Scientific Experimentation

- What is the aim? Answer a question, ideally quickly and comprehensively
consider in advance what the question is and in which
way the experiment can answer the question

do not (blindly) trust what one needs to rely on (code, claims, ...) without

good reasons
check/test “everything” yourselves, practice stress testing, boosts also understanding
one key element for success
Why Most Published Research Findings Are False [loannidis 2005]

A Practical Guide to Experimentation

« run rather many than few experiments, as there are many questions to

answer, practice online experimentation
Nikolaus Hansen to run many experiments they must be quick to implement and run
Inria develops a feeling for the effect of setup changes
Research Centre Saclay, CMAP, Ecole polytechnique, Université Paris-Saclay

+ run any experiment at least twice
assuming that the outcome is stochastic
get an estimator of variation

http: map. html

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made . H .

or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party dlsplay. the more the better, the better the better

components of this work must be honored. For all other uses, contact the Owner/Author. figures are intuition pumps (not only for presentation or publication)
GECCO '18 Companion, July 15-19, 2018, Kyoto, Japan it is hardly possible to overestimate the value of a good figure

© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651 3207850

data is the only way experimentation can help to answer questions, therefore look at them!

Nikolaus Hansen, Inria 3 A practical guide to experimentation

Why Experimentation? Scientific Experimentation

- The behaviour of many if not most interesting algorithms is * don’t make minimising CPU-time a primary objective

avoid spending time in implementation details to tweak performance

- not amenable to a (full) theoretical analysis even when - ltis usually more important to know why algorithm A performs badly on

applied to simple problems function f, than to make A faster for unknown, unclear or trivial reasons
calling for an alternative to theory for investigation mainly because an algorithm is applied to unknown functions
and the “why” allows to predict the effect of design changes

» not fully comprehensible or even predictable without - Testing Heuristics: We Have it All Wrong [Hooker 1995]

(extensive) em pirical examinations “The emphasis on competition is fundamentally anti-intellectual and does not build
even on simple problems the sort of insight that in the long run is conducive to more effective algorithms”

comprehension is the main driving force for scientific progress o) o .
there are many devils in the details, results or their interpretation may

Y . crucially depend on simple or intricate bugs or subtleties
Vlrtua”y a” algorlthms have parameters yet another reason to run many (slightly) different experiments

like most (physical/biological/...) models in science check limit settings to give consistent results
we rarely have explicit knowledge about the “right” choice

this is a big obstacle in designing and benchmarking algorithms - Invariance is a very powerful, almost indispensable tool

- We are interested in solving black-box optimisation problems
which may be “arbitrarily” complex

Nikolaus Hansen, Inria 2 A practical guide to experimentation Nikolaus Hansen, Inria 4 A practical guide to experimentation

Jupyter IPython notebook

%pylab nbagg
import cma
cma.fmin(cma.ff.tablet, 20 * [1], 1);

Populating the interactive namespace from numpy and matplotlib

(6_w,12)-aCMA-ES (mu_w=3.7,w_1=40%) in dimension 20 (seed=344737, Wed Jul 5 16:09:44 2017)

Nikolaus Hanse

Nikolaus Hansen, Inria 6

Iterat #Fevals function value axis ratio sigma min&max std t[m:s]
1 12 2.637846492377813e+03 1.0e+00 9.49e-01 9e-01 1le+00 0:00.0
2 24 3.858353384747645e+04 1.1e+00 9.13e-01 9e-01 9e-01 0:00.0
3 36 1.589934793439056e+04 1.2e+00 8.94e-01 9e-01 9e-01 0:00.0
100 1200 1.805167565570186e+02 6.6e+00 2.52e-01 6e-02 3e-01 0:00.1
200 2400 9.260486860109009e+01 4.2e+01 2.79e-01 1le-02 4e-01 0:00.3
300 3600 8.460045942108286e+00 2.0e+02 3.20e-01 4e-03 4e-01 0:00.4
400 4800 5.352841113616880e-02 5.2e+02 4.7le-02 2e-04 5e-02 0:00.5
500 6000 1.169838413517761e-04 8.7e+02 2.61e-03 3e-06 2e-03 0:00.7
600 7200 2.232682824828931e-08 9.9e+02 5.00e-05 4e-08 3e-05 0:00.8
700 8400 1.483610308401096e-12 1.2e+03 4.61e-07 3e-10 2e-07 0:00.9
736 8832 2.696542797455203e-14 1.2e+03 1.03e-07 5e-11 5e-08 0:01.0
termination on tolfun=le-11 (Wed Jul 5 16:09:46 2017)
final/bestever f-value = 1.422957e-14 1.422957e-14
incumbent solution: [-1.01044748e-11 -3.22608195e-08 -8.7516324le-10 -3.66834969e-08
2.35485309e-08 -9.59521093e-10 4.23137381e-08 6.92049899e-09 ...]
std deviations: [5.07976963e-11 4.52415829e-08 4.67529085e-08 4.36659472e-08

