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Motivation

+ Evolutionary Computation (EC) techniques have been
frequently used in the context of computational

Introduction and Motivation creativity.

 Various techniques have been used in the context of
music and art (see EvoMusArt conference and DETA
track at GECCO).
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Motivation

+ Evolutionary algorithms have been frequently used to
optimize complex objective functions.

+ This makes them well suitable for generative art where
fitness functions are often hard to optimize.

 Furthermore, objective functions are often subjective to
the user.

Motivation

+ In terms of novel design, evolutionary computation
techniques can be used to explore new solutions in terms
of different characteristics.

 Evolutionary algorithms are able to adapt to changing
environments.

+ This makes them well suited to be used in the context of
artistic work where the desired characteristics may
change over time.

This Tutorial

» Summary of results in the areas of

— 2d and 3D artifacts
— Animations

» Overview on our recent work to create unique generative
art using evolutionary computation to carry out

— Image transition and animation
— Image composition
— Diversity optimization for images

Outline
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* Aesthetic Features
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Evolving 2D and 3D Artifacts

Evolving 2D and 3D Artifacts

Blind Watchmaker (Dawkins, 1986) evolved 2D
biomorph graphical objects from sets of genetic
parameters (combined with Darwinism theory).

Latham (1985) created Black Form Synth. These are
hand-drawn “evolutionary trees of complex forms” using
a set of transformation rules.

Evolving 2D and 3D Artifacts

* In 1991, Sims published his seminal SIGGRAPH paper.

» He introduced the expression-based approach of
evolving images.

» He created images, solid textures, and animations using
mutations of symbolic lisp expressions.

Evolving 2D and 3D Artifacts

The mathematical expression is represented as a tree
graph structure and used as the genotype.

The tree graph consists of mathematical functions and
operators at the nodes, and constants/variables at the
leaves (similar to genetic programming).

The resulting image is the phenotype.

To evolve sets of images, it uses crossover and mutation.




Evolving 2D and 3D Artifacts (Sims, 1997)

« In Galapagos (Sims, 1997) created an interactive
Darwinian evolution of virtual "organisms” based on
Darwinian theory.

« Several computers simulate the growth and
characteristic behaviours of a population of abstract
organisms.

« The results are displayed on computer screens.

Evolutinary Process (Sims, 1997)

+ The offspring are copies and combinations of their
parents.

 In addition, their genes are altered by random
mutations.

* During evolutionary cycle of reproduction and selection,
new organisms are created.

EC System (Sims, 1997)

The EC system allows users to express their preferences
by selecting their preferred display by standing on step
sensors in front of those displays.

The selected display is used for reproduction using
mutation/crossover. The other solutions are removed
when the new offspring is created.

Evolving 2D and 3D Artifacts (Latham,
Todd, 1992)

» Latham, Todd (1992) introduced Mutator to generate
art and evolve new biomorphic forms.

* The Mutator creates complex branching organic forms
through the process of “surreal” evolution.

* At each iteration the artist selects phenotypes that are
“breed and growth”, and the solutions co-interact.




Other Selected Contributions

« Unemi (1999) developed SBART. This is a design support
tool to create 2-D images based on user selection.

+ Takagi (2001) describes in the survey research on
interactive evolutionary computation (IEC) which
categorises different application areas.

» Machado and Cardoso (2002) introduced NEvAr. This is
an evolutionary art tool, using genetic programming and
automatic fitness assignment.

Other Selective Contributions

* Draves (2005) introduced Electric Sheep. The system
allows a user to approve or disapprove phenotypes.

* Hart (2009) evolved different expression-based images
with a focus on colours and forms.

» Kowaliw, Dorin, McCormack (2012) explore a definition
of creative novelty for generative art.

Image Morphing (Banzhaf, Graf 1995)

« Banzhaf and Graf (1995) used interactive evolution to
help determine parameters for image morphing.

+ They combine IEC with the concepts of warping and
morphing from computer graphics to evolve images.

» They used recombination of two bitmap images through
image interpolation.

