the need for custom algorithms
• But due to high computational complexity, only

feasible for repeated problem solving
• Hyper-heuristics accomplish automated design of

algorithms by searching program space

15John R. Woodward, Daniel R. Tauritz25 April, 2018

Hyper-heuristics

• Hyper-heuristics are a special type of meta-heuristic
– Step 1: Extract algorithmic primitives from existing

algorithms
– Step 2: Search the space of programs defined by the

extracted primitives
• While Genetic Programming (GP) is particularly well

suited for executing Step 2, other meta-heuristics
can be, and have been, employed

• The type of GP employed matters [24]

16John R. Woodward, Daniel R. Tauritz25 April, 2018

Type of GP Matters:
Experiment Description

• Implement five types of GP (tree GP, linear GP,
canonical Cartesian GP, Stack GP, and Grammatical
Evolution) in hyper-heuristics for evolving black-box
search algorithms for solving 3-SAT

• Base hyper-heuristic fitness on the fitness of the
best search algorithm generated at solving the 3-
SAT problem

• Compare relative effectiveness of each GP type as a
hyper-heuristic

GP Individual Description

• Search algorithms are represented as an iterative
algorithm that passes one or more set of variable
assignments to the next iteration

• Genetic program represents a single program
iteration

• Algorithm runs starting with a random initial
population of solutions for 30 seconds

3-SAT Problem

• A subset of the Boolean Satisfiability Problem (SAT)
• The goal is to select values for Boolean variables

such that a given Boolean equation evaluates as true
(is satisfied)

• Boolean equations are in 3-conjunctive normal form
• Example:

– (A ∨ B ∨ C) ∧ (¬A ∨ ¬C ∨ D) ∧ (¬B ∨ C V ¬D)
– Satisfied by ¬A, B, C, ¬D

• Fitness is the number of clauses satisfied by the best
solution in the final population

Genetic Programming Nodes Used

• Last population, Random population
• Tournament selection, Fitness proportional

selection, Truncation selection, Random selection
• Bitwise mutation, Greedy flip, Quick greedy flip,

Stepwise adaption of weights, Novelty
• Union

Results

1800
1820
1840
1860
1880
1900
1920
1940
1960
1980
2000

N
um

be
r

of
 C

la
us

es
 S

at
is

fie
d

Results [24]

22

Results

• Generated algorithms mostly performed comparably
well on training and test problems

• Tree and stack GP perform similarly well on this
problem, as do linear and Cartesian GP

• Tree and stack GP perform significantly better on this
problem than linear and Cartesian GP, which perform
significantly better than grammatical evolution

Conclusions

• The choice of GP type makes a significant difference
in the performance of the hyper-heuristic

• The size of the search space appears to be a major
factor in the performance of the hyper-heuristic

Case Study 1: The Automated Design
of Crossover Operators [20]

25John R. Woodward, Daniel R. Tauritz25 April, 2018

• Performance Sensitive to Crossover Selection

• Identifying & Configuring Best Traditional Crossover
is Time Consuming

• Existing Operators May Be Suboptimal

• Optimal Operator May Change During Evolution

Motivation

26John R. Woodward, Daniel R. Tauritz25 April, 2018

• Meta-EA
– Exceptionally time consuming

• Self-Adaptive Algorithm Selection
– Limited by algorithms it can choose from

Some Possible Solutions

27John R. Woodward, Daniel R. Tauritz25 April, 2018

• Each Individual Encodes a
Crossover Operator

• Crossovers Encoded as a List of
Primitives
– Swap
– Merge

• Each Primitive has three
parameters
– Number, Random, or Inline

Self-Configuring Crossover (SCX)

Swap(3, 5, 2)

Swap(r, i, r)

Merge(1, r, 0.7)

Offspring Crossover

28John R. Woodward, Daniel R. Tauritz25 April, 2018

Applying an SCX

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Parent 1 Genes Parent 2 Genes

Concatenate Genes

29John R. Woodward, Daniel R. Tauritz25 April, 2018

• Each Primitive has a type
– Swap represents crossovers that move

genetic material

• First Two Parameters
– Start 1 Position
– Start 2 Position

• Third Parameter Primitive Dependent
– Swaps use “Width”

The Swap Primitive

Swap(3, 5, 2)

30John R. Woodward, Daniel R. Tauritz25 April, 2018

Applying an SCX

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Concatenate Genes

Swap(3, 5, 2)

Swap(r, i, r)

Merge(1, r, 0.7)

Offspring Crossover

3.0 4.0 5.0 6.0

31John R. Woodward, Daniel R. Tauritz25 April, 2018

• Third Parameter Primitive Dependent
– Merges use “Weight”

• Random Construct
– All past primitive parameters used the

Number construct
– “r” marks a primitive using the Random

Construct
– Allows primitives to act stochastically

The Merge Primitive

Merge(1, r, 0.7)

32John R. Woodward, Daniel R. Tauritz25 April, 2018

Applying an SCX

1.0 2.0 5.0 6.0 3.0 4.0 7.0 8.0

Concatenate Genes

Merge(1, r, 0.7)

