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Why Use Neural Networks?
OUTPUTS

INPUTS

I Neural nets powerful in many statistical domains
I E.g. control, pattern recognition, prediction, decision making
I Where no good theory of the domain exists

I Good supervised training algorithms exist
I Learn a nonlinear function that matches the examples
I Utilize big datasets
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Why Evolve Neural Networks?

I Traditional role (since 1990s): Solving POMDP tasks
I Both the structure and the weights evolved (no training)
I Power from recurrency

I A new role: Optimization of Deep Learning Architectures
I Components, topology, hyperparameters evolved; weights trained
I Power from complexity

I Allows solving more challenging tasks with neural networks
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Outline

I I. Neuroevolution for POMDP tasks
I NE vs. traditional RL
I Basic and advanced NE techniques; Novelty search
I Applications: Control, Robotics, Games, Alife

I II. Optimization of Deep Learning Architectures
I Deep neural networks, Autoencoders, LSTMs
I Computational requirements
I Applications: Vision, language modeling
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Sequential Decision Tasks

I A sequence of decisions creates a sequence of states
I States are only partially known
I Optimal outputs are not known
I We can only tell how well we are doing

I Exist in many important real-world domains
I Robot/vehicle/traffic control
I Computer/manufacturing/process optimization
I Game playing; Artificial Life; Biological Behavior
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Standard Reinforcement Learning

Win!

Function
Approximator

Sensors

Value

Decision

I AHC, Q-learning, Temporal Differences
I Generate targets through prediction errors
I Learn when successive predictions differ

I Predictions represented as a value function
I Values of alternatives at each state

I Difficult with large/continuous state and action spaces
I Difficult with hidden states
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Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

I NE = constructing neural networks with evolutionary algorithms
I Direct nonlinear mapping from sensors to actions
I Large/continuous states and actions easy

I Generalization in neural networks
I Hidden states (in POMDP) disambiguated through

memory
I Recurrency in neural networks79

I Deep Reinforcement Learning54,63
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How Well Does It Work?

Poles Method Evals Succ.
One VAPS (500,000) 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127
Two NE 3,416

I Difficult RL benchmark: POMDP Pole Balancing
I NE 2-3 orders of magnitude faster than standard RL21

I NE can solve harder problems
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Neuroevolution for POMDP

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Input variables describe the state observed through sensors
I Output variables describe actions
I Network between input and output:

I Recurrent connections implement memory
I Memory helps with POMDP
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Basic Neuroevolution (1)

I Evolving connection weights in a population of networks 47,62,89,90

I Chromosomes are strings of connection weights (bits or real)
I E.g. 10010110101100101111001
I Usually fully connected, fixed topology
I Initially random
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Basic Neuroevolution (2)

I Parallel search for a solution network
I Each NN evaluated in the task
I Good NN reproduce through crossover, mutation
I Bad thrown away

I Natural mapping between genotype and phenotype
I GA and NN are a good match!
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Problems with Basic Neuroevolution

I Evolution converges the population (as usual with EAs)
I Diversity is lost; progress stagnates

I Competing conventions
I Different, incompatible encodings for the same solution

I Too many parameters to be optimized simultaneously
I Thousands of weight values at once
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Advanced NE 1: Evolving Partial Networks

I Evolving individual neurons to cooperate in networks1,48,53

I E.g. Enforced Sub-Populations (ESP18)
I Each (hidden) neuron in a separate subpopulation
I Fully connected; weights of each neuron evolved
I Populations learn compatible subtasks

I Can be applied at the level of weights, and modules
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Evolving Neurons with ESP
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I Evolution encourages diversity automatically
I Good networks require different kinds of neurons

I Evolution discourages competing conventions
I Neurons optimized for compatible roles

I Large search space divided into subtasks
I Optimize compatible neurons
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Advanced NE 2: Evolutionary Strategies

I Evolving complete networks with ES (CMA-ES26)

I Small populations, no crossover

I Instead, intelligent mutations
I Adapt covariance matrix of mutation distribution
I Take into account correlations between weights

I Smaller space, less convergence, fewer conventions
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Advanced NE 3: Evolving Network Structure

I Optimizing connection weights and network topology2,14,16,92

I E.g. Neuroevolution of Augmenting Topologies (NEAT70,73)

I Based on Complexification

I Of networks:
I Mutations to add nodes and connections

I Of behavior:
I Elaborates on earlier behaviors
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Why Complexification?

