
Dynamic Parameter Choices

in Evolutionary Computation

1

Carola Doerr
CNRS and Sorbonne University, Paris, France

Tutorial held at GECCO 2018, Kyoto, Japan

http://gecco-2018.sigevo.org/

The latest version of these slides can be found on my homepage:
http://www-ia.lip6.fr/~doerr/DoerrGECCO18tutorial.pdf

Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses,

contact the Owner/Author.

GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5764-7/18/07.

https://doi.org/10.1145/3205651.3207851
Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Tutorial Presenter: Carola Doerr
 Carola Doerr, formerly Winzen, is a permanent researcher

with the French National Center for Scientific Research (CNRS)

and the Computer Science Department LIP6 of

Sorbonne University in Paris, France

 Research topics:

 Evolutionary Algorithms and other randomized heuristics

 Theory and Empirics of Parameter Control

 Running Time Analysis

 Black-Box Complexity

 Discrepancy Theory

 Selected formal roles:

 Chair of the GECCO theory track in 2015 and 2017

 Guest Editor of two special issues in Algorithmica

 Co-organizer of two Dagstuhl seminars on Theory of Randomized

Optimization Heuristics (2017 and 2019)

 Vice chair of COST action 15140 on Improving Applicability of Nature-

Inspired Optimisation by Joining Theory and Practice (ImAppNIO)

2

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Topic of this Tutorial: Parameter Control

3

 to identify good parameter

values “on the fly”

 to track good parameter values

when they change during the

optimization process

My Goal for this tutorial:

to inspire and to enable you to experiment with dynamic

parameter choices

Goals of Parameter Control

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Focus: Discrete Black-Box Optimization

Our focus will be on discrete black-box optimization

 in continuous optimization, adaptive parameter choices are standard

 similar mechanisms are used in continuous optimization, often (but not

always) originating from a similar source of inspiration

even if your main interest is in continuous optimization, the

mechanisms discussed below can (almost surely) be applied to your

settings

Many examples in this tutorial originate from the theory of EC literature

 the problems and algorithms are easy to understand and to explain in

the given time frame (“pure”, “sterile” environments)

 we can compare performances with that of provably optimal algorithms

 the mechanisms are essentially the same as those used in practice
(but algorithms and problems are simplified)

 even if you are not (yet) interested in theoretical work, this tutorial

offers a structured way to think about parameter control and provides

many pointers to relevant literature (cf. also the reference list on the last slides of this

handout, I preferred to add more content in the handout than what can be discussed in the tutorial)

4

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Survey Articles

In 110 minutes we cannot discuss all existing works. Summaries of the

state-of-the-art and pretty complete lists of references can be found in these

surveys (see reference list on the last pages of these tutorial slides for details)

 Empirical works:

 Karafotias, Hoogendoorn, Eiben, 2015 [KHE15]
(an up to date survey of empirical works)

 Aleti, Moser, 2016 [AM16]
(additional pointers, systematic literature survey)

 Eiben, Hinterding, Michalewicz, 1999 [EHM99]
(classic seminal paper, introduces a now widely accepted classification scheme)

 Lobo, Lima, Michalewicz, 2007 [LLM07]
(book on parameter selection, includes chapters on tuning and control)

 Theoretical works:

 Doerr, Doerr, 2018 [DD18b]
(summarizes the state-of-the-art of theoretical works which prove performance

bounds with mathematical rigor; introduces the revised classification scheme

discussed below)

5 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Questions and Feedback

 Don’t hesitate to ask questions

 If I am using a term that you don’t know, it is likely that

someone else in the room does not know it either

 Same holds if I am unable to get my message across

 Comments are very welcome

 please share your experience with parameter selection!

 I appreciate your feedback

 which parts did you (not) like?

 was the speed accurate?

 is there anything that you would like to see changed?

 Related literature

 If you know of any works that should be cited in this tutorial,

please kindly let me know

6

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 1:

Motivating Example

7 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

The LeadingOnes Problem (1/2)

 Classic benchmark problem often studied in the theory of evolutionary

computation (as one the simplest examples of a non-separable function)

 Original function:

LO: 0,1 � → ℝ,
 ↦ LO
 = max � ∈ � ∀� ≤ �:
� = 1}

 Looks like a “stupid” problem? For most EAs, it is equivalent to this one:

LO�,�: 0,1 � → ℝ,
 ↦ LO�,�
 = max � ∈ � ∀� ≤ �:
� � = �� � }

1 1 0 1 1 0 1 1 LO-value: 2 (2 initial ones)

1 1 0 1 1 0 1 1 LO�,�-value: 3 (first 3 bits

in the order prescribed by � are

coincide with those of �)

0 0 0 1 1 0 1 1

4 8 5 1 7 2 6 3

secret code �

secret permutation �

8

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

The LeadingOnes Problem (2/2)

 Only way to optimize the LeadingOnes function is to identify the bits one

after the other*

 Most EAs need � �� function evaluations to optimize this function
[and this is the best you can do with unary unbiased (i.e., purely mutation-based) EAs

[LW12]. Crossover-based EAs can be faster [DJK+11,AAD+13]]

9

* it can be formally shown that the advantage of a parallel exploration

is not very significant [AAD+13]. We won’t discussed any details today

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

(1+1) !"# with Adaptive Mutation Rates

Simple (1+1) EA"& variant from [DW18] (will be presented at GECCO’18!)

 Initialization:

1. Choose
 ∈ 0,1 � uniformly at random (u.a.r.).

2. Initialize ' = 1/�

 Optimization: in iteration) = 1,2, … do

1. create , from
 by standard bit mutation w/ mutation rate ',

make sure that , ≠
, by re-sampling if necessary

2. If . , ≥ .

 replace
 by , \\ selection

 replace ' by 0' \\ parameter update

3. If . , < .

 replace ' by 2' \\ parameter update

10

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Motivating Example (from [DW18])

 Results for LeadingOnes, � = 250

 Update strengths: 0 = 2, 2 = 1/2

 Plot compares optimal mutation strengths with the ones found by the

adaptive (1+1) EA"&

11 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Motivating Example (from [DW18])

 Results for LeadingOnes, � = 250

 Update strengths: 0 = 2, 2 = 1/2

 Plot compares optimal mutation strengths with the ones found by the

adaptive (1+1) EA"&

 Same plot, logarithmic scale, zoom into LO
 ≤ 150:

12

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Motivating Example (from [DW18])

 Running time for update strengths 0 = 2, 2 = 1/2

 around 20.5% performance gain over the (1+1) EA"& with static

mutation rate ' = 1/�

 14% performance gain over RLS

 larger gains possible for other combinations of 0 and 2 (cf. [DW18] for details)

13

(empirical performance)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Motivating Example (from [DW18])

Zooming into the optimization process:

comparison of fixed-target running time

14

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Motivating Example (from [DW18])

The performance gain is not very sensitive with respect to the choice of the hyper-

parameters 0 and 2:

More than 60% of all configurations with 1 < 0 ≤ 2.5 and 0.4 ≤ 2 < 1 are better than

RLS (!) by at least 10%:

15 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Motivating Example (from [DW18])

The performance gain is not very sensitive with respect to the choice of the hyper-

parameters 0 and 2:

Heatmap shows average optimization time for different combinations of 0 and 2 for

the adaptive (1+1) EA on 500-dimensional LeadingOnes

(the static (1+1) EA"& needs ≈ 135,000 function evaluations, RLS 125,000)

16

configurations

w/ T<150,000

Typical values for 0 and 2 are

 0 = 2, 2 =
8

�
(gives an avg runtime of ≈ 104,000)

 1/5th success rule:

0 =
:

�

8/;
≈ 1.11, 2 =

�

:
(gives an avg runtime of ≈ 115,000)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 2:

Parameter Setting Matters!