4.04686177e-08 4.38294341e-08 4.65665203e-08 5.01580767e-08 ...]

cma.plot()

e e 2

|foest, med, worst|, f— min(f), o, axis ratio Object Variables (curr best, 20-D, popsize~12)

8
Xis ratig

N BOI0000O~E
 ROUIOHOWNIO
RO
SNOOWWHN

W
:n
0
!
=

4.0468bl//€-U8 4.382Y434le-U8 4.6506652U3e-U8 5.ULbBU/6/€-U8 ...]

cma.plot()

. © |

11
10° 4 9%
71!
102 4 43
10
1071 4 2%91
1074 4 é
1077 4 gg
2
10710 éﬂ
10713 4 92
n;\inlﬂ:? |6Q65A7797A5‘§7n37e—14 ' -6 ' 1 ' } '
0 2000 4000 6000 8000 0 2000 . 4000 6000 8000 .
Principle Axes Lengths Standard Deviations x o=+ in All Coordinates
10° 4 10°
10714 107ty
102 4 1072y
103 4 107 5
0 2000 4000 6000 8000 0 2000 4000 6000 8000

function evaluations function evaluations

A € > ¢ 0 B

xperimentation

A practical guide to experimentation

Jupyter IPython notebook

v # download&install anaconda python

shell cmd "conda create" in case a different Python version is needed

shell cmd "pip install cma" to install a CMA-ES module (or see github)
shell cmd "jupyter-notebook" and click on compact-ga.ipynb

from _ future__ import division, print_function

$pylab nbagg

Populating the interactive namespace from numpy and matplotlib

- Demonstration

Nikolaus Hansen, Inria

A practical guide to experimentation

Pure Random Search: Experimentation Summary

Results:

- the implementation seems consistent

debugging of stochastic code is really tricky

one possibility: compare two independent implementations (or with

a reference implementation) with the same RNG and seeds

- scaling on onemax is indistinguishable from 1/2**n

Methodology:

- consider and exploit invariance

+ run the quicker experiment first

one aspect: independence of change of representation

search space dimension is a simple control parameter

taking a week of CPU-time in itself doesn’t make the outcome more meaningful or informative

+ adjust the number of experiments to the observed noise
variation often decreases quickly with increasing dimension
one can get away with single repetitions in a parameter sweep (two experiments per value)

- already one single repetition adds an estimator for variance
any more repetitions only reduce the variance of this estimator

Nikolaus Hansen, Inria

8

A practical guide to experimentation

Invariance: onemax

Invariance Under Rigid Search Space Transformations

I f = NRast flevel sets in dimension 2 f =h
Assigning 0/1 3 o o :
A - ANTA I
y o © © 016 © ©) -
* is an “arbitrary” and “trivial” encoding choice and 25) (© @ () @ © @ [— s
. © 0~ 00X 00~ 0)] ,
- amounts to the affine linear transformation x; — —X; + ; <> : i
the same transformation in each transformed variable 2 /,\@ - © ©/—\ § ;;
continuous domain: isotropic (norm-preserving) transformation &) o ° ° o)
oo\ N NN /@\ D2 ol
] N7\ /A /A /)
- Does not change the function “structure” ©))(© . . 0)) (o —
s S
| H 0 O©W© O ¢ |
- all level sets {x | f(x) = const} have the same size (number of @ @@ W@E@X °
elements, same volume) 2 © © @ © ©© & [B
/@\ O © [© f>
. . N\ AN AN 2N 2\ 2
* no variable dependencies _ AN NN ‘ ‘ ‘ .
=3) 1 0 1 2 3 -3 -2 -1 0 1 2 3