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

I Challenge with NE: Search space is very large
I Complexification keeps the search tractable

I Start simple, add more sophistication
I Incremental construction of intelligent agents
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Advanced NE 4: Indirect Encodings (1)

I Instructions for constructing the network evolved
I Instead of specifying each unit and connection2,14,46,68,92

I E.g. Cellular Encoding (CE23)
I Grammar tree describes construction

I Sequential and parallel cell division
I Changing thresholds, weights
I A “developmental” process that results in a network
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Indirect Encodings (2)

I Encode the networks as spatial patterns
I E.g. Hypercube-based NEAT (HyperNEAT8)
I Evolve a neural network (CPPN)

to generate spatial patterns
I 2D CPPN: (x, y) input! grayscale output
I 4D CPPN: (x1, y1, x2, y2) input! w output
I Connectivity and weights can be evolved indirectly
I Works with very large networks (millions of connections)
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Properties of Indirect Encodings (1)

I Smaller search space

I Avoids competing conventions

I Describes classes of networks
efficiently

I Modularity, reuse of structures
I Recurrency symbol in CE: XOR! parity
I Repetition with variation in CPPNs
I Useful for evolving morphology
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Properties of Indirect Encodings (2)

I Not fully explored (yet)
I See e.g. CS track at GECCO

I Promising current work
I More general L-systems;

developmental codings;
embryogeny74

I Scaling up spatial coding9,17

I Genetic Regulatory Networks58

I Evolution of symmetries82
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Further NE Techniques

I Incremental and multiobjective evolution20,65,81,90

I Utilizing population culture4,42,78

I Utilizing evaluation history39

I Evolving NN ensembles and modules27,38,52,59,86

I Evolving transfer functions and learning rules6,60,75

I Bilevel optimization of NE37

I Evolving LSTMs for strategic behavior34

I Combining learning and evolution5,15,42,51,71,78,87

I Evolving for novelty
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Evolving for Novelty
(All are 100% evolved: no retouching) 

47 

I Motivated by humans as fitness functions
I E.g. picbreeder.com, endlessforms.com66

I CPPNs evolved; Human users select parents
I No specific goal

I Interesting solutions preferred
I Similar to biological evolution?
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Novelty Search

I Evolutionary algorithms maximize a performance objective
I But sometimes hard to achieve it step-by-step

I Novelty search rewards candidates that are simply different31,72

I Stepping stones for constructing complexity
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Novelty Search Demo (1)

I 1D function to optimize; Fitness-based search would converge

I Novelty search finds stepping stones

I DEMO
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Novelty Search Demo (2)

I Illustration of stepping stones43,44

I Nonzero fitness on “feet” only; stepwise increase
I Top and right “toes” are stepping stones to next “foot”
I Difficult for fitness based search; novelty can do it

I DEMO
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Novelty Search Demo (3)

I Fitness-based evolution is rigid
I Requires gradual progress

I Novelty-based evolution is more innovative, natural31,72

I Allows building on stepping stones
I As a secondary objective—or even the only one!

I DEMO
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Neuroevolution Applications

Control
Pole-Balancing

Satellite Asst. Helicopter
Rocket

Robotics
Soccer

Driving Bipedal Multilegged

Games

a b

1

2

3

4

5

6

7

8

c d e f g h

Othello NERO Pac-Man Unreal

Alife
Duel

Predators Hyenas/Zebras Virtual Creatures
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Games: Evolving Humanlike Behavior

I Botprize competition, 2007-2012
I Turing Test for game bots ($10,000 prize)

I Three players in Unreal Tournament 2004:
I Human confederate: tries to win
I Software bot: pretends to be human
I Human judge: tries to tell them apart!
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Evolving an Unreal Bot

I Evolve effective fighting behavior
I Human-like with resource limitations (speed, accuracy...)

I Also scripts & learning from humans (unstuck, wandering...)

I 2007-2011: bots 25-30% vs. humans 35-80% human

I 6/2012 best bot better than 50% of the humans

I 9/2012...?
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Success!!!

I In 2012, two teams reach the 50% mark!
I Fascinating challenges remain:

I Judges can still differentiate in seconds
I Judges lay cognitive, high-level traps
I Team competition: collaboration as well

I DEMO
31/71

Extending to Strategic Behavior

I Evolved behaviors mostly reactive
I Can we extend them to strategy?

