

Visualization in Multiobjective Optimization

Bogdan Filipič Tea Tušar

Tutorial at GECCO '18

Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan ©2018 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-5764-7/18/07. https://doi.org/10.1145/3295651.3207891

Draft version

The final version will be available at http://dis.ijs.si/tea/research.htm

2

Contents

Introduction

A taxonomy of visualization methods

Visualizing single approximation sets

Visualizing repeated approximation sets

Summary

References

Introduction

Introduction

Multiobjective optimization problem Minimize

 $\mathbf{f} \colon X \to F$

$$\mathbf{f}: (x_1, \ldots, x_n) \mapsto (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$$

- X is an *n*-dimensional decision space
- $F \subseteq \mathbb{R}^m$ is an *m*-dimensional objective space $(m \ge 2)$

Conflicting objectives \rightarrow a set of optimal solutions

- Pareto set in the decision space
- Pareto front in the objective space

Introduction

Visualization in multiobjective optimization

Useful for different purposes [15]

- Analysis of solutions and solution sets
- Decision support in interactive optimization
- Analysis of algorithm performance

Visualizing solution sets in the decision space

- Problem-specific
- If $X \subseteq \mathbb{R}^m$, any method for visualizing multidimensional solutions can be used
- Not the focus of this tutorial

Introduction

Visualizing solution sets in the objective space

- Interested in sets of mutually nondominated solutions called approximation sets
- Different from ordinary multidimensional solution sets
- The focus of this tutorial

Challenges

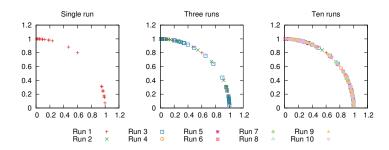
- High dimension and large number of solutions
- Limitations of computing and displaying technologies
- Cognitive limitations

Introduction

Visualization can be hard even in 2-D

Stochastic optimization algorithms

- · Single run \rightarrow single approximation set
- $\cdot\,$ Multiple runs \rightarrow multiple approximation sets



The Empirical Attainment Function (EAF) [17] or the Average Runtime Attainment Function (ARTA) [4] can be used in such cases

6

4

This tutorial does not cover

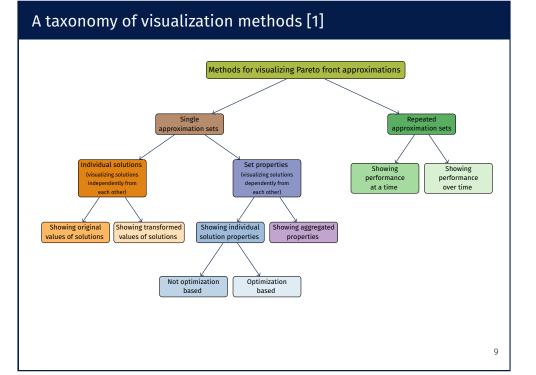
- Visualization of a few solutions for decision making purposes (see [32])
- Visualization in the decision space
- General multidimensional visualization methods not previously used on approximation sets

8

This tutorial covers

- Visualization of entire sets in the objective space
 - Single approximation sets [2]
 - Repeated approximation sets [3, 4]

A taxonomy of visualization methods



Visualizing single approximation sets

Methodology

Evaluating and comparing visualization methods

- No existing methodology for evaluating or comparing visualization methods
- Propose benchmark approximation sets (analog to benchmark problems in multiobjective optimization)
- Visualize the sets using different methods
- Observe which set properties are distinguishable after visualization
- Only applicable to methods showing individual solutions or individual solution properties

Benchmark approximation sets

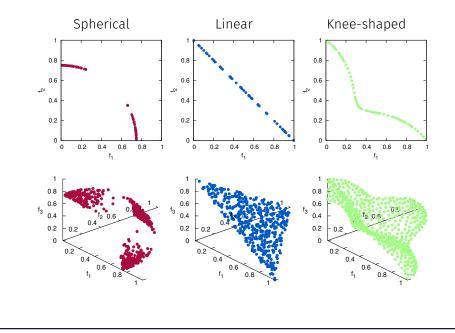
Three different sets that can be instantiated in any dimension

- Spherical with a clustered distribution of solutions (more at the corners and less at the center)
- · Linear with a uniform distribution of solutions
- Knee-shaped with an even distribution of solutions

Size of each set

- 2-D: 50 solutions
- 3-D: 500 solutions
- 4-D: 500 solutions

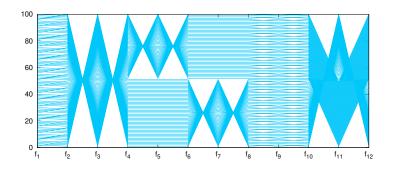
11



Benchmark approximation sets

Benchmark approximation sets

- An additional set with redundant objectives
 - Adapted from [14]
 - 12 objectives
 - \cdot Can be instantiated for any number of 10n solutions (here 100)