Aesthetic Measures




Aesthetic Measures Aesthetic Measures

+ Computational aesthetic is a subfield of artificial
intelligence dealing with the computational assessment « Examples of aesthetic measurements:
of aesthetic forms of visual art.

- Benford’s Law
+ Some general image features that have been used are:

- Global Contrast Factor

- Hue . - Information Theory

- Saturation - Reflectional Symmetry

- Symmetry - Colorfulness

- Smoothness
Aesthetic Measures (den Heijer, Eiben 2014)
* den Heijer and Eiben (2014) investigated aesthetic

measures for unsupervised evolutionary art. Evolutionary Image Transition

» Their Art Habitat System uses genetic programming and
evolutionary multi-objective optimization.

+ They compared aesthetic measurements and gave
insights into the correlation of aesthetic scores.




Evolutionary Image Transition

* The main idea compromises of using well-known
evolutionary processes and adapting these in an artistic
way to create an innovative sequence of images (video).

 The evolutionary image transition starts from given
image S and evolves it towards a target image T

 Our goal is to maximise the fitness function where we
count the number of the pixels matching those of the
target image.

Evolutionary Image Transition

Algorithm 1 Evolutionary algorithm for image transition

e Let S be the starting image and 7T be the target image.
e Set X:=S.

e Evaluate f(X,T).

e while (not termination condition)

— Obtain image Y from X by mutation.
— Evaluate f(Y,T)
-IffY,T)> f(X,T),setX :=Y.

Fitness function: FX,T) = [{X;j € X | Xij = T}

Asymmetric Mutation

» We consider a simple evolutionary algorithm that has
been well studied in the area of runtime analysis, namely
variants of (1+1) EA.

» We adapt an asymmetric mutation operator used in
Neumann, Wegener (2007) and Jansen, Sudholt (2010).

Asymmetric Mutation

Algorithm 2 Asymmetric mutation

e Obtain Y from X by flipping each pixel X;; of X in-
dependently of the others with probability ¢s/(2|X]|s)
if X;; = Sij, and flip Xy; with probability c¢:/(2|X|r)
if X;; = T35, where ¢s > 1 and ¢; > 1 are constants,
we consider m = n.

+ for our experiments we set ¢, =100 and ¢;=50.




Example Images

Starting image S (Yellow-Red-Blue, 1925 by Wassily
Kandinsky) and target image T (Soft Hard, 1027 by
Wassily Kandinsky)

Video: Asymmetric Mutation

Uniform Random Walk

» A Uniform Random Walk - the classical random walk
chooses an element Xj; € N (X;;) uniformly at random.

* We define the neighbourhood N (X;) of Xj; as

N(Xi5) = {X -5 X+1)5: Xig-nXig+1) }

Uniform Random Walk

Algorithm 3 Uniform Random Walk

— Choose the starting pixel X;; € X uniformly at random.
— Set Xij = Tij.
— while (not termination condition)
e Choose X € N(X;;) uniformly at random.
o Set i:=k, j:=1and X;; :=Tj;.
— Return X.




Video — Uniform Random Walk

Biased Random Walk

» A Biased Random Walk - the probability of choosing the
element X, is dependent on the difference in RGB-values
for T;; and Tj,.

Biased Random Walk

Algorithm 4 Biased Random Walk

— Choose the starting pixel X;; € X uniformly at random.

- Set Xij = Tl]

— while (not termination condition)
e Choose Xj; € N(Xi;) according to probabilities p(X:).
e Set i:=k, j:=1and X;; :=Tj;.

— Return X.

Biased Random Walk
We denote by TZT], 1 <r < 3, the rth RGB value of T;; and define

3
7(Xk1) = max {Z Ti — Tj51, 1}
r=1

_ (1/7(Xw))
P = S e (A (X))




Mutation Based on Random Walks

* We use the random walk algorithms as part of our
mutation operators.

« Each mutation picks a random pixel and runs the
(biased) random walk for t,,,, steps.

 For our experiments we use 200x200 images and set
tnax=100.