(and a little bit of history of parameter control)

17 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simplified EA Blueprint

To simplify our discussions, we will use the following blueprint to model

evolutionary algorithms. (The mechanisms presented below can also be used to adapt

the parameters of other heuristics, which do not follow this scheme!)

18

Initialization of the population:

Sample search points X =
8, … ,
=

Variation:

Create > offspring by recombining and mutating search points from ?

Selection:

Update population ?

Stop?
Output best search

point(s) seen

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

(Almost) All EAs are Parametrized

 Here is a “typical” evolutionary algorithm, a (@ + >) EA with crossover

 There are quite a few parameters that need to be decided upon

 One of the most important questions in EC: how to choose these parameters???

19

Initialization:

Sample at random
8, … ,
= ∈ 0,1 �

Variation: For i = 1, … , > do

with prob. C do: ,� ←crossover(
F ,
G) for �, H ∈ @ chosen at random

then/otherwise: set ,� ←mutate(
F) for randomly selected �

Selection:

From
8, … ,
=, ,8, … , ,I select @ search points of largest fitness

Stop?
Output best seen

search point(s)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Are Parameter Values Important?

 The very early days of EC:

“EAs are robust problem solvers”

 no need to tune parameters!

 However, it was soon realized that this hope does not (and, in fact,

cannot, as the “no free lunch” theorems tell us) materialize. It is today

widely acknowledged that the parameter values have a decisive

influence on the performance of an EA.

 Big open question (to date!): How to find good parameter values?

20

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Globally Good Parameter Values?

 “Sports” of the 70s/80s in EC: Finding good parameter values

 good = “globally good”, i.e., for a broad range of problems

 Examples: De Jong [DJ75], Grefenstette [Gre86] give

recommendations for parameters such as population size, mutation

and crossover probabilities, selection strategies, etc.

 these recommendations are independent of problem class,

problem size, … (absolute values)

 Mühlenbein [Müh92] and others suggest 1/� as mutation rate for

problems of lengths � (relative values)

 Note: we know today that this choice indeed works well for a

broad range of problems, cf. discussion below. However, it is

widely acknowledged today, that problem size is not the only

feature that matters.

21 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Parameter Tuning

 “Modern view” of parameter selection: no globally optimal parameter

values exist

 parameters need to be tuned to the problem at hand

 Typical tuning approach:

 run some initial tests and observe how the performance depends on

the chosen parameter values

 choose the parameter values that seem most promising

 Quite sophisticated tools for parameter tuning are available:

 irace [LDC+16], SPOT [BBFKK10], GGA [AMS+15], ParamILS

[HHLBS09], SMAC [HHLB11]

 Advantage of these tools: automated identification of reasonable

parameter values

 Disadvantage: recommended parameter values are static!

The bulk of EC papers with a focus on discrete optimization problems

analyzes EAs’ performance with respect to some fixed set of

parameters! (How about your latest work?)

22

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Difficulty of Finding Good Parameter Choices

1. Even if we find “optimal” parameter values for one problem, these may

(!, don’t have to) be much different for similarly-looking problems

2. Small changes in one parameter can (!, don’t have to) cause huge

performance gaps

 Many empirical works on this matter exist (again, check this year’s

GECCO talks to see if/how much effort has been put into finding the

right parameters)

 Example: LeadingOnes

23 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Difficulty of Finding Good Parameter Choices

1. Even if we find “optimal” parameter values for one problem, these may

(!, don’t have to) be much different for similarly-looking problems

2. Small changes in one parameter can (!, don’t have to) cause huge

performance gaps

 Many empirical works on this matter exist (again, check this year’s

GECCO talks to see if/how much effort has been put into finding the

right parameters)

 Example: (plot on previous slide)

 Those of you interested in theoretical results can find in [DoerrJS+13]

or [LS16] examples where changing the mutation rate by a small

constant factor changes the expected running time from a small

polynomial (e.g., �(� log �)) to super-polynomial/exponential

24

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Aim of Parameter Control

25

 To identify good parameter

values “on the fly”

 To track good parameter values

when they change during the

optimization process

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

“On the Fly” Identification of Good Parameter Values

26

Example: OneMax: OM: 0,1 � → ℝ,
 ↦ ∑
�
O
� (“drosophila” of EC theory)

for most EAs, this problem is equivalent to the Hamming distance problem:

HD�: 0,1 � → ℝ,
 ↦ # �
� = ��}

 for most of the time a static choice of flipping one bit per iteration is

optimal

(less than 6% of the total

optimization time spend in

area where flipping more

than 1 bit is optimal)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Tracking Dynamic Optimal Values

27

Example: The LeadingOnes Problem.

Looking again at the 250-S example from above, we see that about 40% of

the total optimization time is spend in stages in which flipping more than 1

bit is optimal

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Aim of Parameter Control

28

Important: Not only constant factor improvements,

but also asymptotic factor gains possible! (cf. page 71 for an example)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 3:

Parameter Control – Introduction

29 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Basic Intuition

The most basic parameter control techniques use the following intuition

 beginning of the optimization process = “exploration phase”, i.e.,

we want to explore different areas of the search space

 use a large mutation rates to allow for large jumps

 use small selective pressure to overcome local optima more easily

 end of the optimization process = “exploitation phase”

 small mutation rates/high selective pressure to focus the search

30

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Main Questions in Parameter Control

1. Which parameter is adapted?

(and who is affected: 1 individual vs. whole population)
1. Population size

2. Mutation rate, Crossover probability

3. Selection pressure

4. Fitness function (e.g., penalty terms for constraints)

5. Representation

6. …

2. What is the basis/evidence for the update?
1. time elapsed: number of fitness evaluations, generation count, CPU time

2. progress, e.g., in terms of absolute or relative fitness gain

3. diversity measures

4. …

3. How do we select the parameter(s):
1. multiplicative updates

2. learning-inspired parameter selection

3. endogenous/self-adaptive parameter selection: use EAs to find good values

4. hyper-heuristics

5. …

31 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Classification Scheme of [EHM99]

 Many attempts to find unifying taxonomy for parameter choices exist (cf.

page 168 in [KHE15] for a survey)

 To date, the most popular classification scheme is that of Eiben,

Hinterding, Michalewicz [EHM99], which we discuss on the next slides

32

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Classification Scheme of [EHM99]

 First level of differentiation: discriminate between parameter tuning and

parameter control

33

parameter setting

parameter controlparameter tuning

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Classification Scheme of [EHM99]

34

parameter setting

parameter controlparameter tuning

self-adaptiveadaptivedeterministic

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

parameters encoded

in the genome

no feedback from

optimization process

update rules depend on

optimization process

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Key intuition:

 Belief that optimal parameters often follow a similar pattern

 Example pattern: “first allow for exploration, then for exploitation”

 to stimulate or enforce such a pattern, time-dependent parameter

settings can be used (where time = number of generations, fitness evaluations, wall-

clock time, etc.)