Swap(3, 5, 2)

Swap(r, i, r)

Offspring Crossover

0.7

g(1) = 1.0*(0.7) + 6.0*(1-0.7)

g(i) = α*g(i) + (1-α)*g(j)

2.5g(2) = 6.0*(0.7) + 1.0*(1-0.7)4.5

33John R. Woodward, Daniel R. Tauritz25 April, 2018

• Only Usable by First Two Parameters

• Denoted as “i”

• Forces Primitive to Act on the Same
Loci in Both Parents

The Inline Construct

Swap(r, i, r)

34John R. Woodward, Daniel R. Tauritz25 April, 2018

Applying an SCX

2.5 2.0 5.0 4.5 3.0 4.0 7.0 8.0

Concatenate Genes

Swap(r, i, r)

Merge(1, r, 0.7)

Swap(3, 5, 2)

Offspring Crossover

2.0 4.0

35John R. Woodward, Daniel R. Tauritz25 April, 2018

Applying an SCX

2.5 4.0 5.0 4.5 3.0 2.0 7.0 8.0

Concatenate GenesRemove Exess Genes

Offspring Genes

36John R. Woodward, Daniel R. Tauritz25 April, 2018

Evolving Crossovers

Merge(1, r, 0.7)

Merge(i, 8, r)

Swap(r, i, r)

Parent 1 Crossover

Swap(4, 2, r)

Swap(r, 7, 3)

Parent 2 Crossover

Merge(r, r, r)

Offspring Crossover

Swap(3, 5, 2)

37John R. Woodward, Daniel R. Tauritz25 April, 2018

• Compared Against
– Arithmetic Crossover
– N-Point Crossover
– Uniform Crossover

• On Problems
– Rosenbrock
– Rastrigin
– Offset Rastrigin
– NK-Landscapes
– DTrap

Empirical Quality Assessment

Problem Comparison SCX
Rosenbrock -86.94 (54.54) -26.47 (23.33)
Rastrigin -59.2 (6.998) -0.0088 (0.021)
Offset Rastrigin -0.1175 (0.116) -0.03 (0.028)
NK 0.771 (0.011) 0.8016 (0.013)
DTrap 0.9782 (0.005) 0.9925 (0.021)

38John R. Woodward, Daniel R. Tauritz25 April, 2018

Adaptations: Rastrigin

39John R. Woodward, Daniel R. Tauritz25 April, 2018

Adaptations: DTrap

40John R. Woodward, Daniel R. Tauritz25 April, 2018

• Requires No Additional Evaluation

• Adds No Significant Increase in Run Time
– All linear operations

• Adds Initial Crossover Length Parameter
– Testing showed results fairly insensitive to this parameter
– Even worst settings tested achieved better results than

comparison operators

SCX Overhead

41John R. Woodward, Daniel R. Tauritz25 April, 2018

• Remove Need to Select Crossover Algorithm

• Better Fitness Without Significant Overhead

• Benefits From Dynamically Changing Operator

• Promising Approach for Evolving Crossover
Operators for Additional Representations (e.g.,
Permutations)

Conclusions

42John R. Woodward, Daniel R. Tauritz25 April, 2018

Case Study 2: The Automated Design
of Mutation Operators for Evolutionary

Programming

43John R. Woodward, Daniel R. Tauritz25 April, 2018

Designing Mutation Operators for
Evolutionary Programming [18]

1. Evolutionary programing optimizes
functions by evolving a population of
real-valued vectors (genotype).

2. Variation has been provided
(manually) by probability distributions
(Gaussian, Cauchy, Levy).

3. We are automatically generating
probability distributions (using genetic
programming).

4. Not from scratch, but from already
well known distributions (Gaussian,
Cauchy, Levy). We are “genetically
improving probability distributions”.

5. We are evolving mutation operators
for a problem class (probability
distributions over functions).

6. NO CROSSOVER

Genotype is
(1.3,...,4.5,…,8.7)
Before mutation

Genotype is
(1.2,...,4.4,…,8.6)
After mutation

44John R. Woodward, Daniel R. Tauritz25 April, 2018

(Fast) Evolutionary Programming

1. EP mutates with a Gaussian
2. FEP mutates with a Cauchy
3. A generalization is mutate

with a distribution D
(generated with genetic
programming)

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN

45John R. Woodward, Daniel R. Tauritz25 April, 2018

Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used
in the literature. Minimization
We use them as problem classes.

46John R. Woodward, Daniel R. Tauritz25 April, 2018

Function Class 1
1. Machine learning needs to generalize.
2. We generalize to function classes.
3. y = 𝑥ଶ (a function)
4. y = 𝑎𝑥ଶ(parameterised function)
5. y = 𝑎𝑥ଶ, 𝑎 ~[1,2] (function class)
6. We do this for all benchmark functions.
7. The mutation operators is evolved to fit the

probability distribution of functions.

47John R. Woodward, Daniel R. Tauritz25 April, 2018

Function Classes 2

48John R. Woodward, Daniel R. Tauritz25 April, 2018

Meta and Base Learning

• At the base level we are
learning about a specific
function.