Videos - Biased Random Walk
Evolutionary Algorithm

-
o

:

Random Walk Mutation and
Biased Random Walk Mutation

o o5 1 15 2 25 3 35

0 o5 1 15 2 25 3 35 4 o o5 1 15 2 25 3 35

o
Global Contrast Factor Mean Hue

Benford’s Law "
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SALA 2016 — Art Exhibition, Australia

SALA 2016 — Adelaide, Australia

© Aneta Neumann

© Aneta Neumann

Quasi-random Transition and Animation

Quasi-random Walks

* So far: Random walks as main operators for mutation
and transition process

* Quasi-random walks give a (deterministic) alternative
which is easy to control by a user.

11



Quasi-random Transition and Animation

General setting:

 There are k agents each of them painting their own
image I¥ through a quasi random walk. Quasi-random
walk is determined by the sequence that the agent uses.

* Process starts with a common image X.

« All agents paint on this image overriding X and previous
painting of other agents.

* This leads to complex animation processes.

« Image transition is a special case where all agents paint
the same image I.

Agent Moves

Move of an agent:

» Each pixel has a sequence of directions out of from
{left, right, up, down}.

* At each iteration, the agent moves from its current pixel

p to the neighbor pixel p’ determined by the current
position in the sequence at p.

« It paints pixel p’ with the current pixel in its sequence
and increases the position counter at p by 1 (modulo
sequence length).

Algorithm

Algorithm 1 QUASI-RANDOM ANIMATION

Require: Start image Y of size m x n. For each agent k, 1 < k < r, an image 1% of size m x n, sequence
S* and position counters c* (i, j) € {0,.. ., Sl 1<i<m1<j<n.

I X+Y

2: for each agent k, 1 < k < r do

3 choose P* € m x n and set X (P¥) := I*(PF).

4: end for

50t 1

6: while (t < tmax) do

7 for each agent k, 1 < k < r do

8 Choose P* € N(P*) according to Sk (c(P*)).

9: X (PF) « IF(P%)

10: F(PF) « (F(PF) +1) mod |S"|.
11: P PF,

12: end for

13: tet+1

14: end while

2 Agents Symmetric and Asymmetric
Sequences
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Example Video: 4 Agents Symmetric
Sequences

Example Video: 4 Agents Asymmetric
Sequences

Evolutionary Image Composition

Key Idea

» Create a composition of two images using a region
covariance descriptor.

+ Incorporate region covariance descriptors into fitness
function.

+ Use Evolutionary algorithms to optimize the fitness such
that a composition of the given two images based on the
considered features is obtained.

13



Image Composition

Evolutionary Image Composition Using
Feature Covariance Matrices

 Evolutionary algorithms that create new images based
on a fitness function that incorporates feature
covariance matrices associated with different parts of
the images.

 Population-based evolutionary algorithm with mutation
and crossover operators based on random walks.

Algorithm 1 (4 + 1) GA for evolutionary image composition
Require: S and T are images

1: Initialise population P = {Py,..., Py}

2. while not termination condition do

3 Select an individual P; € P uniformly at random

4 if rand() < p then » Crossover
5 Select P; € P \ P; uniformly at random

6 if rand() < 0.5 then > See Section 4.2 for fcr
7 Y « RANDOMWALKMUTATION(X,Z t.;)

8 else

9 Y « RECTANGULARCROSSOVER(P;,P;)

10: P; « SeLECTION(P;,Y)

1 else > Mutation
12: if rand() < 0.5 then

13: Y « RANDOMWALKMUTATION(P;,S, tmax)

14: else

15: Y « RANDOMWALKMUTATION(P;,T,tmax)

16: P; « SeLecTION(P;,Y)

17: Adapt tyay » See Section 4.1.
18: return » Result is a population of evolved images.

#3
square region of interest

{,’.‘1-.?’: S
/| ’ c=(+1)+pl p=0,1,..., \”‘T"J—l
F2T8| ~ L G ={(c,d) nel
\ ...— d=(l+1)+gql, g=0,1,..., TJ—I
' ~
\ #4
saliency mask

QA
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#5
set of features

e e p 2 T
et s [ifurg. (307 + ()% tan™ (11/1341)]
Set 2: [i,j, hs,v]";

e ) 2y T
Set 3: Ih,s.v, (::H“«»(:;:)l.lan"(m“/m: )I .