+ same neighbourhood

Instead of 1 function, we now consider 2**n different but equivalent functions
2**n is non-trivial, it is the size of the search space itself

Nikolaus Hansen, Inria 9

Invariance Under Order Preserving Transformations

f=h) f=gioh f=g20h
E g _\ /
g [J g
S g g

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the
transformation with any order preserving (strictly increasing) g.

Invariances make
e observations meaningful

e algorithms predictable and/or "robust”

Nikolaus Hansen, Inria 10

A practical guide to experimentation Nikolaus Hansen, Inria 11

as a rigorous notion of generalization

A practical guide to experimentation Nikolaus Hansen, Inria 12

for example, invariance under search space rotation
(separable vs non-separable)

A practical guide to experimentation

Invariance Under Rigid Search Space Transformations

f=hRasto R flevel sets in dimension 2 f=hoR

for example, invariance under search space rotation
(separable vs non-separable)

A practical guide to experimenta(ﬁn

Invariance Statistical Significance: General Prodecure

The grand aim of all science is to cover the greatest number of empirical facts by + first, check the relevance of the result, e.g., of the

logical deduction from the smallest number of hypotheses or axioms. difference to be tested for statistical significance
— Albert Einstein this also means: do not explorative testing (e.g. test all pairwise combinations)
. any ever so small difference can be made statistically
@ Empirical performance results significant with a simple trick,

» from benchmark functions but not made significant in the sense of important or meaningful

» from solved real world problems .
| tul if thev d i h bl - prefer “nonparametric” methods
are only useful if they do generalize to other problems not based on a parametrised family of probability distributions

@ Invariance is a strong non-empirical statement about

generalization - p-value = significance level = probability of a false positive

generalizing (identical) performance from a single function to a whole outcome

class of functions smaller p-values are better
<0.1% or <1% or <5% is usually considered as statistically significant

Consequently, invariance |s_of greatest importance for the - for any found/observed p-value, fewer data may be better
assessment of search algorlthms. to achieve the same p-value with fewer data the between-difference
must be larger than the within-variation

Nikolaus Hansen, Inria 13 A practical guide to experimentation Nikolaus Hansen, Inria 15 A practical guide to experimentation
Statistical Analysis Statistical Significance: Methods
- use the rank-sum test (aka Wilcoxon or Mann-Whitney U test)
expgr/mental results lacking proper stat/st/ca{ analysis nzust be - Assumption: all observations (data values) are independent

considered anecdotal at best, or even WhO//y inaccurate The lack of necessary preconditions is the main reason to use the rank-sum test.
— M. Wineberg yet, the rank-sum test is nearly as efficient as the t-test which requires normal distributions

9 runs of two algorithms * Null hypothesis (nothing relevant is observed if): Pr(x <y) = Pr(y <x)

- a'QOTithm A the probability to be greater or smaller (better or worse) is the same
algorithm B the aim is to be able to reject the null hypothesis

- Procedure: compute the sum of ranks in the ranking of all (combined)
data values

- Outcome: a p-value
the probability that this or a more extreme data set was generated under the null hypothesis
the probability to mistakenly reject the null hypothesis

function value

+ How many data do we need (two groups)? Five per group may suffice,
nine is plenty.
minimum number of data to possibly get two-sided
P <1%: 5+5 or 4+6 or 3+9 or 2+19 or 1+200
and p < 5%: 4+4 or 3+5 or 2+8 or 1+40

10-8 4

T T 3 T X T T
0 50 100 150 200 250 300
evaluations

Nikolaus Hansen, Inria 14 A practical guide to experimentation Nikolaus Hansen, Inria 16 A practical guide to experimentation