• At the meta level we are
learning about the
problem class.

• We are just doing
“generate and test” at a
higher level

• What is being passed with
each blue arrow?

• Conventional EP

EPFunction to
optimize

Probability
Distribution
Generator

Function
class

base level

Meta level

49John R. Woodward, Daniel R. Tauritz25 April, 2018

Compare Signatures (Input-Output)
Evolutionary Programming
(𝑅௡𝑅)  𝑅௡

Input is a function
mapping real-valued
vectors of length n to a
real-value.
Output is a (near optimal)
real-valued vector
(i.e. the solution to the
problem instance)

Evolutionary Programming
Designer
[(𝑅௡𝑅)]  ((𝑅௡𝑅)  𝑅௡)

Input is a list of functions mapping
real-valued vectors of length n to a
real-value (i.e. sample problem
instances from the problem class).
Output is a (near optimal)
(mutation operator for)
Evolutionary Programming
(i.e. the solution method to the
problem class)

50

We are raising the level of generality at which we operate.

John R. Woodward, Daniel R. Tauritz25 April, 2018

Genetic Programming to Generate
Probability Distributions

1. GP Function Set {+, -, *, %}
2. GP Terminal Set {N(0, random)}
N(0,1) is a normal distribution.
For example a Cauchy distribution is
generated by N(0,1)%N(0,1).
Hence the search space of
probability distributions contains
the two existing probability
distributions used in EP but also
novel probability distributions.

CAUCHYGAUSSIAN

NOVEL
PROBABILITY
DISTRIBUTIONS

SPACE OF
PROBABILITY
DISTRIBUTIONS

51John R. Woodward, Daniel R. Tauritz25 April, 2018

Means and Standard Deviations

These results are good for two reasons.
1. starting with a manually designed distributions (Gaussian).
2. evolving distributions for each function class.

52John R. Woodward, Daniel R. Tauritz25 April, 2018

T-tests

53John R. Woodward, Daniel R. Tauritz25 April, 2018

Performance on Other Problem Classes

54John R. Woodward, Daniel R. Tauritz25 April, 2018

Case Study 3: The Automated Design
of On-Line Bin Packing Algorithms

55John R. Woodward, Daniel R. Tauritz25 April, 2018 56

On-line Bin Packing Problem [9,11]

Items packed so far
Sequence of pieces to be packed

• A sequence of items packed into as few a bins as possible.
• Bin size is 150 units, items uniformly distributed between 20-100.
• Different to the off-line bin packing problem where the set of items.
• The “best fit” heuristic, places the current item in the space it fits best

(leaving least slack).
• It has the property that this heuristic does not open a new bin unless it

is forced to.

150 =
Bin
capacity

Range of
Item size
20-100

Array of bins

John R. Woodward, Daniel R. Tauritz25 April, 2018

57

Genetic Programming
applied to on-line bin packing

S size
S size

C capacity

F fullness

E emptiness

Fullness is
irrelevant
The space is
important

Not obvious how to link
Genetic Programming to
combinatorial problems.
The GP tree is applied to each
bin with the current item and
placed in the bin with
The maximum score

Terminals supplied to Genetic Programming
Initial representation {C, F, S}
Replaced with {E, S}, E=C-F

John R. Woodward, Daniel R. Tauritz25 April, 2018

How the heuristics are applied (skip)

90
120

70
30 45

70

85

30
60

-

+

FS

C

%

C

-15 -3.75 3 4.29 1.88

58John R. Woodward, Daniel R. Tauritz25 April, 2018

59

The Best Fit Heuristic

0 1
0 20

3
0 40 5

0 60 70

2163
04
4587

28
6

1
001
1412

8

14
2

-150

-100

-50

0

50

100

150

100-150

50-100

0-50

-50-0

-100--50

-150--100

Best fit = 1/(E-S). Point out features.
Pieces of size S, which fit well into the space remaining E,
score well.
Best fit applied produces a set of points on the surface,
The bin corresponding to the maximum score is picked.

Piece sizeemptiness

John R. Woodward, Daniel R. Tauritz25 April, 2018 60

Our Best Heuristic

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

15020 23 2
6

2
9

3
2

35 38 41 44 47 50 5
3

5
6

5
9

62 65 68

-15000

-10000

-5000

0

5000

10000

15000

emptiness

piece size

pieces 20 to 70

Similar shape to best fit – but curls up in one corner.
Note that this is rotated, relative to previous slide.

John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness of Heuristics

= all legal results
= some illegal results

61John R. Woodward, Daniel R. Tauritz25 April, 2018
62

Testing Heuristics on problems of much larger
size than in training

Table I H trained100 H trained 250 H trained 500

100 0.427768358 0.298749035 0.140986023

1000 0.406790534 0.010006408 0.000350265

10000 0.454063071 2.58E-07 9.65E-12

100000 0.271828318 1.38E-25 2.78E-32

Table shows p-values using the best fit heuristic, for heuristics trained on
different size problems, when applied to different sized problems
1. As number of items trained on increases, the probability decreases (see

next slide).
2. As the number of items packed increases, the probability decreases (see

next slide).