 Examples:

1. cooling schedule of the selective pressure (“temperature”) in

selective pressure of Simulated Annealing. Often used update

scheme: T()) = UVT 0 (multiplicative updates)

2. start with some (large) mutation rate '(0), decrease ' after

every 10,000 fitness evaluations

3. after each 1,000 iterations, draw a random mutation probability

35

“Deterministic” Parameter Control

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Remarks on “Deterministic” Parameter Control

 The last example on the previous slide shows that---as already acknowledged in

[EHM99]---the term “deterministic” is not very well chosen

 the choice can be random!

 the only important feature is that it depends only on the time elapsed so far,

and not on any other feedback of the optimization process

 More suitable terms could be

 “time-dependent”, “scheduled” update scheme, or

 “feedback-free”, “progress-independent” update scheme

but in lack of a widely acknowledged alternative, “deterministic update rule” is

still the predominantly used term

 Also note that finding the optimal deterministic update rules requires tuning, i.e.,

while they bypass the disadvantage of the non-flexible static parameter values,

they do not allow the algorithm to identify the good parameter values by itself

36

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Examples for “Deterministic” Parameter Control (1/2)

 Some selected theory works:

 Hesser and Männer (PPSN’90) [HM90] suggested the following rule for the

mutation strength of a GA with population size > for OneMax:

'W) ≔

Y

Z

O
[\] ^

_`

a

I �O where U, b, c are constants

 Jansen Wegener [JW06]: mutation rate changes in every iteration

 'V � ≔ 2�/� where � ≡) − 1 mod log � − 1

+/- very frequent changes non-stable algorithm

- worse performance on simple functions like OneMax, linear functions,

LeadingOnes, etc.

+ examples where better performance than any static choice can be proven

 Doerr, Doerr, Kötzing [DDK18]: in every iteration, a random step size is used

for a multi-valued OneMax-type problem (this problem will be discussed in

more detail in the next section, along with a self-adjusting parameter choice.

the algorithm that we refer to here is the one using a static probability

distribution from which the step sizes are sampled)

37 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Examples for “Deterministic” Parameter Control (2/2)

 Random Variation of the Population Size GA (RVPS) by Costa, Tavares,

and Rosa [CTR99]

 size of the actual population is changed every N fitness evaluations,

for a given N (according to some monotonous rule)

 Both shrinking and increasing the population size are considered

 Saw-tooth like population size growth considered by

 Koumousis and Katsaras in [KK06] (TEC 2006): linear decrease of

population size with eventual re-initialization of the population size by

adding randomly selected individuals

 Hu, Harding, Banzaf [HHB10]: inverse saw-tooth like population sizes

38

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Classification Scheme of [EHM99]

39

parameter setting

parameter controlparameter tuning

self-adaptiveadaptivedeterministic

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

parameters encoded

in the genome

no feedback from

optimization process

update rules depend on

optimization process

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Self-Adaptive Parameter Control

 Parameter Control Idea 2:

Finding good parameter values is difficult

+ EAs are good problem solvers

= Use an EA to determine parameter values

 Many different ways to do this. Examples (sketched, much room for

creativity here!):

1. Create a new population of parameter values, choose from this

parameter values, possibly apply variation to them, and employ

them in your EA, select based on progress made

2. append to the solution candidates a string which encodes the

parameter value, first mutate the parameter value part, then use

this parameter to change the search point, selection as usual

40

1 1 0 1 0 0 1 11 1 0 0 1 1…

search point parameter value

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Examples for Self-Adaptive Parameter Choices

 We won’t discuss this in much detail, but if you are interested in such

mechanisms, you can start your investigations with the following works

 Bäck (PPSN’92) [Bäc92] and follow-up works: extends the

chromosome by 20 bits. Mutation works as follows:

1. Decoding the 20 bits to the individual’s own mut. rate 'W

2. Mutating the bits encoding 'W with mutation probability 'W

3. Decoding these changed bits to '′W

4. Mutating the bits that encode the solution with mutation

probability '′W

 Dang, Lehre (PPSN’16) [DL16] and B. Doerr, Witt, Yang (GECCO’18)

[DWY18] : theoretical works on a self-adaptive choice of the mutation

strength in a non-elitist population

41 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Classification Scheme of [EHM99]

42

parameter setting

parameter controlparameter tuning

self-adaptiveadaptivedeterministic

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

parameters encoded

in the genome

no feedback from

optimization process

update rules depend on

optimization process

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

 Parameter Control Idea 3:

 use feedback from the optimization process

 change the parameters according to some pre-described rule

 Relevant feedback includes:

 function values of the search points in the population

 diversity of the search points

 absolute or relative progress obtained within the last τ iterations

 …

In my opinion, adaptive control mechanisms offer a very promising direction

for future work. The remainder of this tutorial therefore has a strong focus on

such update mechanisms

43

Adaptive Parameter Control

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example: Success-Based Multiplicative Success

The above-mentioned (1+1) EA"& variant from [DW18] uses success-based

multiplicative updates:

 Initialization:

1. Choose
 ∈ 0,1 � uniformly at random (u.a.r.).

2. Initialize ' = 1/�

 Optimization: in iteration) = 1,2, … do

1. create , from
 by standard bit mutation w/ mutation rate '
(make sure that , ≠
, by re-sampling if necessary)

2. If . , ≥ .

1. replace
 by , \\ selection

2. replace ' by 0' \\ parameter update

3. If . , < .

replace ' by 2' \\ parameter update

44

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

 The terms “deterministic”, “adaptive”, and “self-adaptive” have not been

formally defined

 be aware that they are not used very consistently in the literature

 Since [EHM99] almost 20 years have passed.

 The field has advanced considerably

(but maybe not to the extend it should have, as also noted in [KHM15])

 we feel that time has come to introduce a different taxonomy

45

Comment on Classification Scheme of [EHM99]

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Revised Classification [DD18b]

46

parameter setting

parameter controlparameter tuning

endogenous/

self-adaptive

success-

based

state-

dependent

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

hyper-

heuristics

learning-

inspired

This classification scheme will be discussed

in detail in the next section

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 4:

Examples for Parameter Control

Mechanisms

47 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 4a:

State-Dependent

Parameter Selection

48

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

State-Dependent Parameter Selection

 State-dependent parameter selection mechanisms do not depend on the

history of the optimization process, but only on the current state

 Analogy for this functional dependence: take a “screenshot” of the current

population and map it to parameter values

 Most commonly used indicators for the state of the algorithm:

 time elapsed so far (# fitness evaluations, iteration counter, CPU time, ...)
 corresponds to “deterministic” parameter setting in the classification [EHM99]

 function values (absolute values, diversity, ranks,…)

 genotypic properties (e.g., diversity of the population)

49

' = 0.006
C = 0.78
@ = 13
> = 27

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Revised Classification [DD18b]