12

Desired properties of visualization methods

Demonstration on the 4-D spherical, linear and knee-shaped sets

- Preservation of the
 - Dominance relation between solutions
 - Front shape
 - Objective range
 - Distribution of solutions
- Robustness
- Handling of large sets
- Simultaneous visualization of multiple sets
- Scalability in number of objectives
- Simplicity

Demonstration on the 12-D approximation set

• Showing relations between objectives

14

Scatter plot matrix

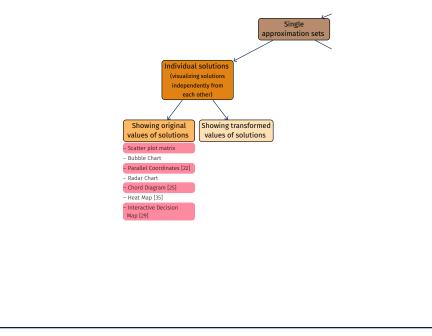
Most often

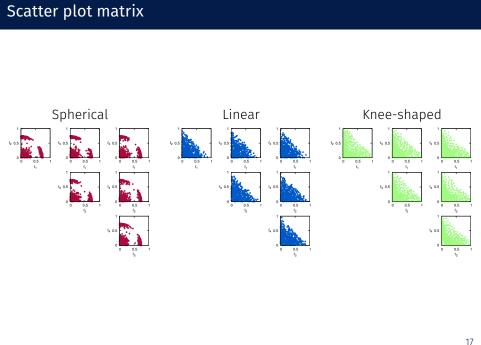
- Scatter plot in a 2-D space
- Matrix of all possible combinations
- m objectives $\rightarrow \frac{m(m-1)}{2}$ different combinations

Alternatively

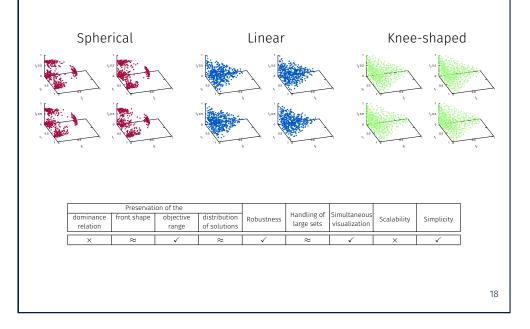
- Scatter plot in a 3-D space
- *m* objectives $\rightarrow \frac{m(m-1)(m-2)}{6}$ different combinations

Visualizing single approximation sets



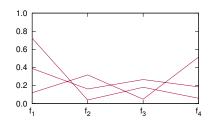


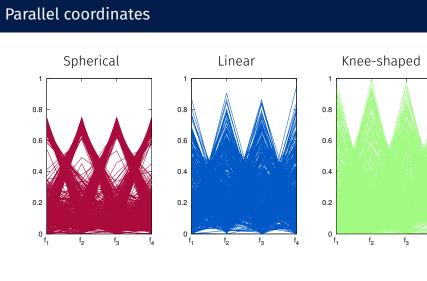
Scatter plot matrix



Parallel coordinates

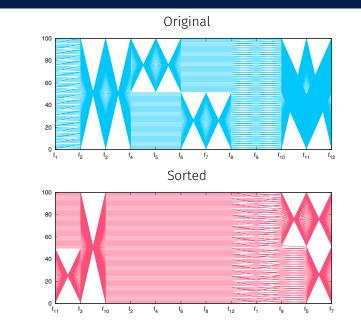
- m objectives $\rightarrow m$ parallel axes
- Solution represented as a polyline with vertices on the axes
- Position of each vertex corresponds to that objective value
- No loss of information





Preservation of the						c: 1		
dominance relation	front shape	objective range	distribution of solutions	Robustness	~ 1	Simultaneous visualization	Scalability	Simplicity
*	×	✓	*	~	×	×	~	~