Statistical Significance: How many data do we need?

possible (minimal) two-sided p-value

100 4

1014

10—2 4

1073 4

10744

1054

1076 4

10—7 4

10—8 4

AKA as test efficiency
Rank Sum Test

n1 (number of data in first group)

- assumption: data are fully separated, i.e. x <y for all x, y

+ observation: adding 2 data points in each group gives one additional order of magnitude

« use the Bonferroni correction for multiple tests

Nikolaus Hansen, Inria

simple and conservative: multiply the computed
p-value by the number of tests

17

Using Theory

® m=m
[] ®» np=5
°
°
°
°
)
°
? 3
°
ni . [
l °

Pmin = 2 | | .

1+ ny ¢

= [
2 4 6 8 10 12 14

A practical guide to experimentation

“In the course of your work, you will from time to time encounter the
situation where the facts and the theory do not coincide. In such
circumstances, young gentlemen, it is my earnest advice to respect the

Nikolaus Hansen, Inria

2

facts.”

— Igor Sikorsky, airplane and helicopter designer

A practical guide to experimentation

Using Theory in Experimentation

- debugging / consistency checks
theory may tell us what we expect to see

*+ knowing the limits (optimal bounds)
e.g., we cannot converge faster than optimal
trying to improve becomes a waste of time

- shape our expectations and objectives

Nikolaus Hansen, Inria 19 A practical guide to experimentation

Performance Assessment

+ methodology: run an algorithm on a set of test
functions and extract performance measures from

the generated data
choice of measure and aggregation

- display

subtle display changes can make a huge difference

+ there are surprisingly many devils in the details

Nikolaus Hansen, Inria 20 A practical guide to experimentation

Why do we want to measure performance?

compare algorithms (the obvious)
ideally we want standardised comparisons

regression test after (small) changes
as we may expect (small) changes in behaviour, conventional
regression testing may not work

algorithm selection (the obvious)

understanding of algorithms
very useful to improve algorithms
non-standard experimentation is often preferable

Nikolaus Hansen, Inria 21 A practical guide to experimentation

Measuring Performance

Empirically

convergence graphs is all we have to start with

having the right presentation is important

Nikolaus Hansen, Inria 22 A practical guide to experimentation

Displaying Three Runs

2000000 ~p|0t(f)~
1500000
[
=]
©
>
_S 1000000
©
c
=]
500000
00 100 200 300 400 500 600
iteration

not like this (it’s unfortunately not an uncommon picture)

why not, what’s wrong with it?

Nikolaus Hansen, Inria 23

Displaying Three Runs

semilogy(f)

function value

iteration

0 100 200 300 400 500 600 700

700

A practical guide to experimentation

better like this (shown are the same data),

caveat: fails with negative f-values

Nikolaus Hansen, Inria 24

A practical guide to experimentation

4.04b8b17/e-U8 4.38294341le-U8 4.b56652U3e-U8 5.0158U/b/€-U8 ...]

D|sp|ay| ng Th ree Ru ns ona.plot() There is more to TS“:: than convergence graphs

semilogy(f - min(f) + 1le-11)

107 |foest, med, worst|, f—min(f), o, axis ratio Object Variables (curr best, 20-D, popsize~12)
. o
is ratig | =2.38071
0 ° L3
3 B 2 214210
-] =-313250¢
o 1 10 L:
=] 10 10-7 fax st] %%E
S 101 107104 n sta? 2§£
- 1071 4 gggd:ﬁm 3647
S 5 min(f)=> 6965427974552032e-14 | _ \ I 1 }
= 10 0 2000 4000 6000 8000 0 2000 . 4000 6000 8000 .
g Principle Axes Lengths Standard Deviations x o=+ in All Coordinates
-5
3
2 10 o] 100
1071 .
101 4 1074
-9]
107 1¢ offset = -3.14159265359 + le-11 o] "
-11
1079100 200 300 400 500 600 700 } 1o]
iteration 1073
. . .. 0 2000 4000 6000 8000 0 2000 4000 6000 8000
even better like this: subtract minimum value over
4
all runs # ¢+ 0B
Nikolaus Hansen, Inria 25 A practical guide to experimentation Nikolaus Hansen, Inria 27 A practical guide to experimentation

Displaying 51 Runs Which Statistics?