50

parameter setting

parameter controlparameter tuning

endogenous/

self-adaptive

success-

based

state-

dependent

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

hyper-

heuristics

learning-

inspired

diversity-dependent
(cf. [KHE15])

…time-dependent
(cf. page 35 for examples)

fitness-dependent
(cf. page 51)

rank-dependent
(cf. page 54)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Fitness-Dependent Parameter Selection

 Requires a good understanding of how the parameters should depend on

the function values

 Has been looked at

 empirically, e.g., Bäck [Bac92,Bac96], Fialho, Da Costa, Schoenauer,

Sebag PPSN’08 [FCSS08] for OneMax

51

Figure 1 in [FCSS08]

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Fitness-Dependent Parameter Selection

 Requires a good understanding of how the parameters should depend on

the function values

 Has been looked at

 empirically, e.g., Bäck [Bac92,Bac96], Fialho, Da Costa, Schoenauer,

Sebag PPSN’08 [FCSS08] for OneMax

 theoretically, e.g., [DDY16b,BLS14] for OneMax and [BDN10,DW18]

for LeadingOnes

52

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Fitness-Dependent Parameter Selection

In situation in which the optimal parameter choice depends only on the

function value of the current best solution* these bounds help us bound the

maximal potential of parameter control, i.e., they tell us how much an ideal

parameter control technique could gain over the best static parameter setting

53

Note that the

gradient of these

fixed-target

curves is

essential here!

*for many EAs, in particular (1+>)-type EAs, this is the case when
optimizing OneMax or LeadingOnes problems

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Rank-Dependent Parameter Selection

 Basic idea:

 bad search points should undergo large variation (large mutation rates)

 good individuals should be modified only moderately (small mutation rates)

 Example:

 Cervantes, Stephens IEEE TEC [CS09]:

 rank search points in the current population

 each search point is assigned a mutation rate that depends on its

rank:

 rank 1: mutation rate 'l�� // best individual of population

 ... (linear interpolation)

 rank s: mutation rate 'lm\ // worst individual of population

 the rank-based GA first selects an individual from the population

and then modifies it with the mutation rate given by this ranking

 Theoretical study of this algorithm are available in [OLN09]

54

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 4b:

Success-Based

Parameter Selection

55 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Revised Classification [DD18b]

56

parameter setting

parameter controlparameter tuning

endogenous/

self-adaptive

success-

based

state-

dependent

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

hyper-

heuristics

learning-

inspired

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Success-Based Parameter Selection

 Basic idea: after each (or after every n) iteration(s) adjust the current

parameter value depending on whether or not the last (n) iteration(s) have

been successful

 Examples for “success”:

 a strictly better search point has been found

// this is probably the most common measure

 a search point of at least the same fitness has been found

// used by the adaptive (1+1) EA"& from [DW18]

 a fitness-increase of at least x% could be observed

 the diversity has been increased

 …

 Success-based parameter selection is classified as “adaptive parameter

control” in the taxonomy of [EHM99]

57 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

The 1/5th Success Rule (1/2)

58

 Probably the most famous success-based parameter adaptation rule

 Rechenberg [Rec73]:

 observed that for the sphere function and a corridor landscape the

optimal success rate of the (1+1) ES is around 1/5 (i.e., there is some

theoretical foundation of this rule)

 Suggestion:

If (observed success rate > 1/5) increase mutation rate

If (observed success rate < 1/5) decrease mutation rate

 similar rules have been proposed by

Schumer, Steiglitz 68 [SS68] and Devroye [Dev72]

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

The 1/5th Success Rule (2/2)
 Rechenberg’s 1/5th success rule:

If (observed success rate > 1/5) increase mutation rate

If (observed success rate < 1/5) decrease mutation rate

 Intuition:

 when success is too likely to happen, we seem to be in an easy part of

the optimization problem

increasing mutation rates might result in larger progress per step

 when success is happening too seldom, we could be approaching the

optimum and should focus our search

decrease mutation rate for a more conservative search

 Note 1: there is also justification to do this the other way around, i.e.,

If (iteration successful) decrease mutation rate

If (iteration not successful) increase mutation rate
(think of jump functions or other functions with a local optimum from which the algorithm

needs to escape)

 Note 2: the same idea can also be used to control other parameters, such as the

population size, crossover probabilities, etc.

59 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Multiplicative Updates

60

 We have seen in Section 1 an example for a success-based update rule,

the (1+1) EA with dynamic mutation rates. It uses the following update

rule

1. If iteration was successful (i.e., if . , ≥ .
)

replace ' by 0' \\ update strength 0 > 1

2. If iteration was not successful (i.e., if . , < .
)

replace ' by 2' \\ update strength 2 < 1

 An interpretation of the 1/5th success rule from [KMH+04] recommends to

use p = q/r q/s

 Example: 2 = 2/3, 0 = 3/2 8/; ≈ 1.10668 … [also used in [Aug09]]

 Intuition: if one our of 5 iterations is successful, the parameter value

does not change

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

(1+1) !"# with Success-Based Mutation Rates

 The algorithm from Section 1 works also on OneMax, for a broad range

of parameters: (for more details, come to our GECCO talk in the GA track)

61

Average optimization times for 1500-dimensional OneMax

for different combinations of update strengths 0 and 2

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simple Success-Based Rules: Example 1

 Lässig, Sudholt: Adaptive Population Models for Offspring Populations

and Parallel Evolutionary Algorithms, FOGA 2011 [LS11]:

 regard the 1 + > EA

 an iteration is called successful if it produces an offspring of better

than previous best fitness value

 Scheme A:

 If (iteration not successful) double >
If (iteration successful) reduce > to 1

 Scheme B:

 If (iteration not successful) double >
If (iteration successful) halve >

 Main results: decreased expected parallel optimization times without

increasing the expected sequential runtime for problems like

OneMax, LeadingOnes, Jump, unimodal functions

62

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simple Success-Based Rules: Example 1

 Similar mechanism has been proposed by Jansen, De Jong, Wegener

ECJ 2005 [JDW05]:

 Scheme C:

 If (iteration not successful) double >
If (iteration successful) replace > by >/s where u is the nbr

of better offspring

 Jansen, De Jong, Wegener showed that this principle works well in

practice, but did not analyze it theoretically

63 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simple Success-Based Rules: Example 1

Below are results from [DYvR+18] for LeadingOnes

 more details in our GA track presentation

64

schemes A

and B

scheme C

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simple Success-Based Rules: Example 2

 In [DDK18] we regard a multi-valued version of OneMax

 Reminder: OneMax function

 traditionally, OM is the counting-ones function OM
 = �
� = 1 |

 generalization:

 unknown target string � ∈ 0,1 �

 fitness OM�
 = �
� = �� | = � − w(
, �) = number of bits in

which
 and � agree.