John R. Woodward, Daniel R. Tauritz25 April, 2018

63

Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances
• Performance does not deteriorate

• The larger the training problem size, the better the bins are packed.

Amount the heuristics beat best fit by

-100

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

evolved on 100

evolved on 250

evolved on 500

Amount
evolved
heuristics
beat
best fit by.

Number of pieces
packed so far.

John R. Woodward, Daniel R. Tauritz25 April, 2018 64

Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem
• Analogy with sprinters running a race – accelerate towards end of race.
• The “break even point” is approximately half of the size of the training problem

size
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a

better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

evolved on 100

evolved on 250

evolved on 500

Amount
evolved
heuristics
beat
best fit by.

Zoom in
of previous
slide

John R. Woodward, Daniel R. Tauritz25 April, 2018

Step by Step Guide to Automatic Design of
Algorithms [8, 12]

1. Study the literature for existing heuristics for your
chosen domain (manually designed heuristics).

2. Build an algorithmic framework or template which
expresses the known heuristics.

3. Let metaheuristics (e.g. Genetic Programming)
search for variations on the theme.

4. Train and test on problem instances drawn from
the same probability distribution (like machine
learning). Constructing an optimizer is machine
learning (this approach prevents “cheating”).

65John R. Woodward, Daniel R. Tauritz25 April, 2018

A Brief History (Example Applications) [5]

1. Image Recognition – Roberts Mark
2. Travelling Salesman Problem – Keller Robert
3. Boolean Satisfiability – Holger Hoos, Fukunaga, Bader-El-Den, Alex

Bertels & Daniel Tauritz
4. Data Mining – Gisele L. Pappa, Alex A. Freitas
5. Decision Tree - Gisele L. Pappa et al
6. Crossover Operators – Oltean et al, Brian Goldman and Daniel

Tauritz
7. Selection Heuristics – Woodward & Swan, Matthew Martin & Daniel

Tauritz
8. Bin Packing 1,2,3 dimension (on and off line) Edmund Burke et. al.

& Riccardo Poli et al
9. Bug Location – Shin Yoo
10. Job Shop Scheduling – Mengjie Zhang
11. Black Box Search Algorithms – Daniel Tauritz et al

66John R. Woodward, Daniel R. Tauritz25 April, 2018

A Paradigm Shift?

conventional approach new approach

Algorithm
s investigated/unit tim

e

One person
proposes one
algorithm
and tests it
in isolation.

One person proposes a
family of algorithms
and tests them
in the context of
a problem class.

• Previously one person proposes one algorithm
• Now one person proposes a set of algorithms
• Analogous to “industrial revolution” from hand

made to machine made. Automatic Design.

67

Human cost (INFLATION) machine cost MOORE’S LAW

John R. Woodward, Daniel R. Tauritz25 April, 2018

Conclusions
1. Heuristic are trained to fit a problem class, so are

designed in context (like evolution). Let’s close
the feedback loop! Problem instances live in
classes.

2. We can design algorithms on small problem
instances and scale them apply them to large
problem instances (TSP, child multiplication).

68John R. Woodward, Daniel R. Tauritz25 April, 2018

SUMMARY

1. We can automatically design algorithms that
consistently outperform human designed algorithms
(on various domains).

2. The “best” heuristics depends on the set of problem
instances. (feedback)

3. Resulting algorithm is part man-made part machine-
made (synergy)

4. not evolving from scratch like Genetic Programming,
5. improve existing algorithms and adapt them to the new

problem instances.
6. Algorithms are reusable, “solutions” aren’t. (e.g. tsp

algorithm vs route)

69John R. Woodward, Daniel R. Tauritz25 April, 2018

Case Study 4: The Automated Design
of Black Box Search Algorithms [21, 23,

25]