. . ..) 107
don't hesitate to display all data (the appendix is your friend) 105
10° : : , : : , ,
: 103
3
10 [} 1
1 S 10
10 ©
) > 101
% 101 g
— -3
c 103 E 10
2] 2 107
5 10 10”7
10-7 10'9,
10° ; f-offset = -3.14159265359 + le-11
froffset = -1.8758742 107°5—100 200 300 400 500 600 700

11 ‘ i ‘ L)
10757200 400 600 iteration

. iteration
+*: final value

observation: three different "modes", which would be difficult to
represent or recover in single statistics

Nikolaus Hansen, Inria 26 A practical guide to experimentation Nikolaus Hansen, Inria 28 A practical guide to experimentation

10
10
10°
10°
107
10°

10-11

function value

|f-offset = -3.14159265359 + le-11

iteration

mean/average function value

10’

10° P4
10°}
10+

101!
107

function value

107’
10°
10-11

geometric average function value exp(mean;(log(f;)))

10-5 .

tends to emphasize large values

Which Statistics?

0 100 200 300 400 500 600 700

guide to experimentation

f-offset = -3.14159265359 + le-11

0 100 200 300 400 500 600 700

iteration

* reflects "visual" average
* depends on offset

107

10°F
10°f
101 .

10-1 R
107+
10°F
10—7 -

function value

10°°
10-11

Which Statistics?

f-offset = -3.14159265359 + le-11

0 100 200 300 400 500 600 700
iteration

average iterations
* reflects "visual" average
* here: incomplete

10’
10°
10°

10!
107
107
10”7
10°
10—11

function value

101 L

Which Statistics?

f-offset = -3.14159265359 + le-11

0 100 200 300 400 500 600 700
iteration

the median is invariant
* unique for uneven number of data

e in

dependent of log-scale, offset...
median(log(data))=log(median(data))

i same when taken over x- or y-direction

Implications

unless there are good reasons for a different statistics

use the median as summary datum

more general: use quantiles as summary data
for example out of 15 data: 2nd, 8th, and 14th
value represent the 10%, 50%, and 90%-tile

Nikolaus Hansen, Inria 33 A practical guide to experimentation
10° 10°
-6-(1+1)-ES “©-(1+1)-ES
-8-(1+12)-ES j(1+12)—ES
5 -©-(1,12)-ES 1,12)-ES
o 9 - (616,,12-ES|| +$6/6w.12)—ES
=2 % Q [}
E 0 2.2 QD]
§ 10 § 107 \\
2 2 > B
2 2
107 f
107 10'
6 o5 1 15 2 25 3 35 0 2000 4000 6000 8000
function evaluations x 10"

function evaluations

Comparison of 4 algorithms using the "median run"
and the 90% central range of the final value on two
different functions (Ellipsoid and Rastrigin)

caveat: this range display with simple error bars
fails, if, e.g., 30% of all runs "converge"

fixed target

quality indicator (to be minimized)

 for aggregation we need comparable data

;
number of function evaluations

* missing data: problematic when most or all runs lead to missing data
« fixed target approach misses out on bad results (we may correct for this to some extend)

« fixed budget approach misses out on good results
Nikolaus Hansen, Inria

35

A practical guide to experimentation

Fixed Budget vs Fixed Target

Number of function evaluations are

- quantitatively comparable (on a ratio scale)
ratio scale: “Ais 3.5 times faster than B” (A/B = 1/3.5) is meaningful

- as measurement independent of the function

=> fixed target

Nikolaus Hansen, Inria

36

time remains the same time

A practical guide to experimentation

Performance Measures for Evaluation

Generally, a performance measure should be
guantitative on the ratio scale (highest possible)
“algorithm A is two times better than algorithm B” is a
meaningful statement
can assume a wide range of values

meaningful (interpretable) with regard to the real world
possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate, hence
we use fixed targets