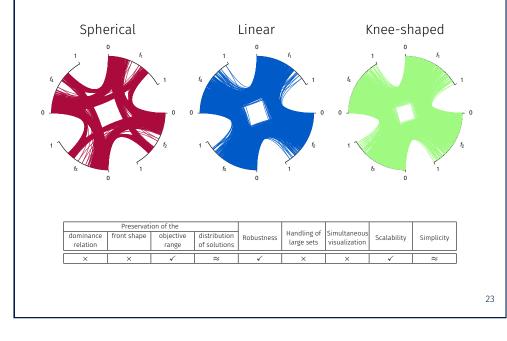
Parallel coordinates

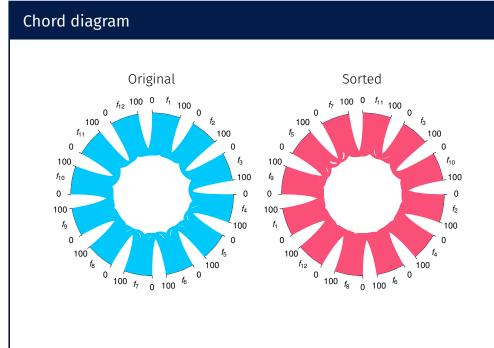


Chord diagram

- Similar to parallel coordinates
- m objectives $\rightarrow m$ arcs

Chord diagram





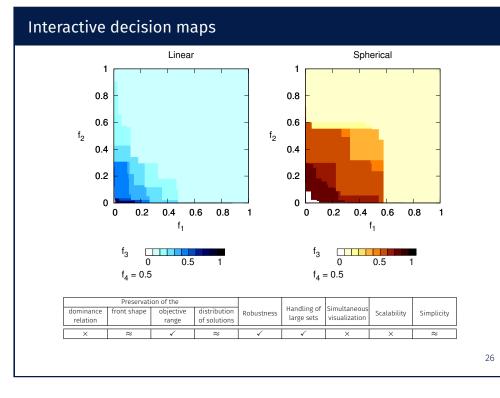
Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains all points in the objective space that are weakly dominated by any solution in A.

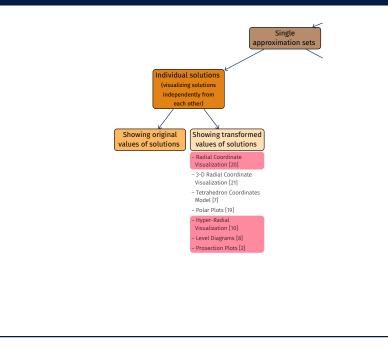
Interactive decision maps

- Visualize the surface of the EPH, not the actual approximation set
- Plot a number of axis-aligned sampling surfaces of the EPH
- Color used to denote third objective
- Fixed value of the forth objective

24



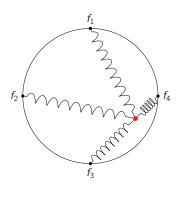
Visualizing single approximation sets



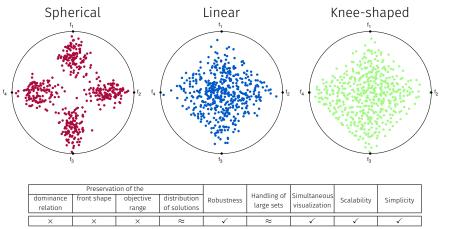
Radial coordinate visualization

Also called RadViz

- Inspired from physics
- Objectives treated as anchors, equally spaced around the circumference of a unit circle
- Solutions attached to anchors with 'springs'
- Spring stiffness proportional to the objective value
- Solution placed where the spring forces are in equilibrium



Radial coordinate visualization



28

Hyper-radial visualization

Hyper-radial visualization

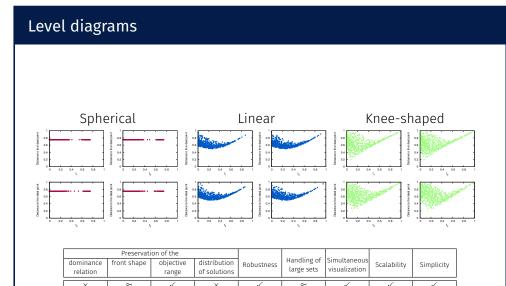
- Distances are computed separately for two subsets of objectives
- Indifference curves denote points with the same preference

Spherical Linear Knee-shaped 0. 0.6 05 0.5 0.4 f₃f₄ faf, 0.3 0.2 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.5 0.7 f_1f_2 $f_1 f_2$ f_1f_2

	Preservation of the					at 1.		
dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
×	≈	✓	×	✓	~	✓	\checkmark	✓

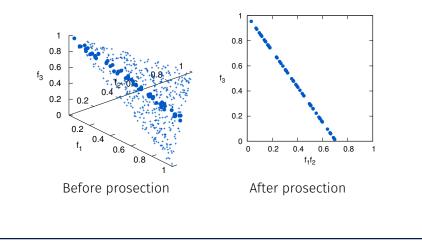
30

- m objectives $\rightarrow m$ diagrams
- Plot solutions with objective f_i on the x axis and distance to the ideal point on the y axis

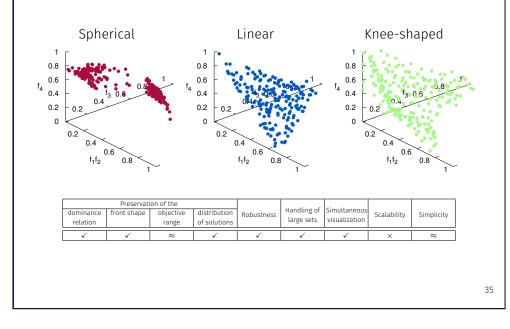


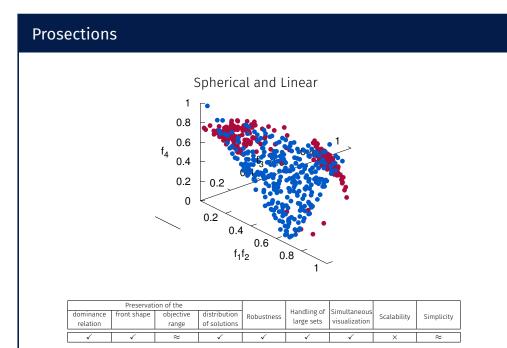
Prosections

- Visualize only part of the objective space
- Dimensionality reduction by projection of solutions in a section
- Need to choose prosection plane, angle and section width