I LSTMs allow integrating inputs over longer time scales
I Can evolution take advantage of them?
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Adapting to Opponent Strategies in Poker (1)

I Evolve weights of poker players (Li et al. GECCO-2018)35

I 10-LSTM Game Module integrates over each game
I A 1-LSTM Opponent Module integrates over each opponent
I A fully connected Decision Network makes moves
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Adapting to Opponent Strategies in Poker (2)
Opponent Evolved LSTM Slumbot 2017
Scared Limper 999 702
Calling Machine 46114 2761
Hothead Maniac 42333 4988
Candid Statistician 9116 4512
Random Switcher 8996 2102
Loose Aggressive 20005 2449
Tight Aggressive 509 284
Half-a-Pro 278 152
Slumbot 2017 19

I Adapts strategy dynamically according to opponent
I Exploits weaknesses better than Slumbot (in mBB)
I Ties against Slumbot (although evolved only with weak)

I Indeed LSTMs extend neuroevolution to strategic behavior
I Extend from reactive to strategic behavior
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Alife: Evolved Virtual Creatures

Body

Brain

I Body-Brain Coevolution32,33,69

I Body: Blocks, muscles, joints, sensors
I Brain: A neural network (with general nodes)
I Evolved together in a physical simulation

I Encapsulation, Pandemodium, Syllabus
35/71

Encapsulation

I Once evolved, a trigger node is added
I DEMO
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Pandemonium

I Conflicting behaviors: Highest trigger wins
I DEMO
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Syllabus

I Step-by-step construction of complex behavior
I Primitives and three levels of complexity
I Constructed by hand; body and brain evolved together
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Turn to Light

I First level of complexity
I Selecting between alternative primitives
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Move to light

I First level of complexity (Sims 1994)
I Selecting between alternative primitives
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Strike

I Alternative behavior primitive
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Attack

I Second level of complexity (beyond Sims and others)

42/71

Turn from Light

I Alternative first-level behavior
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Retreat

I Alternative second-level behavior
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Fight or Flight

I Third level of complexity

45/71

Insight: Body/Brain Coevolution

I Evolving body and brain together poses strong constraints
I Behavior appears believable
I Worked well also in BotPrize (Turing test for game bots)64

I Possible to construct innovative, situated behavior
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Numerous Other Applications

I Creating art, music, dance...7,11,25,67

I Theorem proving10

I Time-series prediction41

I Computer system optimization19

I Manufacturing optimization22

I Process control optimization83,84

I Game strategy optimization3

I Measuring top quark mass88

I Etc.
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II. Optimization of DL Architectures

Szegedy et al. 2014

I Big Data and Big Compute available since 2000s
I Machine learning systems have scaled up

I E.g. Deep Learning ideas existed since the 1990s
I With million times more data & compute, they now work!

I A new problem: How to configure such systems?
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Configuring Complex Systems

I A new general approach to engineering
I Humans design just the framework
I Machines optimize the details

I Programming by optimization24
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E.g. Optimizing NE in Helicopter Hovering

I A challenging benchmark
I RL, NE solutions exist

I Eight parameters optimized by hand29

I Hard for a human designer to do more
I With EA, increased to 15

I !Significantly better performance37
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Emerging area since 2016

Fernando et al. 2016

I Initially partial optimization due to limited resources
I Evolve DL hyperparameters40

I Evolve weights with limited evaluation50

I Evolve a CPPN for weights; Lamarckian training12
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Several Approaches in 2017 (1)

Real et al. 2017 Fernando et al. 2017

I PathNet (DeepMind)
I Pathways across multiple supervised and RL tasks13

I Evolutionary Strategy (OpenAI)
I Using ES instead of RL to construct networks for games61

I NEAT (Google Brain)
I Evolution of deep networks on CIFAR-10 and CIFAR-10057
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Several Approaches in 2017 (2)

Khadka et al. 2017 Suganuma et al. 2017

I Utilizing an external memory module28

I A Gated Recurrent Unit + Neural Turing Machine
I Added Read/Write gates to control memory access
I Evolved a network of such units
I Generalizes to length 100 (LSTMs 5-654)

I Cartesian Genetic Programming77

I Limited row⇥column structure; selected primitives
I Possible with limited computational resources
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State of the Art Results in 2018

Lehman et al. 2017 Real et al. 2018

I Understanding ES and GAs in RL (Uber)30,76,93

I ES provides more exploration than gradients
I GA provides more exploration than ES