Nikolaus Hansen, Inria 37 A practical guide to experimentation

The Problem of Missing Values

how can we compare the following two algorithms?

ps(Algo A) << 1, fast convergence

ps(Algo B) = 1, slow convergence

function (or indicator) value

number of evaluations

Nikolaus Hansen, Inria 38 A practical guide to experimentation

The Problem of Missing Values

Consider simulated (artificial) restarts using the given
independent runs

Algo Restart A:

| |
L 1

—|——RTa
ps(Algo Restart A) = 1
Algo Restart B:

| RTS
ps(Algo Restart B) =1

Nikolaus Hansen, Inria 39 A practical guide to experimentation

The Problem of Missing Values

The expected runtime (ERT, aka SP2, aRT) to hit a target
value in #evaluations is computed (estimated) as:

unsuccessful runs
count (only) in the
nominator

#evaluations(until to hit the target)

#successes
odds ratio
—_—

ERT =

pJUﬂSUCC

= mean(evalssycc) + x mean(evalSynsucc)

succ
IJUHSUCC

~ mean(evalssycc) + x mean(evalSgycc)

succ

_ Nsuce + Nunsuce

x mean(evalSgycc)
[véUCC

defined (only) for #successes > 0. The last two lines are aka
Q-measure or SP1 (success performance).

Nikolaus Hansen, Inria 40 A practical guide to experimentation

Empirical Distribution Functions

110 * aconvergence
graph
100k . . |+ first hitting time
(black): lower
E envelope, a
g %0 monotonous
s graph
2 80}
- Empirical cumulative distribution functions (ECDF) ©
are arguably the single most powerful tool to display 7of
[{1 ”
aggregated” data. ol
0 20 40 60 80 100 120 140
function evaluations
Nikolaus Hansen, Inria 41 A practical guide to experimentation Nikolaus Hansen, Inria 43 A practical guide to experimentation
110 * aconvergence 110 - - another
graph convergence
graph
100 : : 1 100+
[[
3 9o 2 g0l
> >
"é 80} § 80f
70r 1 70¢
60020 40 60 80 100 120 140 60020 40 60 8 100 120 140
function evaluations function evaluations

Nikolaus Hansen, Inria 42 A practical guide to experimentation Nikolaus Hansen, Inria 44 A practical guide to experimentation

- another

110 a

100+

90+

80

function value

70+

60

convergence
graph with hitting
time

Nikolaus Hansen, Inria

110 a

20 60 80 100 120 140
function evaluations

45

- atarget value

100+

90+

delivers two data
points (possibly a
missing value)