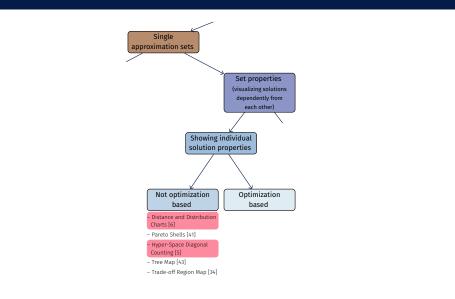


Prosections





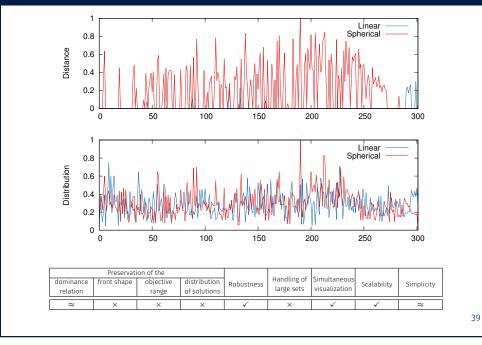
Visualizing single approximation sets



Distance and distribution charts

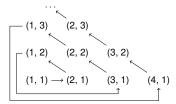
- Plot solutions against their distance to the Pareto front and distance to other solutions
- Distance chart
 - Plot distance to the nearest non-dominated solution
- Distribution chart
 - Sort solutions w.r.t. first objective
 - Plot distances between consecutive solutions
 - For the first/last solution, compute distance to first/last non-dominated solution
 - · $k \text{ solutions} \rightarrow k+1 \text{ distances}$
- All distances normalized to [0, 1]

Distance and distribution charts



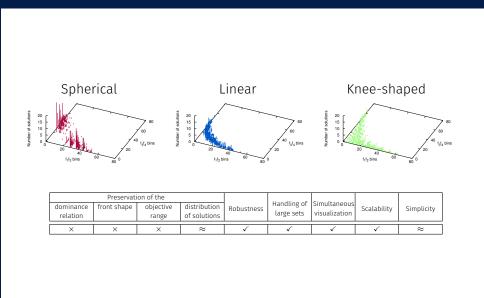
Hyper-space diagonal counting

• Inspired by Cantor's proof that shows $|\mathbb{N}| = |\mathbb{N}^2| = |\mathbb{N}^3| \dots$



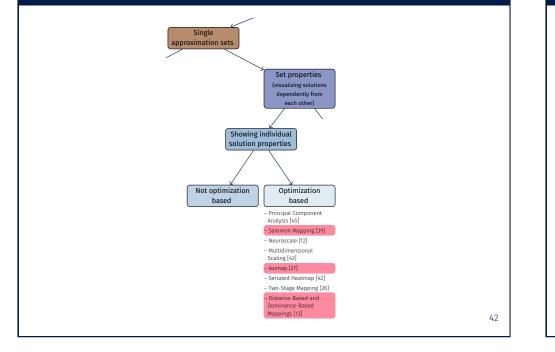
- Discretize each objective (choose a number of bins)
- In the 4-D case
 - \cdot Enumerate the bins for objectives f_1 and f_2
 - \cdot Enumerate the bins for objectives f_3 and f_4
 - $\cdot\,$ Plot the number of solutions in each pair of bins

Hyper-space diagonal counting



40

Visualizing single approximation sets

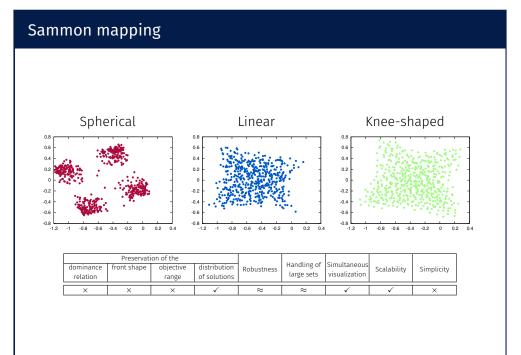


Sammon mapping

- A non-linear mapping
- Aims to preserve distances between solutions
 - $\cdot \ d^*_{ij}$ distance between solutions \mathbf{x}_i and \mathbf{x}_j in the objective space
 - $\cdot \,\, d_{ij}$ distance between solutions \mathbf{x}_i and \mathbf{x}_j in the visualized space
- \cdot Stress function to be minimized