70John R. Woodward, Daniel R. Tauritz25 April, 2018

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

Approach

71John R. Woodward, Daniel R. Tauritz25 April, 2018

Our
Solution

Initialization

Check for
Termination

Terminate

Iterated
Function

72John R. Woodward, Daniel R. Tauritz25 April, 2018

• Hyper-Heuristic employing Genetic Programing

• Post-ordered parse tree

• Evolve the iterated function

• High-level primitives

Our Solution

73John R. Woodward, Daniel R. Tauritz25 April, 2018

• Iterated function

• Sets of solutions

• Function returns
a set of solutions
accessible to the
next iteration

Parse Tree

74John R. Woodward, Daniel R. Tauritz25 April, 2018

Primitive Types

• Variation Primitives

• Selection Primitives

• Set Primitives

• Evaluation Primitive

• Terminal Primitives

75John R. Woodward, Daniel R. Tauritz25 April, 2018

Variation Primitives

• Bit-flip Mutation
– rate

• Uniform Recombination
– count

• Diagonal Recombination
– n

76John R. Woodward, Daniel R. Tauritz25 April, 2018

Selection Primitives

• Truncation Selection
– count

• K-Tournament Selection
– k
– count

• Random Sub-set Selection
– count

77John R. Woodward, Daniel R. Tauritz25 April, 2018

Set-Operation Primitives

• Make Set
– name

• Persistent
Sets
– name

• Union

78John R. Woodward, Daniel R. Tauritz25 April, 2018

• Evaluates the nodes passed in

• Allows multiple operations and accurate selections
within an iteration

– Allows for deception

Evaluation Primitive

79John R. Woodward, Daniel R. Tauritz25 April, 2018

Terminal Primitives

• Random Individuals
– count

• `Last’ Set

• Persistent Sets
– name

80John R. Woodward, Daniel R. Tauritz25 April, 2018

Meta-Genetic Program

Create Valid
Population

Generate
Children

Evaluate
Children

Select
Survivors

Check
Termination

81John R. Woodward, Daniel R. Tauritz25 April, 2018

BBSA Evaluation

C re ate Val id P o p u latio n

Ge n e rate
C h i ld re n

Evalu ate
C h i ld re n

Se le ct
Su rvivo rs

Ge n e rate C h i ld ren

82John R. Woodward, Daniel R. Tauritz25 April, 2018

• Evaluations

• Iterations

• Operations

• Convergence

Termination Conditions

83John R. Woodward, Daniel R. Tauritz25 April, 2018

• Deceptive Trap Problem

Proof of Concept Testing

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5

Fi
tn

es
s

of 1s

0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0

84John R. Woodward, Daniel R. Tauritz25 April, 2018

• Evolved Problem Configuration
– Bit-length = 100
– Trap Size = 5

• Verification Problem Configurations
– Bit-length = 100, Trap Size = 5
– Bit-length = 200, Trap Size = 5
– Bit-length = 105, Trap Size = 7
– Bit-length = 210, Trap Size = 7

Proof of Concept Testing (cont.)

85John R. Woodward, Daniel R. Tauritz25 April, 2018

Results

60% Success
Rate

86John R. Woodward, Daniel R. Tauritz25 April, 2018

Results:
Bit-Length = 100

Trap Size = 5

87John R. Woodward, Daniel R. Tauritz25 April, 2018

Results:
Bit-Length = 200

Trap Size = 5

88John R. Woodward, Daniel R. Tauritz25 April, 2018

Results:
Bit-Length = 105

Trap Size = 7

89John R. Woodward, Daniel R. Tauritz25 April, 2018

Results:
Bit-Length = 210

Trap Size = 7

90John R. Woodward, Daniel R. Tauritz25 April, 2018

BBSA1

BBSA2

BBSA3

91John R. Woodward, Daniel R. Tauritz25 April, 2018

BBSA1

92John R. Woodward, Daniel R. Tauritz25 April, 2018

BBSA2

93John R. Woodward, Daniel R. Tauritz25 April, 2018

BBSA3

94John R. Woodward, Daniel R. Tauritz25 April, 2018

BBSA2

95John R. Woodward, Daniel R. Tauritz25 April, 2018

Over-Specialization

Trained Problem
Configuration

Alternate
Problem

Configuration

96John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness

• Measures of Robustness
– Applicability
– Fallibility

• Applicability
– What area of the problem configuration space do I perform

well on?

• Fallibility
– If a given BBSA doesn’t perform well, how much worse will I

perform?

97John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness

98John R. Woodward, Daniel R. Tauritz25 April, 2018

• Train on multiple problem configurations

• Results in more robust BBSAs

• Provides the benefit of selecting the region of
interest on the problem configuration landscape

Multi-Sampling

99John R. Woodward, Daniel R. Tauritz25 April, 2018

• Deceptive Trap Problem

Multi-Sample Testing

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5

Fi
tn

es
s

of 1s

0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0

100John R. Woodward, Daniel R. Tauritz25 April, 2018

• Multi-Sampling Evolution
– Levels 1-5

• Training Problem Configurations
1. Bit-length = 100, Trap Size = 5
2. Bit-length = 200, Trap Size = 5
3. Bit-length = 105, Trap Size = 7
4. Bit-length = 210, Trap Size = 7
5. Bit-length = 300, Trap Size = 5

Multi-Sample Testing (cont.)

101John R. Woodward, Daniel R. Tauritz25 April, 2018

1. Bit-length = 100, Trap Size = 5
2. Bit-length = 200, Trap Size = 5
3. Bit-length = 105, Trap Size = 7
4. Bit-length = 210, Trap Size = 7
5. Bit-length = 300, Trap Size = 5
6. Bit-length = 99, Trap Size = 9
7. Bit-length = 198, Trap Size = 9
8. Bit-length = 150, Trap Size = 5
9. Bit-length = 250, Trap Size = 5
10. Bit-length = 147, Trap Size = 7
11. Bit-length = 252, Trap Size = 7