(For � = 1, … , 1 , OM� = OM = counting-ones function)

 Maximization of OM�= find � = minimize the Hamming distance to �

 Multi-valued version � ∈ 0,1, … , x − 1 �

 .�
 = ∑ S
� , ��
O
�y8,…,� where S . , . is some distance function,

e.g., S z, 2 = |2 − z| (interval metric) or

S z, 2 = min { 2 − z , |2 − z + x|, |2 − z − x|} (ring metric)

 Algorithm: RLS-type algorithm with component-wise step sizes

(blackboard, or see next slide)

65 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simple Success-Based Rules: Example 2

 For suitable z > 1 and 2 < 1 (e.g., z ∈ 1.7, 2 and 2 ∈ 0.8,0.9) this

algorithm achieves an expected optimization time of

Θ � log � + log x , which is best possible among all (static and non-

static) parameter choices

 We do not know if any static parameter choice can achieve this

performance

66

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Simple Success-Based Rules: Example 3

 The following example requires a bit of time

 I decided to invest this time because

 I think that this algorithm is worth it

 this is an example where we can formally prove that the simple

success-based rule is better than any static parameter choice, and this

not only by a constant factor

 there are quite a few open questions, interesting for both empirically-

and theory-oriented researchers

 References for this part:

1. [DDE13] (GECCO 2013) and [DDE15] (TCS 2015, journal version of

[DDE13]) suggested the (1+(�, �)) GA

2. [DD18a], which is a summary of

 [DD15b] (GECCO’15): optimal bounds for static parameter settings

 [DD15a] (GECCO’15): analysis of self-adjusting mechanism

 [Doe16] (GECCO’16): lower bound for 3-dimensional parameter space

67 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

The (1+(�, �)) GA

1. Initialization: Sample
 ∈ 0,1 � u.a.r.

2. Optimization: for) = 1,2,3, … do

3. Mutation phase:

4. Sample ℓ from �(�, ');

5. for � = 1, … , > do Sample
(�) ← mutℓ
 ;

6. Choose
’ ∈ {
 8 , … ,
(I)} with .(
’) = max {.
 8 , … , .(
(I))};

7. Crossover phase:

8. for � = 1, … , > do Sample ,(�) ← cross�
,
′ ;

9. Choose , ∈ {, 8 , … , ,(I)} with .(,) = max {. , 8 , … , .(,(I))};

10. Selection step: if . , ≥ .(
) then replace
 by ,;

0 1 0 1 0 0 0 0

0 0

1

1

0 0

1 0 1 0 0

(�)

0 1 0 1 0 0 0 0

0 0 1 1 0 1 0 0

0

0

1

1

1

1

1 0

0

00

1 0 0 0 0

′

,(�)

68

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

The (1+(�, �)) GA

1. Initialization: Sample
 ∈ 0,1 � u.a.r.

2. Optimization: for) = 1,2,3, … do

3. Mutation phase:

4. Sample ℓ from �(�, ');

5. for � = 1, … , > do Sample
(�) ← mutℓ
 ;

6. Choose
’ ∈ {
 8 , … ,
(I)} with .(
’) = max {.
 8 , … , .(
(I))};

7. Crossover phase:

8. for � = 1, … , > do Sample ,(�) ← cross�
,
′ ;

9. Choose , ∈ {, 8 , … , ,(I)} with .(,) = max {. , 8 , … , .(,(I))};

10. Selection step: if . , ≥ .(
) then replace
 by ,;

 Quite a few parameters that need to be chosen

 Analyzing the performance of the algorithm on OneMax, we observed

that ' = >/� and C = 1/> are good choices, reducing the 3-dimensional

parameter space to a 1-dimensional one

69 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

How to Chose � in the (1+(�, �)) GA?

 We analyzed the performance of the (1+(�, �)) GA on OneMax

 First “quick&dirty” result: for > = �(log � O) the expected runtime of the

(1+(�, �)) GA on OneMax is �(� log � O
) [DDE13]

 This bound has later been slightly improved in [DD15b]:

for > = �(log (�) log log(�) / log log log(�) O) the expected runtime of the

(1+(�, �)) GA on OneMax is �(� log (�) log log log(�)/ log log �
O

)

 No other (static!) combination of ', C, > can yield a better runtime [Doe16]

70

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

How to Chose � in the (1+(�, �)) GA?

 In [DDE13] we also observed that a fitness-based choice of > gives a

better result: for > =
�

�^�(�)

O
, the expected runtime of the (1+(�, �)) GA on

OneMax is � �

 This linear runtime is better than what any (!) static parameter value

can achieve (by the results presented in [Doe16])

 one of the few examples where a non-static choice can be

proven (with mathematical rigor) to outperform static parameter setting

 Linear runtime can also be shown to be the best possible achievable

runtime

 Disadvantage of this non-static, fitness-dependent choice:

hard to guess such a functional relationship! (it was not very difficult to see it

from the proofs, but in practice, guessing such a relationship is probably not feasible)

 Main question:

Is there a way to achieve similar performance in an automated way?

71 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Self-Adjusting � in the (1+(�, �)) GA (2/2)

 Can the algorithm find good (or optimal) values for > by itself?

 Idea: simple success-based rule.

 If at the end of an iteration

 we have an improvement (. , > .
) then > ← >/�;

 No improvement (. , ≤ .
) then > ← >�8/;;

 Why did we try this discrete 1/5th success rule?

 By chance… We knew about it from the works [Aug09] and

[KMH+04], we tried it, and it worked…

 We actually did not (not yet…) experiment with this rule, and it is not

unlikely that other update mechanisms yield even better performance.

For the time being, we were happy with the results presented next
(If you are interested in investigating these choices further,

please talk to me!)

72

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Experimental Results for

Self-Adjusting (1+(�, �)) GA on OneMax

73 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Self-Adjusting Choice Imitates the

Optimal Fitness-Dependent Parameter Choice

74

 Plot shows one representative run of the self-adjusting (1+(�,�)) GA on

ONEMAX for � = 1,000

 In [DD15a] we could prove, with mathematical rigor, that the simple

success-based rule suggested above indeed yields linear (and thus

asymptotically optimal !) performance

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Good Performance Also for Other Test Functions

 Performance on linear functions with random weights in [1,2]

 Average over 1,000 runs

75 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Good Performance Also for Other Test Functions

 Performance on royal road functions with block size 5

 Average over 1,000 runs

 Modified self-adjusting parameter choice: no update if fitness does not

change

76

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Surprise: Performance on MaxSAT
(and a number of other combinatorial problems)

77

 Graph taken from [GP15]: Goldman, Punch ECJ 2015. It shows number of

satisfied clauses as a function of time for a MaxSAT instance (median values

across 100 independent runs)

 First theoretical results for the self-adjusting (1+(�,�)) GA on MaxSAT available

[BD17]

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: The 1 + > EA on OneMax

 Series of works analyzing how the mutation rate in the 1 + > EA, for

fixed (!) >, influences the expected number T�[� of generations (!) until,

for OneMax, an optimum is evaluated for the first time

 For static mutation rate ' = x/�, Giessen and Witt [GW17] have

shown that T�[� equals

 This bound is minimized for x = 1 (i.e., ' = 1/�)
(note that in [GW16] (GECCO’16) they showed that even for moderate � and

not too small > mutation rates up to 10% larger than 1/� minimize the

expected runtime)