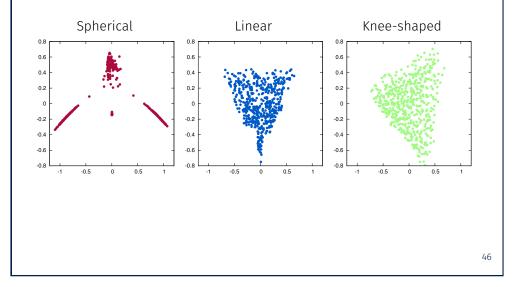
$$S = \sum_{i} \sum_{j>i} (d^*_{ij} - d_{ij})^2$$

• Minimization by gradient descent or other (iterative) methods

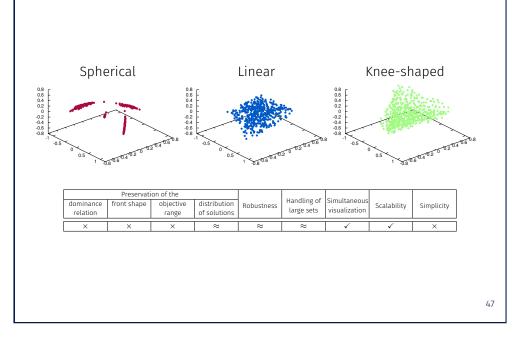


Isomap

- Assumes solutions lie on some low-dimensional manifold and the distances along this manifold should be preserved
- Creates a graph of solutions, where only the neighboring solutions are linked
- The geodesic distance between any two solutions is calculated as the sum of Euclidean distances on the shortest path between the two solutions
- Uses multidimensional scaling to perform the mapping based on these distances



Isomap



Distance- and dominance-based mappings

Both mappings

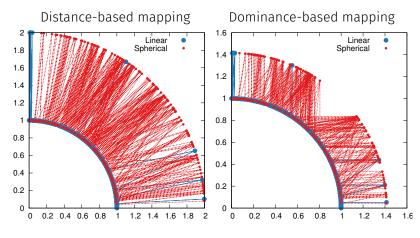
- Use nondominated sorting to split solutions to Pareto shells
- Project solutions onto the circumference of circles (with circle radius proportional to front number)

Distance-based mapping

Dominance-based mapping

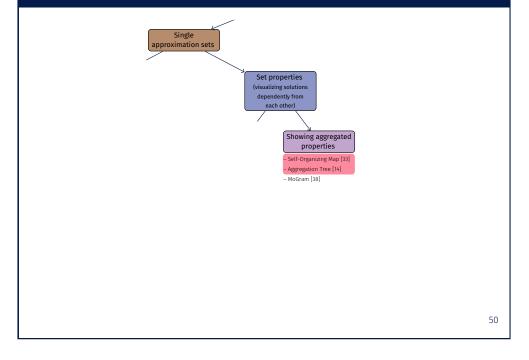
- Tries to preserve closeness of Aims at preserving dominance relation
- Similarity between solutions defined as dominance similarity
- Solution ordering using spectral seriation
- Aims at preserving dominance relations among solutions
- + All $\mathbf{x}\prec\mathbf{y}$ can be shown correctly
- Tries to minimize cases where
 x ⊀ y is not shown correctly

Distance- and dominance-based mappings



	Preservation of the					at 1.		
dominance relation	front shape	objective range	distribution of solutions	Robustness		Simultaneous visualization	Scalability	Simplicity
× / ✓	×	×	\times / \approx	*	×	✓	~	×

Visualizing single approximation sets



Self-organizing maps

- \cdot Self-organizing maps (SOMs) are neural networks
- Nearby solutions are mapped to nearby neurons in the SOM
- A SOM can be visualized using the unified distance matrix
- Distance between adjacent neurons is denoted with color
 - $\cdot \,$ Similar neurons \rightarrow light color
 - $\cdot\,$ Different neurons (cluster boundaries) \rightarrow dark color

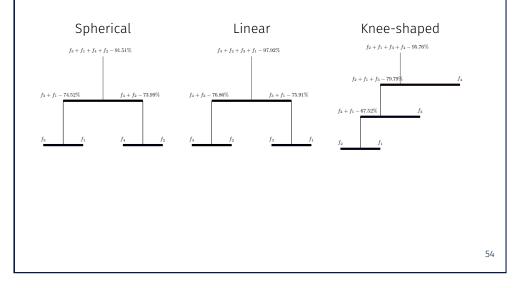
Self-organizing maps

Aggregation trees

- $\cdot\,$ Binary trees that show relationships between objectives
- · Iterative clustering of objectives based on their harmony
- Computation of different types of conflict
- Percentages quantify the conflict between objectives
- Colors used to show type of conflict
 - global conflict (black)
 - local conflict on 'good' values (red)
 - local conflict on 'bad' values (blue)
- Can be used to sort objectives in other representations (parallel coordinates, radial charts, heat maps)