Initial Test Problem Configurations

102John R. Woodward, Daniel R. Tauritz25 April, 2018

Initial Results

103John R. Woodward, Daniel R. Tauritz25 April, 2018

• Run evolved BBSAs on wider set of problem
configurations

• Bit-length: ~75-~500

• Trap Size: 4-20

Problem Configuration Landscape Analysis

104John R. Woodward, Daniel R. Tauritz25 April, 2018

Results: Multi-Sampling Level 1

105John R. Woodward, Daniel R. Tauritz25 April, 2018

Results: Multi-Sampling Level 2

106John R. Woodward, Daniel R. Tauritz25 April, 2018

Results: Multi-Sampling Level 3

107John R. Woodward, Daniel R. Tauritz25 April, 2018

Results: Multi-Sampling Level 4

108John R. Woodward, Daniel R. Tauritz25 April, 2018

Results: Multi-Sampling Level 5

109John R. Woodward, Daniel R. Tauritz25 April, 2018

Results: EA Comparison

110John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness: Fallibility

Multi-Sample Level 5

Standard EA

111John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness: Fallibility

Multi-Sample Level 1

Standard EA

112John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness: Applicability

Multi-Sample Level 1

Multi-Sample Level 5

113John R. Woodward, Daniel R. Tauritz25 April, 2018

Robustness: Fallibility

114John R. Woodward, Daniel R. Tauritz25 April, 2018

• Increased computational time
– More runs per evaluation (increased wall time)
– More problem configurations to optimize for (increased

evaluations)

Drawbacks

115John R. Woodward, Daniel R. Tauritz25 April, 2018

• Improved Hyper-Heuristic to evolve more robust
BBSAs

• Evolved custom BBSA which outperformed standard
EA and were robust to changes in problem
configuration

Summary of Multi-Sample Improvements

116John R. Woodward, Daniel R. Tauritz25 April, 2018

Case Study 5: Evolving Random Graph
Generators: A Case for Increased

Algorithmic Primitive Granularity [27]

117John R. Woodward, Daniel R. Tauritz25 April, 2018

Random Graphs

• Graphs are a powerful modeling tool
– Computer and social networks
– Transportation and power grids

• Algorithms designed for graphs
– Community detection and graph partitioning
– Network routing and intrusion detection

• Random graphs provide test data
• Prediction using random graphs

– Spread of disease
– Deployment of wireless sensors

Traditional Random Graph Models

• Erdös-Rényi

• Barabási-Albert

Automated Random Graph Model Design

• Random graph model needs to accurately reflect
intended concept

• Model selection can be automated, but relies on
having a good solution available

• Developing an accurate model for a new
application can be difficult

Can the model design process be automated to
produce an accurate graph model given examples?

Hyper-heuristic Approach

• Extract functionality from existing graph generation
techniques

• Use Genetic Programming (GP) to construct new
random graph algorithms

Previous Attempts at Evolving Random
Graph Generators

• Assumes “growth” model, adding one node at a time
• Does well at reproducing traditional models
• Not demonstrated to do well at generating real

complex networks
• Limits the search space of possible solutions

Increased Algorithmic Primitive Granularity

• Remove the assumed “growth” structure
• More flexible lower-level primitive set
• Benefit: Can represent a larger variety of algorithms
• Drawback: Larger search space, increasing

complexity

Methodology

• NSGA-II evolves population of random graph models
• Strongly typed parse tree representation
• Centrality distributions used to evaluate solution
• quality (degree, betweenness, PageRank)

Primitive Operations
Terminals
• Graph elements: nodes, edges
• Graph properties: average degree, size, order
• Constants: integers, probabilities, Booleans, user inputs
• No-op terminators

Functions
• Basic programming constructs: for, while, if-else
• Data structures: lists of values, nodes, or edges, list
• combining/selection/sorting
• Math and logic operators: add, multiply, <, ==, AND, OR
• Graph operators: add edges, add subgraph, rewire edges

Example Evolved Random Graph Generator

Reproducing Erdös-Rényi

Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.101 0.048 = 0.108 0.047

Betweennes
s

0.104 0.031 = 0.105 0.033

PageRank 0.110 0.032 = 0.112 0.029

Reproducing Random Community Graphs
Low-GP High-GP

Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055

Betweennes
s

0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036

Actual Graph Low-GP
High-GP

Evolved Random Collaboration Network
Generator Conclusion

• Traditional random graph models do not always
produce appropriate representations of certain
concepts

• Accurate random graph model design can be
automated using genetic programming

• More flexible set of low-level primitive
operations increases resulting model accuracy

• Increase in a priori evolution time is amortized
over repeated use of the evolved solutions

Some Final Thoughts

131John R. Woodward, Daniel R. Tauritz25 April, 2018

Challenges in Hyper-heuristics

• Hyper-heuristics are very computationally expensive
(use Asynchronous Parallel GP [26,30])

• What is the best primitive granularity? (see next
slide)

• How to automate decomposition and
recomposition of primitives?

• How to automate primitive extraction?
• How does hyper-heuristic performance scale for

increasing primitive space size? (see [25,27])

Primitive Granularity
PrimitivesAlgorithm

Full BBSAs
i.e., EA, SA, SAHC,
etc.

Selective Hyper-
heuristics

Our Hyper-heuristic

Turing Complete
Set of Primitives

Generative Hyper-
heuristics

High-level BBSA
operations
i.e., Truncation
Selection, Bit-Flip
Mutation, etc.