 For a fitness-dependent mutation rate, Badkobeh, Lehre, Sudholt

(PPSN’14) [BLS14] showed a T�[� = Θ
�

��� I
+

� ��� �

��� I
runtime bound

 optimal among all possible and better than any static parameter setting

 requires the non-trivial setting ' = max
8

�
,

�� I

� ��
��

�

main question is again how to achieve such a behavior without having to

guess such a complicated relationship

78

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: The 1 + > EA on OneMax

Doerr, Giessen, Witt, Yang (GECCO’17) [DGWY17] suggest the following

mechanism:

 let ' be the current mutation rate

 in each iteration do:

 create >/2 offspring with mutation rate 2'

 create >/2 offspring with mutation rate '/2

 update ' as follows (capping at 2/� and 1/4, respectively)

 with probability 1/2 set it to the value for which the best offspring

has been found

 with probability 1/2, independently of the last iteration, randomly

decide whether to replace ' by either '/2 or by 2'

 Main result: this simple mechanism achieves the asymptotically

optimal T�[� = Θ
�

��� I
+

� ��� �

��� I
performance

79 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: The 1 + > EA on OneMax

In [DYvR+18] we tested this algorithm from [DGWY17] and obtain the following

interesting behavior on LeadingOnes

80

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: The 1 + > EA on OneMax

In [DYvR+18] we tested this algorithm from [DGWY17] and obtain the following

interesting behavior on LeadingOnes…

… while on OneMax the following happens:

 this calls for a more detailed analysis of the hyper-parameters

(come to our talk in the GA track if you want to know more…)

81 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 4c:

Learning-Inspired

Parameter Selection

82

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Revised Classification [DD18b]

83

parameter setting

parameter controlparameter tuning

endogenous/

self-adaptive

success-

based

state-

dependent

- fixed parameter choices

- offline optimization

- dynamic parameter choices

- online optimization

hyper-

heuristics

learning-

inspired

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Main Ideas of Learning-Type Updates

 The main idea for learning-/reward-type adjustment rules is

 have a set � of possible parameter values

 according to some rule, test all or some of these values

 update the likelihood to employ the tested value based on the feedback

from the optimization process

 Picture to have in mind: multi-armed bandits (MAB)

 � experts

 in each round, you have to chose one of them and you follow his advice

 you update your confidence in this expert depending on the quality of his

forecast

84

1 2 3 4 5

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

(Another) Exploration/Exploitation Trade-Off

85

 Main difficulty: exploitation vs. exploration trade off

 exploitation: we want, of course, to use an optimal parameter value

as often as possible

 exploration: we want to test each parameter value sufficiently often,

to make sure that we select the “optimal” one (in particular when the

quality of its “advice” changes, which is the typical situation that we

face in evolutionary optimization)

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Learning-Type Updates, Remarks

 Frequently found feature: time-discounted methods. That is, a good

advice in the past is worth less than a good advice now

 different update mechanisms and “forgetting rates” have been

experimented with, see discussion below

 note that such mechanisms are in particular useful when the quality of

advice (in our setting, this could be the expected fitness gain, the

expected decrease in distance to the optimum, or some other

quantity) changes over time

 Note: such learning mechanisms are referred to as “operator selection” in

[KHE15]. Another keywords to search for is “credit assignment”. It may also be

worth to look into literature from learning, in particular on multi-armed bandit

algorithms (main goal: maximize reward “on the go”, i.e., while learning) and on

reinforcement learning (possibly have dedicated “learning” iterations, a notion of

state is introduced and the hope is to learn for each state which operator

maximizes expected progress). Some hyper-heuristics are also learning-based.

 Again I will have to focus on a few selected works here. Much more work

has been done, cf. Section IV.C.4 in [KHE15] for a survey. There is still

much room for further creativity and much research is needed to

understand which mechanisms are most useful in which situations
86

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Dynamic Multi-Armed Bandits View
 � different parameter values

 'V
� probability to chose operator � in iteration) ('V

8, 'V
�, … , 'V

�)

 CV
� confidence in operator � at iteration) (CV

8, CV
�, … , CV

�)

 Main questions: how to update probabilities? how to updates confidence?

 well-studied questions in machine learning!

 But: main focus in ML is for static “rewards”

 main difference to EC: our “rewards” (success rate, fitness increase, etc)

changes over time.

 2 first ideas:

1. Probability Matching:

 CV�8
� = 1 − U CV

� + UxV, where � is the operator selected in iteration)
and xV is the reward of that iteration

 'V�8
� = 'l�� + 1 − �'l��

�`��
�

∑ �`��
�O

���,…,�

,

 'V
� is proportional to CV

� while maintaining a minimal amount of

exploration

87

U controls the speed of

confidence adaptation

minimal level of exploration

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Dynamic Multi-Armed Bandits View
 � different parameter values

 'V
� probability to chose operator � in iteration) ('V

8, 'V
�, … , 'V

�)

 CV
� confidence in operator � at iteration) (CV

8, CV
�, … , CV

�)

 Main questions: how to update probabilities? how to updates confidence?

 well-studied questions in machine learning!

 But: main focus in ML is for static “rewards”

 main difference to EC: our “rewards” (success rate, fitness increase, etc)

changes over time.

 2 first ideas:

2. Adaptive Pursuit [Thierens GECCO 2005]:

 CV�8
� = 1 − U CV

� + UxV, where � is the operator selected in iteration)
and xV is the reward of that iteration

 'V�8
� = 1 − b 'V

� + b'lm\ , for current best “arm” � = �∗

 'V�8
� = 1 − b 'V

� + b'l�� , for other arms � ≠ �∗

 “winner takes it all”

88

controls speed of

selection adaptation

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 1: Davis’s adaptive operator fitness (1/2)

Davis (ICGA’89) [Dav89] suggests to adapt rates of crossover operators

based on rewards

 Several crossover operators are used simultaneously in every iteration,

each having its own crossover rate '� operator�

 the strength of an operator is measured by the fitness value S� gained

over the best so-far individual in the population. These values are

updated after every use of operator �

89 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 1: Davis’s adaptive operator fitness (2/2)

 Julstrom (ICGA’95) [Jul95] revisited this mechanism and proposed the

following changes:

 simpler update mechanism

 an operator is considered successful if its offspring is better than its

parents, i.e., it does not necessarily have to be better than the current-

best individual (local reward) or if it better than the median fitness of the

individuals in the population

 local reward: offspring better than parents

 global reward: offspring better than current-best individual

(used by Davis)

 Combinations of local and global rewards can also be considered, cf. work

by Barbosa and e Sa [BeS00] and follow-up works

90

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 2: COBRA

Cost Operator Based Rate Adaption (COBRA), suggested by Tuson and

Ross (ECJ 1998) [TR98]

 Set of possible values for operator probabilities

 Operators are evaluated periodically, but information does not transfer to

the next cycle, i.e., the rates are based only on the “productivity” of the

operators in the last cycle

 “Productivity” = average fitness gain over parents during the time period

divided by the cost of evaluating an offspring

 the rank of an operator determines the operator probability

91 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 3: Dynamic Multi-Armed Bandits
 Da Costa, Fialho, Schoenauer, Sebag (GECCO’08) [DFSS08] and follow-up

works suggest a parameter control mechanism that hybridizes

 a multi-armed bandit algorithm (Upper Confidence Bound UCB-type, see

next slide) with

 the statistical Page-Hinkley test (which triggers a restart of the UCB

mechanism if positive, indicating a change in the time series)