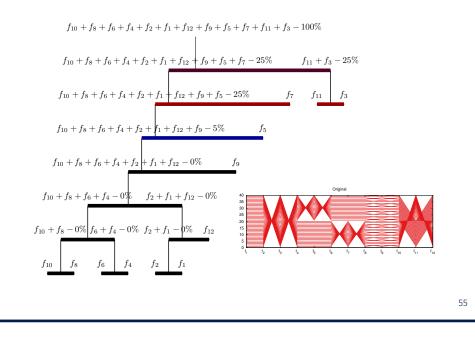
52

Aggregation trees



Visualizing repeated approximation sets

Aggregation trees



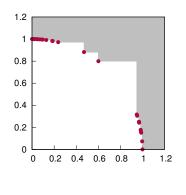
Visualizing repeated approximation sets Repeated oximation set Showing Showing performance performance at a time over time Line Plots [16] Heat Maps [28] Visualization of Facets [18] Grid-Based Sampling [23] Slicing [3] Maximum Intensit Projection [3] – Direct Volume Rendering [3] • Showing performance at a time with the Empirical Attainment Function (EAF) [17]

• Showing performance over time with the Average Runtime Attainment Function (ARTA) [4]

Empirical attainment function

Goal-attainment

- Approximation set A
- A point in the objective space z is attained by A when z is weakly dominated by at least one solution from A

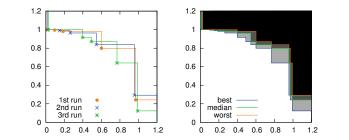


57

Empirical attainment function

EAF values [17]

- Algorithm \mathcal{A} , approximation sets A_1, A_2, \ldots, A_r
- EAF of \mathbf{z} is the frequency of attaining \mathbf{z} by A_1, A_2, \dots, A_r
- Summary (or k%-) attainment surfaces

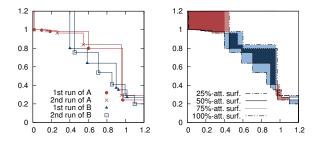


• Visualization with line plots and heat maps

Empirical attainment function

Differences in EAF values [28]

- Algorithm \mathcal{A} , approximation sets A_1, A_2, \ldots, A_r
- Algorithm \mathcal{B} , approximation sets B_1, B_2, \ldots, B_r
- Visualize differences between EAF values



1 12 0 -12 -1

• Visualization with heat maps

Visualization of 3-D EAF

Need to compute and visualize a large number (over 10 000) of cuboids

Exact case

- EAF values: Slicing [3]
- EAF differences: Slicing, Maximum intensity projection [44, 3]

Approximated case

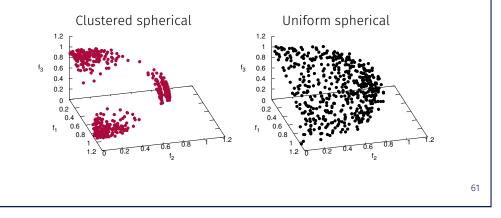
- EAF values: Grid-based sampling [23], Slicing, Direct volume rendering [11, 3]
- EAF differences: Slicing, Maximum intensity projection, Direct volume rendering

59

Benchmark approximation sets

Two groups of spherical approximation sets

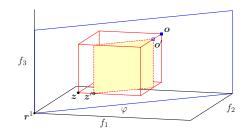
- 5 spherical approximation sets with a clustered distribution of solutions (different radii, 100 solutions in each)
- 5 spherical approximation sets with a uniform distribution of solutions (different radii, 100 solutions in each)



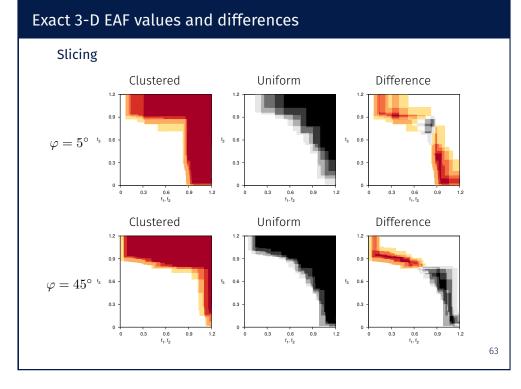
Exact 3-D EAF values and differences

Slicing

- Visualize cuboids intersecting the slicing plane
- Need to choose coordinate and angle



62

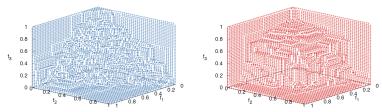


Approximated attainment surfaces

Grid-based sampling

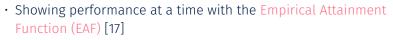
Repeat for all $f_i f_j$, i < j (i.e. $f_1 f_2$, $f_1 f_3$ and $f_2 f_3$):

- Construct a $k \times k$ grid on the plane $f_i f_j$
- Compute intersections between the attainment surface and the axis-aligned lines on the grid



Median attainment surfaces

Visualizing repeated approximation sets



• Showing performance over time with the Average Runtime Attainment Function (ARTA) [4]

65

67

Average Runtime Attainment Function

ARTA value

- Algorithm \mathcal{A} run r times
- All solutions that are nondominated at creation are recorded
- + ARTA(\mathbf{z}) is the average number of evaluations needed to attain \mathbf{z}