function value

60

Nikolaus Hansen, Inria

20 60 80 100 120 140
function evaluations

46

A practical guide to experimentation

A practical guide to experimentation

function value

function value

110

100}

90+

80+

70¢

60

s

110

Nikolaus Hansen, Inria

20 60 80 100 120 140
function evaluations

47

100}

90+

80+

70¢

60

20

Nikolaus Hansen, Inria

20 60 80 100 120 140
function evaluations

48

- a target value
delivers two data
points

A practical guide to experimentation

- the ECDF with

four steps
(between 0 and
0.8
1)
0.6
0.4
0.2

A practical guide to experimentation

110

- reconstructing a

100+

90+

function value

60 -

single run

o 20 40 60 80 100
function evaluations

Nikolaus Hansen, Inria

110

120 140

49

100
=TT

=N
X

;
d

90

50 equally spaced targets

80

function value

70

>

s=

H

f“-llll*ll“lllﬁj

r
e/ vASwL L e
y . —

60— 20 40 60 80 100

function evaluations

Nikolaus Hansen, Inria

120 140

50

A practical guide to experimentation

A practical guide to experimentation

110

100

90

80

function value

70

60020 40 60 80 100 120 140

function evaluations

Nikolaus Hansen, Inria 51

110

100

90

80

function value

70

60020 40 60 80 100 120 140

function evaluations

Nikolaus Hansen, Inria 52

0.8

0.6

0.4

0.2

A practical guide to experimentation

the ECDF recovers
the monotonous
graph

A practical guide to experimentation

110

100+

function value

6020 60 80 100 120 140
function evaluations

20

Nikolaus Hansen, Inria

53

110pv—ry

100} : f

function value

e

7

/

600 — 20 60 80 100 120 140
function evaluations

20

Nikolaus Hansen, Inria

54

10.8

10.6

10.4

10.2

10.8

10.6

10.4

10.2

110y
the ECDF recovers N
the monotonous 100 x
graph, discretised S —
and flipped) s
o 90
>
o
o
2 80
2
70— 1
60 L L 1 L 1 1 L
0 20 40 60 80 100 120 140
function evaluations
A practical guide to experimentation Nikolaus Hansen, Inria 55

the ECDF recovers
the monotonous
graph, discretised
and flipped

A practical guide to experimentation Nikolaus Hansen, Inria

10.8

10.6

10.4

the ECDF recovers
the monotonous
graph, discretised
and flipped

the

curve is the
average runtime
(the geometric
average if the x-axis
is in log scale)

A practical guide to experimentation

Data and Performance Profiles

56

A practical guide to experimentation

Benchmarking with COCO

COCO — Comparing Continuous Optimisers

+ is a (software) platform for comparing continuous optimisers in a black-box

scenario

https://github.com/numbbo/coco

+ automatises the tedious and repetitive task of benchmarking numerical

optimisation algorithms in a black-box setting

-+ advantage: saves time and prevents common (and not so common) pitfalls

COCO provides

+ experimental and measurement methodology

main decision: what is the end point of measurement

- suites of benchmark functions

single objective, bi-objective, noisy, constrained (in alpha stage)

+ data of already benchmarked algorithms to compare with

Nikolaus Hansen, Inria 57 A practical guide to experimentation

COCO: Installation and Benchmarking in Python

get and install the code

git clone https://github.com/numbbo/coco.git # get coco using git
cd coco

python do.py run-python # install Python experimental module cocoex
python do.py install-postprocessing # install post-processing :-)

v v v v

import os, webbrowser
from scipy.optimize import fmin
import cocoex, cocopp

prepare

output_folder = "scipy-optimize-fmin"

suite = cocoex.Suite("bbob", "", "")

observer = cocoex.Observer("bbob", "result folder: " + output_ folder)

run benchmarking
for problem in suite: # this loop will take several minutes

observer.observe(problem) # generates the data for cocopp post-processing

fmin(problem, problem.initial solution)

post-process and show data

cocopp.main(observer.result folder) # re-run folders look like "...-001"

webbrowser.open("file://" + os.getcwd() + "/ppdata/index.html")

Nikolaus Hansen, Inria 58 A practical guide to experimentation

Benchmark Functions
should be
+ comprehensible

- difficult to defeat by “cheating”
examples: optimum in zero, separable

- scalable with the input dimension

* reasonably quick to evaluate
e.g. 12-36h for one full experiment

reflect reality
specifically, we model well-identified difficulties
encountered also in real-world problems

Nikolaus Hansen, Inria 59 A practical guide to experimentation

The COCO Benchmarking Methodology

- budget-free
larger budget means more data to investigate
any budget is comparable
termination and restarts are or become relevant

- using runtime as (almost) single performance measure
measured in number of function evaluations

+ runtimes are aggregated
- in empirical (cumulative) distribution functions

- by taking averages

geometric average when aggregating over different problems

Nikolaus Hansen, Inria 60 A practical guide to experimentation

Benchmarking Results for Algorithm ALG on the bbob Suite
Home
Runtime distributions (ECDFs) per function

Scaling with dimension for selected targets

Tables for selected targets
Runtime distribution for selected targets and f-distributions

Runtime loss ratios

Runtime distributions (ECDFs) over all targets

1.0 bbb - 1124 75
51 targets in 100..1e-08
0.8115 instances

ortion of function+target pairs

a 0 2 4 6 8
log10 of (# f-evals / dimension)

Nikolaus Hansen, Inria 61 A practical guide to experimentation

FIN

Nikolaus Hansen, Inria 62 A practical guide to experimentation