92

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

UCB = Upper Confidence Bound

 Upper Confidence Bound, aka UCB-mechanisms are well known in

learning theory, cf. work by Auer, Cesa-Bianchi, Fischer ML’02 [ACBF02]

 Main ideas:

 cUCB greedily selects the operator (the “arm”) maximizing the

following expression:

expected reward + C log
∑ �¡,`

O
¡

��,`

O
,

where

 �G,V is the number of times the H-th arm has been pulled in the

first) iterations and

 C is a parameter that allows to control the exploration likelihood

(vs. exploitation, which is controlled by the first summand)

 tuned and other variants of this algorithm exist, cf. [ACBF02] for

details and empirical evaluations

 These ideas can be used in operator selection, but note that in contrast

to the classical setting in multi-armed bandit theory the rewards change

over time (dynamic multi-armed bandit scenario)

93 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Extreme Value-Based Adaptive Operator Selection

(ExAOS)
 In [FCSS08], Fialho, Da Costa, Schoenauer, and Sebag argue that, for

many problems,

 rare large fitness improvements are often better than

 many small fitness improvements

 They suggest to distribute confidence based on the largest fitness

improvement that an operator has produced in the last ¢ iterations in

which it has been used (sliding window of size ¢)

 Sizing ¢ is again non-obvious, too small ¢ makes it difficult for an

operator with rare but large fitness improvements to be chosen, while

too large ¢ makes it more difficult to adjust the search to the current

state of the optimization process

 In [FCSS10] the authors suggest the following changes:

 increase the reward with the time elapsed since the last application of

the operator

 decrease it with the number of times the operator has been used in

the last iterations
94

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on OneMax (1/4)

 An interesting (albeit not so easy to answer problem) is to determine, for

a given search point
, how many random bits to flip in order to maximize

the expected progress towards the target string � when . = OM�

 It is easy to convince oneself that the optimal number of bits that one

should flip is large when OM�(
) is small and is getting smaller when we

approach the target string � (illustration on the blackboard)

 In [DDY16b] (GECCO’16) we analyzed this dependence and showed that

an optimal mutation-based algorithm is the one employing such fitness-

based step sizes, striving at any point in time for maximal drift towards

the target string �

 As before, the question is how an algorithm designer should guess such

a relationship (e.g., it turns out that the numbers should always be odd. It

is not so easy to compute the cutoff-points from which on the optimal set

size changes (see next slide), etc.)

 In [DDY16a] (PPSN’16) we showed how a learning-type mechanism

automatically chooses parameter values that are close to optimal

95 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Guessing the Optimal Mutation Strength is Non-Obvious

 Expected progress 0 x, ', 1 − ' for different mutation strengths x=1,3,5,7

as a function of the distance '� to the target string

 As soon as the distance is less than �/3, it is optimal to flip 1 bit

 There is a complex monotonic relationship between distance and optimal

mutation strength

96

flipping 1 bit

is optimal

flipping 3 bits

is optimal

flipping 5 bits

is optimal

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on OneMax (2/4)

 Main idea: estimate the performance of different parameter values. Greedily choose

the one which has the highest confidence score

 Fix a small number of possible mutation strengths x ≔ {1, 2, … , x}

 Estimate the expected fitness gain £V^8[H] from using H-bit flips (using data from

the past, see next slide)

 In iteration)

 with probability ¦, use a random H ∈ [x] “exploring mut. strengths”

 with prob. 1 − ¦, use a H that maximized £V^8[H] “take the most efficient H”

 Update the expected fitness gain estimations

 This strategy is called an §-greedy selection in the machine learning literature

97 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on OneMax (2/4)

98

Main Results of [DDY16a]:

 The ¦-greedy strategy uses in almost all iterations the (in this

situation) optimal mutation strength.

 The iterations that do not operate with the optimal mutation rate

account for an additive ¨ � contribution to the total runtime and are

thus negligible

 This adaptive mechanism is provably faster than all static unbiased

mutation operators!

 This algorithm with the same budget computes a solution that

asymptotically is 13% closer to the optimum than RLS (given that the

budget is at least 0.2675�).

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on OneMax (3/4)

 Expected fitness gain estimation for using a H-bit flip:

£V H ≔
∑ 1©ªyG 1 − « V^¬ .
¬ − .
¬^8

V
¬y8

∑ 1©ªyG 1 − « V^¬V
¬y8

 1/«: “forgetting rate”, determines the decrease of the importance of older

information. 1/«is (roughly) the information half-life

 The “velocity” can be computed iteratively in constant time by introducing

a new parameter V x ≔ ∑ q©ªy© 1 − « V^¬V
¬y8

 This mechanism seems to work well also for other problems

 So far, no other theoretical results available

 A few experimental results for LeadingOnes and the Minimum

Spanning Tree problem exist, see next 2 slides (these results were

also presented in [DDY16a])

 Again, much more work is needed to see how the algorithm performs

on other problems and how to set the parameters « and ¦

99 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on LeadingOnes

 LeadingOnes(
)=number of initial 1s, e.g., LO(1110****)=3

 parameters above required some tuning, bit we did not invest much time for the

tuning it is likely that you can get better results by a more careful investigation

100

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on MST

101 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Example 4: Self-Adjusting RLS on OneMax (4/4)

 As said, we did not try hard to optimize the parameters « and ¦

 If you want to experiment with this learning idea, we suggest that you use the

following set-up for the first tries:

 few different values for the mutation strength (i.e., small x), since the learning

effort is proportional to their number (we used x = 5)

 learning rate ®: a small constant, e.g., 5% (“price of the learning

mechanism”)

 « 1 −
8

©
is the rate of iterations using a non-optimal mutation strength

(can still give progress, but smaller than best-possible)

 we used « = 0.1 and this seems to work well

 forgetting time q/§: this parameter is the most difficult one to set. We

recommend to set it so that 1/¦ is a small percentage of the envisaged total

runtime, e.g., 1% it takes very roughly that long to change to a new optimal

parameter value

 Too large ¦: we quickly forget the outcomes of previous iterations

 quick adaption to a changed environment

 risk that a rare exceptional success with a non-ideal x-value has

too much influence

102

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 5:

Selected Additional Examples

103 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Other Control Mechanisms (1/3)

In addition to the simple multiplicative update rules and the learning-type

rules, many other mechanisms have been experimented with. Here are a

few keywords and references (Again, more or less random selection of

references, much more work can be found in the survey papers. The works

below can serve as a starting point for further investigations.)