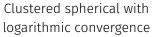
ARTA ratio

- \cdot Algorithms ${\cal A}$ and ${\cal B}$
- + Visualize ratio between $\mathsf{ARTA}(\mathbf{z})$ values for $\mathcal A$ and $\mathcal B$

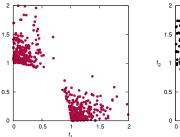
Benchmark approximation sets

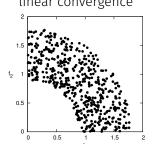
Two groups of sets mimicking convergence to a spherical front

- 5 sets mimicking logarithmic convergence to a spherical front with a clustered distribution (100 solutions each)
- 5 sets mimicking linear convergence to a spherical front with a linear distribution (100 solutions each)



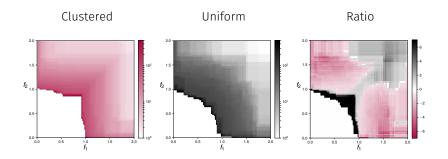
Uniform spherical with linear convergence



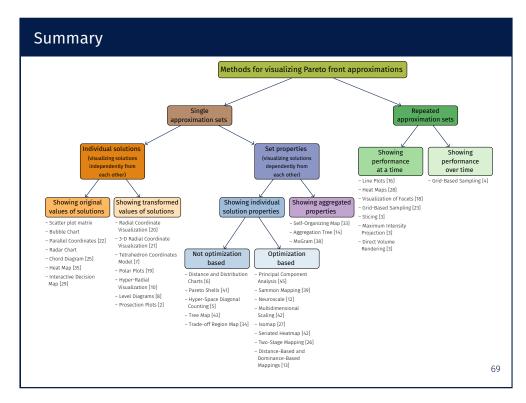


Average Runtime Attainment Function

Grid-based sampling



66



Summary

- Visualization in multiobjective optimization useful for various purposes
- Customized methods are needed to address the peculiarities of approximation set visualization
- New visualization methods should first be analyzed using some approximation sets with known properties

Acknowledgement

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0209 and project No. Z2-8177 Incorporating real-world problems into the benchmarking of multiobjective optimizers).

This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 692286.

SYNERGY

Synergy for Smart Multi-Objective Optimization www.synergy-twinning.eu

References

References i

- B. Filipič and T. Tušar. A Taxonomy of Methods for Visualizing Pareto Front Approximations. *GECCO 2018*, 2018.
 T. Tušar and B. Filipič. Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method. *IEEE Transactions on Evolutionary Computation*, 19(2):225-245, 2015.
 T. Tušar and B. Filipič. Visualizing exact and approximated 3D empirical attainment functions. *Mathematical Problems in Engineering*, Article ID 569346, 18 pages, 2014.
 D. Brockhoff, A. Auger, N. Hansen and T. Tušar.
 - Quantitative performance assessment of multiobjective optimizers: The average runtime attainment function.
 EMO 2017, pages 103–119, 2017.

References ii

- [5] G. Agrawal, C. L. Bloebaum, and K. Lewis. Intuitive design selection using visualized n-dimensional Pareto frontier. American Institute of Aeronautics and Astronautics, 2005.
- K. H. Ang, G. Chong, and Y. Li.
 Visualization technique for analyzing nondominated set comparison. SEAL '02, pages 36–40, 2002.
- [7] X. Bi and B. Li.
 The visualization decision-making model of four objectives based on the balance of space vector.
 IHMSC 2012, pages 365–368, 2014.
- [8] X. Blasco, J. M. Herrero, J. Sanchis, and M. Martínez.
 A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization.
 Information Sciences, 178(20):3908–3924, 2008.

References iii

[9] X. Blasco, G. Reynoso-Mezab, E. A. Sanchez Perez, and J. V. Sanchez Perez. Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis.

Information Sciences, 340-341:228-249, 2016.

- P.-W. Chiu and C. Bloebaum.
 Hyper-radial visualization (HRV) method with range-based preferences for multi-objective decision making.
 Structural and Multidisciplinary Optimization, 40(1–6):97–115, 2010.
- [11] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf. *Real-time Volume Graphics.* A. K. Peters, Natick, MA, USA, 2006.
- [12] R. M. Everson and J. E. Fieldsend. Multi-class ROC analysis from a multi-objective optimisation perspective. Pattern Recognition Letters, 27(8):918–927, 2006.