Low-level BBSA
operations
i.e., If Converged
Statements, For loops,
etc.

Genetic Programming

End of File 

• Thank you for listening !!!
• We are glad to take any

– comments (+,-)
– suggestions/criticisms
Please email us any missing references!
John Woodward (http://www.cs.stir.ac.uk/~jrw/)
Daniel Tauritz (http://web.mst.edu/~tauritzd/)

134John R. Woodward, Daniel R. Tauritz25 April, 2018

References 1

1. John Woodward. Computable and Incomputable Search Algorithms and Functions. IEEE International
Conference on Intelligent Computing and Intelligent Systems (IEEE ICIS 2009), pages 871-875,
Shanghai, China, November 20-22, 2009.

2. John Woodward. The Necessity of Meta Bias in Search Algorithms. International Conference on
Computational Intelligence and Software Engineering (CiSE), pages 1-4, Wuhan, China, December 10-
12, 2010.

3. John Woodward & Ruibin Bai. Why Evolution is not a Good Paradigm for Program Induction: A
Critique of Genetic Programming. In Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, pages 593-600, Shanghai, China, June 12-14, 2009.

4. Jerry Swan, John Woodward, Ender Ozcan, Graham Kendall, Edmund Burke. Searching the Hyper-
heuristic Design Space. Cognitive Computation, 6:66-73, 2014.

5. Gisele L. Pappa, Gabriela Ochoa, Matthew R. Hyde, Alex A. Freitas, John Woodward, Jerry Swan.
Contrasting meta-learning and hyper-heuristic research. Genetic Programming and Evolvable
Machines, 15:3-35, 2014.

6. Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automating the Packing
Heuristic Design Process with Genetic Programming. Evolutionary Computation, 20(1):63-89, 2012.

7. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John Woodward. A Genetic Programming
Hyper-Heuristic Approach for Evolving Two Dimensional Strip Packing Heuristics. IEEE Transactions on
Evolutionary Computation, 14(6):942-958, December 2010.

135John R. Woodward, Daniel R. Tauritz25 April, 2018

References 2
8. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan and John R.

Woodward. Exploring Hyper-heuristic Methodologies with Genetic Programming, Computational
Intelligence: Collaboration, Fusion and Emergence, In C. Mumford and L. Jain (eds.), Intelligent Systems
Reference Library, Springer, pp. 177-201, 2009.

9. Edmund K. Burke, Matthew Hyde, Graham Kendall and John R. Woodward. The Scalability of Evolved On
Line Bin Packing Heuristics. In Proceedings of the IEEE Congress on Evolutionary Computation, pages
2530-2537, September 25-28, 2007.

10. R. Poli, John R. Woodward, and Edmund K. Burke. A Histogram-matching Approach to the Evolution of
Bin-packing Strategies. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 3500-
3507, September 25-28, 2007.

11. Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automatic Heuristic
Generation with Genetic Programming: Evolving a Jack-of-all-Trades or a Master of One, In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1559-1565, London, UK, July 2007.

12. John R. Woodward and Jerry Swan. Template Method Hyper-heuristics, Metaheuristic Design Patterns
(MetaDeeP) workshop, GECCO Comp’14, pages 1437-1438, Vancouver, Canada, July 12-16, 2014.

13. Saemundur O. Haraldsson and John R. Woodward, Automated Design of Algorithms and Genetic
Improvement: Contrast and Commonalities, 4th Workshop on Automatic Design of Algorithms (ECADA),
GECCO Comp ‘14, pages 1373-1380, Vancouver, Canada, July 12-16, 2014.

136John R. Woodward, Daniel R. Tauritz25 April, 2018

References 3
14. John R. Woodward, Simon P. Martin and Jerry Swan. Benchmarks That Matter For Genetic

Programming, 4th Workshop on Evolutionary Computation for the Automated Design of Algorithms
(ECADA), GECCO Comp ‘14, pages 1397-1404, Vancouver, Canada, July 12-16, 2014.

15. John R. Woodward and Jerry Swan. The Automatic Generation of Mutation Operators for Genetic
Algorithms, 2nd Workshop on Evolutionary Computation for the Automated Design of Algorithms
(ECADA), GECCO Comp’ 12, pages 67-74, Philadelphia, U.S.A., July 7-11, 2012.

16. John R. Woodward and Jerry Swan. Automatically Designing Selection Heuristics. 1st Workshop on
Evolutionary Computation for Designing Generic Algorithms, pages 583-590, Dublin, Ireland, 2011.

17. Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John Woodward.
A Classification of Hyper-heuristics Approaches, Handbook of Metaheuristics, pages 449-468,
International Series in Operations Research & Management Science, M. Gendreau and J-Y Potvin (Eds.),
Springer, 2010.

18. Libin Hong and John Woodward and Jingpeng Li and Ender Ozcan. Automated Design of Probability
Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming.
Proceedings of the 16th European Conference on Genetic Programming (EuroGP 2013), volume 7831,
pages 85-96, Vienna, Austria, April 3-5, 2013.