#6

fsm= Y (wh gdist (A%, A% ,) .
g’ (MRt covariance-based

sl adist (A%, A% L)) fitness function

Impact of Different Features

Image composition with different features. Rows 1, 2 and 3
correspond to Feature Sets 1, 2 and 3, respectively.

Rows 1, 2 and 3 correspond to W(Sc.d; set to $0.25$, $0.5$ and $0.75$ and w(Tc‘d) set to $0.75$, $0.5$ and $0.25$,
respectively. In the last row the weights were set using an image saliency aigorithm. The saliency algorithm strikes
a consistent balance between notable regions in both images.
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Impact of Distance Metrics

Rows 1, 2 and 3 correspond to distance metrics disty, dist, and
dist;, respectively.

Variants of Image Composition

Image composition with Feature Set 1, saliency-based weighting and
a Log-Euclidean distance measure.

Evolutionary Diversity Optimisation
for Images

Key Idea

» Produce diverse image sets using evolutionary
computation methods.

+ Use the (u + A)-EA, for evolving image instances

* Select the individuals based on their contribution to
diversity of the image.

1 5 10 15 20 Individuals
(0.613, 0.180) (0.541, 0.284) (0.577, 0.368) (0.595, 0.478)
R ; . ..% - e el

MRS
Symmetry a Hue
0.171715 0.343471

Saturation
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Evolution of Artistic Image Variants
Through Feature Based Diversity
Optimisation

* We use (u + A)-EA, to evolve diverse image instances.

+ Knowledge on how we can combine different image
features to produce interesting image effects.

+ Study how different combinations of image features
correlate when images are evolved to maximise
diversity.

Algorithm 1 The (u + A) — EAp algorithm  p=20andA =10
1: input: an image S.
2. output: a population P = {Ij,..., I} of image variants.
{Initialise with 4 mutated copies of source image}

3. P = {mutate(S),..., mutate(S)}

4 repeat

s:  randomly select C C P where |C| = A
6 for € Cdo

: produce I’ = mutate(I)
8 if valid(l’) then
9: addI'to P
10: end if
11:  end for
122 while |P| >y do
13: remove an individual I = arg min;pd(J, P)
14 end while
15: until Termination condition reached

#1
starting image

#2
pixel-based mutation

#3
image validity check

Image has mean squared error to starting image less than 10

#4
feature diversity measure
Liy I Livy
t t t
fh) = flla) = ... < f(I), fl1) # f(h) # flle)

dg, (1, P) = (f(I:) = f(Li=1)) X (f(Li+1) — f(L3))
d'(I,P)= Z" (wi x dg, (1, P))

[Gao, Nallaperuma, F. Neumann, PPSN 2016,arxiv2016]
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Single D1mens1onal Feature Results
10 15 20 Individuals
# 5 0.0494223 0.227052 0.44897 0.670894 0.89292

features A E % m :ﬂ

(@) Hue
0.0381802 0.235274 0.481576 0.727868 0. 974100

(b) SDHue
00342854 0171715 0.343471 0.515221 0.686967

P ; 25
S ! : i

(c) saturation

0.0087278 0.28193 0.510935 0.739986 0.969124

ﬁ % % P

(d) Global Contrast Factor

Single Dimensional Feature Results

1 5 10 15 20 Individuals
0.446555 0.563318 0.707743 0.851174

(e) Information Theory

0.872632 0.928723 0.984815

f) Smoothness

0.620196 0.718606 0.817019 0.915438

(8) symmetry

Two-Dimensional Feature Experiments

(0.541, 0.284)

‘Sm

10605, 0.478)
= 7Y

(0.869, 0.223) (0.890, 0.245) (0.915, 0.453) (0.827, 0.509)
b o » B E =

a) Symmetry and Hue 20 Individuals
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