73

References iv

- J. E. Fieldsend and R. M. Everson.
 Visualising high-dimensional Pareto relationships in two-dimensional scatterplots.
 EMO 2013, pages 558–572, 2013.
- [14] A. R. R. de Freitas, P. J. Fleming, and F. G. Guimaraes.
 Aggregation trees for visualization and dimension reduction in many-objective optimization.
 Information Sciences, 298:288–314, 2015.
- S. Greco, K. Klamroth, J. D. Knowles, and G. Rudolph.
 Understanding complexity in multiobjective optimization (Dagstuhl seminar 15031).
 Dagstuhl Reports, pages 96–163, 2015.
- [16] C. M. Fonseca and P. J. Fleming.
 On the performance assessment and comparison of stochastic multiobjective optimizers.
 PPSN IV, pages 584–593, 1996.
- 75

References v

- [17] V. D. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall.
 Inferential performance assessment of stochastic optimisers and the attainment function.
 EMO 2001, pages 213–225, 2001.
- [18] A. P. Guerreiro, C. M. Fonseca, and L. Paquete. Greedy Hypervolume Subset Selection in Low Dimensions. Evolutionary Computation, 24(3):521–544, 2016.
- [19] Z. He and G. G. Yen.
 Visualization and performance metric in many-objective optimization.
 IEEE Transactions on Evolutionary Computation, 20(3):386–402, 2016.
- [20] P. E. Hoffman, G. G. Grinstein, K. Marx, I. Grosse, and E. Stanley. DNA visual and analytic data mining. Conference on Visualization, pages 437–441, 1997.
- [21] A. Ibrahim, S. Rahnamayan, M. V. Martin, K. Deb. 3D-RadVis: Visualization of Pareto front in many-objective optimization CEC 2016, pages 736–745, 2016.

References vi

- [22] A. Inselberg. Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, New York, NY, USA, 2009.
- [23] J. Knowles.

A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers.

ISDA '05, pages 552–557, 2005.

[24] T. Kohonen.

Self-Organizing Maps. Springer Series in Information Sciences, 2001.

[25] R. H. Koochaksaraei, I. R. Meneghini, V. N. Coelho, and F. G. Guimarães. A new visualization method in many-objective optimization with chord diagram and angular mapping.

Knowledge-Based Systems, 138:134–154, 2017.

[26] M. Köppen and K. Yoshida. Visualization of Pareto-sets in evolutionary multi-objective optimization. HIS 2007, pages 156–161, 2007.

References vii

- [27] F. Kudo and T. Yoshikawa.
 Knowledge extraction in multi-objective optimization problem based on visualization of Pareto solutions.
 CEC 2012, 6 pages, 2012.
- [28] M. López-Ibáñez, L. Paquete, and T. Stützle. Exploratory analysis of stochastic local search algorithms in biobjective optimization. Experimental Methods for the Analysis of Optimization Algorithms, pages

209–222, 2010.

- [29] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier. Kluwer Academic Publishers, Boston, MA, USA, 2004.
- [30] D. Lowe and M. E. Tipping. Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing & Applications, 4(2):83–95, 1996.

77

References viii

[31] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. H. Hinrichs.
 Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations.

IEEE Computer Graphics and Applications, 29(6):6–13, 2009.

[32] K. Miettinen.

Survey of methods to visualize alternatives in multiple criteria decision making problems.

OR Spectrum, 36(1):3–37, 2014.

[33] S. Obayashi and D. Sasaki.

Visualization and data mining of Pareto solutions using self-organizing map. EMO 2003, pages 796–809, 2003.

 [34] R. L. Pinheiro, D. Landa-Silva, and J. Atkin.
 Analysis of objectives relationships in multiobjective problems using trade-off region maps.
 GECCO 2015, pages 735–742, 2015.

References ix

- [35] A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap visualisation of population based multiobjective algorithms. EMO 2007, pages 361–375, 2007.
- [36] J. W. Sammon.

A nonlinear mapping for data structure analysis. *IEEE Transactions on Computers*, C-18(5):401–409, 1969.

- [37] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319–2323, 2000.
- [38] K. Trawinski, M. Chica, D. P. Pancho, S. Damas, and O. Cordon. moGrams: A network-based methodology for visualizing the set of non-dominated solutions in multiobjective optimization. CoRR abs/1511.08178, 2015.
- [39] J. Valdes and A. Barton.
 Visualizing high dimensional objective spaces for multiobjective optimization: A virtual reality approach.
 CEC 2007, pages 4199--4206), 2007.

79

References x

- [40] Voreen, Volume rendering engine. http://www.voreen.org/
- [41] D. J. Walker, R. M. Everson, and J. E. Fieldsend.
 Visualisation and ordering of many-objective populations. CEC 2010, 8 pages, 2010.
- [42] D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualizing mutually nondominating solution sets in many-objective optimization.

IEEE Transactions on Evolutionary Computation, 17(2):165–184, 2013.

- [43] D. J. Walker.
 Visualising multi-objective populations with treemaps. GECCO 2015, pages 963–970, 2015.
- [44] J. W. Wallis, T. R. Miller, C. A. Lerner, and E. C. Kleerup. Three-dimensional display in nuclear medicine. IEEE Transactions on Medical Imaging, 8(4):297–230, 1989.

References xi

[45] M. Yamamoto, T. Yoshikawa, and T. Furuhashi. Study on effect of MOGA with interactive island model using visualization. CEC 2010, 6 pages, 2010.