19. Ekaterina A. Smorodkina and Daniel R. Tauritz. Toward Automating EA Configuration: the Parent
Selection Stage. In Proceedings of CEC 2007 - IEEE Congress on Evolutionary Computation, pages 63-70,
Singapore, September 25-28, 2007.

137John R. Woodward, Daniel R. Tauritz25 April, 2018

References 4
20. Brian W. Goldman and Daniel R. Tauritz. Self-Configuring Crossover. In Proceedings of the 13th Annual

Conference Companion on Genetic and Evolutionary Computation (GECCO '11), pages 575-582, Dublin,
Ireland, July 12-16, 2011.

21. Matthew A. Martin and Daniel R. Tauritz. Evolving Black-Box Search Algorithms Employing Genetic
Programming. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO '13), pages 1497-1504, Amsterdam, The Netherlands, July 6-10, 2013.

22. Nathaniel R. Kamrath, Brian W. Goldman and Daniel R. Tauritz. Using Supportive Coevolution to Evolve
Self-Configuring Crossover. In Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO '13), pages 1489-1496, Amsterdam, The Netherlands, July 6-10,
2013.

23. Matthew A. Martin and Daniel R. Tauritz. A Problem Configuration Study of the Robustness of a Black-
Box Search Algorithm Hyper-Heuristic. In Proceedings of the 16th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO '14), pages 1389-1396, Vancouver, BC, Canada, July 12-
16, 2014.

24. Sean Harris, Travis Bueter, and Daniel R. Tauritz. A Comparison of Genetic Programming Variants for
Hyper-Heuristics. In Proceedings of the 17th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO '15), pages 1043-1050, Madrid, Spain, July 11-15, 2015.

25. Matthew A. Martin and Daniel R. Tauritz. Hyper-Heuristics: A Study On Increasing Primitive-Space. In
Proceedings of the 17th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO '15), pages 1051-1058, Madrid, Spain, July 11-15, 2015.

138John R. Woodward, Daniel R. Tauritz25 April, 2018

References 5
26. Alex R. Bertels and Daniel R. Tauritz. Why Asynchronous Parallel Evolution is the Future of Hyper-

heuristics: A CDCL SAT Solver Case Study. In Proceedings of the 18th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO `16), pages 1359-1365, Denver, Colorado, USA, July 20-
24, 2016.

27. Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent. Evolving Random Graph Generators: A Case for
Increased Algorithmic Primitive Granularity. In Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (IEEE SSCI 2016), Athens, Greece, December 6-9, 2016.

28. Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent. Evolving Multi-level Graph Partitioning
Algorithms. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (IEEE SSCI
2016), Athens, Greece, December 6-9, 2016.

29. Islam Elnabarawy, Daniel R. Tauritz, Donald C. Wunsch. Evolutionary Computation for the Automated
Design of Category Functions for Fuzzy ART: An Initial Exploration. In Proceedings of the 19th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO’17), pages 1133-1140, Berlin,
Germany, July 15-19, 2017.

30. Adam Harter, Daniel R. Tauritz, William M. Siever. Asynchronous Parallel Cartesian Genetic
Programming. In Proceedings of the 19th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO’17), pages 1820-1824, Berlin, Germany, July 15-19, 2017.

31. Marketa Illetskova, Alex R. Bertels, Joshua M. Tuggle, Adam Harter, Samuel Richter, Daniel R. Tauritz,
Samuel Mulder, Denis Bueno, Michelle Leger and William M. Siever. Improving Performance of CDCL SAT
Solvers by Automated Design of Variable Selection Heuristics. In Proceedings of the 2017 IEEE
Symposium Series on Computational Intelligence (SSCI 2017), Honolulu, Hawaii, U.S.A., November 27 -
December 1, 2017.

139John R. Woodward, Daniel R. Tauritz25 April, 2018

References 6

[32] John R. Woodward and Jerry Swan. 2014. Template method hyper-heuristics. In Proceedings of the
Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO
Comp '14). ACM, New York, NY, USA, 1437-1438. DOI=http://dx.doi.org/10.1145/2598394.2609843
[33] Saemundur O. Haraldsson and John R. Woodward. 2014. Automated design of algorithms and genetic
improvement: contrast and commonalities. In Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation (GECCO Comp '14). ACM, New York, NY, USA, 1373-
1380. DOI=http://dx.doi.org/10.1145/2598394.2609874
[34] John R. Woodward, Jerry Swan, "Why classifying search algorithms is essential", Progress in Informatics
and Computing (PIC) 2010 IEEE International Conference on, vol. 1, pp. 285-289, 2010.
[35] Hong L., Woodward J., Li J., Özcan E. (2013) Automated Design of Probability Distributions as Mutation
Operators for Evolutionary Programming Using Genetic Programming. In: Krawiec K., Moraglio A., Hu T.,
Etaner-Uyar A.Ş., Hu B. (eds) Genetic Programming. EuroGP 2013. Lecture Notes in Computer Science, vol
7831. Springer, Berlin, Heidelberg