I Image processing (Google Brain)
I CIFAR-10, CIFAR-100, and ImageNet56

I Language modeling and multitasking (Sentient)
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Vs. State of the Art in RL/DL

Zoph and Le 2017

I Neural Architecture Search using RL94,95

I An RNN outputs a sequence that specifies the design:
hyperparameters, connections, LSTM components

I Policy gradient on network performance (REINFORCE91)
I Good at discovering CNN, LSTM node structure

I Works well when focused on a limited choice
I Some of the ideas are converging; combinations possible
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Evolutionary Neural Architecture Search

I Evolutionary optimization is a natural fit
I Crossover between structures discovers principles
I Population-based search covers space
I Novelty search maximizes exploration

I Currently at three levels: Nodes, modules, topologies
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1. Node-level Evolution of Sequences

I Gated memory units (i.e. LSTMs) for a fixed architecture
I Tree representation for the nodes55

I Optimized through genetic programming
I Evaluated in the language modeling benchmark

57/71

Evolved Solutions

I NAS and Evolved use nonlinear paths from hidden
I Evolved adds a second memory cell path

I Results from broader search in evolution
I Difficult to discover by hand (not in 25 years!)

I Music generation demo:
https://sentient.ai/sentient-labs/ea/lstm-music
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2. Network-level Evolution in Multitasking

I Learning in multiple tasks at once
I More generalizable embeddings
I Each task can learn better

I Network structure can have a large effect
I A good domain to test neuroevolution of structure
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Evolving Network Topologies

I Standard is linear, or soft order topology (Liang et al.
GECCO-2018; Meyerson et al. 2018)36,45

I Evolve topology for each task, using same modules
I Modules trained across all tasks
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Omniglot Set of Tasks

I Recognize characters in 50 alphabets
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Topology-level Evolution

I Topologies for each task diverge over evolution
I Modules trained simultaneously in all tasks
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Resulting Topologies

I Improves state-of-the-art from 22% error to 10%
I Omniglot demo: https://sentient.ai/sentient-labs/ea/omni-draw
I Face attribute demo:

https://sentient.ai/sentient-labs/ea/celeb-match
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3. Two-level Evolution of Modules and Topologies

I Many of the best architectures are modular
I E.g. Googlenet, residual networks...
I Implements stepwise refinement?

I Does not emerge in NEAT by itself
I Solution: Evolve modules and blueprints

I cf. ESP, bilevel evolution; Hierarchical SANE49
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Cooperative Coevolution (2)

I Evolution at two levels
I Module subpopulations optimize building blocks
I Blueprint population optimizes their combinations

I Fitness of the complete network drives evolution
I Applies to both CNN (vision), LSTM (language) networks
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Evaluation in Image Captioning

Vinyals et al. 2015

I Generating image captions for the blind
I Automatically on a magazine website
I Added 17,000 iconic image/caption pairs to MSCOCO
I Evolves elements from Show & Tell network85
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Evolved Image Captioning Network

I Complex network with
repeated modules, a
bypass pathway

I Improves 9% over
Show and Tell baseline
on MSCOCO

I Good on 50% of iconic,
20% of all images

I Evolutionary Auto-ML:
Use Evolution to
improve upon human
design
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Future Work on ENN/DL

I Extend the search space for DL
I Evolve with more components: residuals, timing

I Utilize ensembles
I Evolve diversity through novelty search

I Utilize parallel computing resources
I Industrialize ENN in Evolutionary AutoML
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Conclusion

I Neuroevolution is a powerful approach for POMDPs
I Discovers robust, believable behavior
I Games, robotics, control, alife...

I Evolution makes more complex DL architectures possible
I Structure, components, hyperparameters fit to the task
I Vision, speech, language,...
I Automatic design of learning machines
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Further Material

I www.cs.utexas.edu/users/risto/talks/enn-tutorial
I Slides and references
I Demos
I A step-by-step neuroevolution exercise (evolving behavior

in the NERO game)

I www.scholarpedia.org/article/Neuroevolution
I A short summary of neuroevolution

70/71

Evolution is the New Deep Learning!

Summary and demos: https://sentient.ai/sentient-labs/ea

I Neuroevolution
I Building more complex models

I Commercial Applications
I E.g. Sentient Ascend

I Hard Problems
I Vast search space; high dimensionality; deception
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