 Krasnogor and Smith [KS00] (GECCO 2000) suggest a control

mechanism for the selective pressure of a memetic algorithm. They use

Boltzmann selection (popular selection mechanism used in Simulated

Annealing, probability of 1 to accept better offspring, probability to accept

worse offspring depends on the fitness difference of parent and offspring

and a “temperature” which decreases over time, making it less and less

likely for worse offspring to get accepted) and suggest to

 increase selective pressure when fitness diversity in the population is large

 decrease it when fitness diversity is low

 main idea: low fitness diversity = converged population, increase probability

to escape and to search elsewhere

104

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Other Control Mechanisms (2/3)
 Controlling population size is the focus of the Genetic Algorithm with

Variable Population Size (GAVaPS) by Arabas, Michalewicz, Mulawka

(CEC’94) [AMM94]

 individuals come with their own lifetime

 at birth their age is set to 0, each iteration increases the age by 1

 maximum lifetime depends on the fitness values, the better a new individual is,

the longer its lifetime (and, hence, the more offspring are created from this

individual)

 there is hence no fixed population size, but the size depends adaptively on the

search history.

 One of the goals of GAVaPS was to remove the population size as parameter,

but the update mechanism itself comes again with its own parameters

 Adaptive Population GA (APGA) by Bäck, Eiben, van der Vaart (PPSN

2000) [BEvdV00]:

 similar to GAVaPS, but age of best individual is not increased, thus allowing it a

longer life

 lifetime depends on individual’s fitness and current-best as well as average

fitness of the individuals in the population

105 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Other Control Mechanisms (3/3)

 On-the-fly population size adjustment by Eiben, Marchiori, and Valko

(PPSN’04) [EMV04]: Population Resizing on Fitness Improvement GA

(PRoFIGA):
 variable population size:

1. fitness improvements population size increases

(update is proportional to fitness improvement and number of fitness

evaluations remaining until maximum is hit)

2. short-term lack of fitness improvement population size decreases

(multiplicative update, e.g., decrease by 5%)

3. long-term lack of fitness improvement population size increases

(update as in 1 tough in principle a different rule could be applied)

106

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

“Parameter-less” Population Pyramid (P3)

 The following 2 examples do not fall into category of parameter control

mechanisms but since it is much related, I want to briefly mention them

 Parameter-less Population Pyramid (P3) by Goldman and Punch

(GECCO 2014) and (ECJ 2015) [GP14,GP15]

 instead of generations, P3 works with a pyramid-like structure of

populations

 P3 combines local search with model-based search

 The pyramid is constructed from scratch as follows:

 In every iteration, a new random solution is generated, brought to a

local optimum, and, if not in the pyramid already, this local optimum

is added to the lowest population &̄

 Solutions are then improved by crossover with individuals on higher

pyramid levels. If a better offspring is found, it is added to level � + 1
of the pyramid, where � is the level of the better of the two parents

 P3 shows promising performance on several combinatorial problems.

First theoretical results are available in [GS16] (Goldman, Sudholt

GECCO 2016)

107 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

“Parameter-Less” GA

 Parameter-less Genetic Algorithm (PLGA) by Harik and Lobo

(GECCO 1999) [HL99] and follow-up works

 a number of populations of different sizes evolve simultaneously

 the smaller the population size, the more function evaluations it gets

 a populations becomes extinct when it converges

 Hope was to remove population size as a parameter, but note that the

mechanism itself introduces new parameters, so the term “parameter-

less” may be deceptive

108

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 6:

Controlling Multiple Parameters

or

“The Patchwork Problem” [KHE15]

109 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Controlling Multiple Parameters

 Most EAs have several parameters

 Intuitively, there is no reason to not control more than one or even all of

them

 A few works on controlling more than 1 parameter exists, cf. [KHE15]

 The problem how to best control several parameters is, however, widely

open (given the non-conclusive state-of-the-art in controlling one parameter, this

is perhaps not very surprising)

110

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Part 6:

Wrap Up

111 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Learning Control

1. What are the main (dis-)advantages of static parameter choices?

2. What are the main (dis-)advantages of non-static parameter choices?

3. How do we distinguish parameter control mechanisms?

4. What type of parameter control mechanisms have we discussed in this

tutorial? (and which one do you want to try next?!)

5. Homework

1. How do non-static parameter choices perform on your

favorite optimization problem?

2. Which update mechanisms work well for your favorite EA?

112

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Summary Static vs. Non-Static Parameter Choices (1/2)

 Clearly exaggerating, one can summarize our main messages as follows:

 Disadvantages of static parameter choices (aka parameter tuning):

 takes a considerable amount of time

 highly complex, multi-dimensional problem: optimal parameters can

typically not be found in a sequential fashion (unfortunately still the

predominant way of parameter tuning), because of the complex

interactions between them

 good parameter values for one problem can perform poorly on

similarly-looking problems

 good parameter values for one algorithm can cause poor

performance for similarly-looking algorithm

 even “optimal” static parameters can be inferior to dynamic ones as

they do not adapt the parameter values to the optimization process

 Possible advantages:

 no need to worry about suitable update rules

113 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Summary Static vs. Non-Static Parameter Choices (2/2)

 Advantages of non-static parameter choices (aka parameter control):

 we gain flexibility and the possibility to adjust the parameter values to the

current state of the search

 If we have no idea how to set the parameter, we let the algorithm discover

itself

 Possible disadvantages:

 how to determine which update scheme to use? designing parameter

control mechanisms can, in principle, be an even more complex task than

parameter tuning

(suggestion: use the “mushroom picking rule”: have a set of 2 or 3

different mechanisms that you declare your favorite ones. Do not try to know

all possible mechanisms but rather concentrate on the most promising ones,

e.g., one multiplicative update rule, one learning-based rule)

 update mechanisms often come with their own parameters

(remember: hope is that the algorithm is much less sensitive to these)

 possibly more difficult to understand how the update mechanism influences

the overall performance (measured, e.g., by the distribution of the

optimization time)

114

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Wrap Up
 My hope was

To inspire and to enable you to test parameter control mechanisms

 So, I hope that you are (now) convinced that

 Dynamic parameter choices can help to significantly improve the

performance of your EA

 Already quite simple mechanisms can be surprisingly efficient

 Research on parameter control can be fun

 non-static parameter values should be the new standard in the field

 As mentioned in the tutorial, a lot needs to be done to make this change happen

 enjoy!

 don’t get frightened by the fact that quite some work has been done already.

There is still much room for creativity and we are just starting to understand

how good mechanisms look like!

 … and, last but not least, keep in touch

 If you get to work on parameter control, I would be very much interested in

your results, positive and negative!

Carola.Doerr@mpi-inf.mpg.de

115 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

Acknowledgments

 I am very grateful to Benjamin Doerr, Thomas Bäck, Markus Wagner,

Jing Yang, Johannes Lengler, Dirk Sudholt, Pietro S. Oliveto, and the

organizers and participants of the Dagstuhl seminars "Automated

Algorithm Selection and Configuration" (16412) and “Theory of

Randomized Optimization Heuristics” (17191) for many insightful

discussions on parameter control mechanisms

 This work was supported by a public grant as part of the Investissement

d'avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a

joint call with Gaspard Monge Program for optimization, operations

research and their interactions with data sciences.

 This tutorial is also based upon work from COST Action CA15140

`Improving Applicability of Nature-Inspired Optimisation by Joining

Theory and Practice (ImAppNIO)' supported by COST (European

Cooperation in Science and Technology).

116

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

117 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

118

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

119 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

120

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

121 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

122

Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

123 Carola Doerr: Dynamic Parameter Choices in Evolutionary Computation (tutorial at GECCO 2018)

References

124

