

Environment



# Evolving an Unreal Bot



- Evolve effective fighting behavior
  - ► Human-like with resource limitations (speed, accuracy...)
- ► Also scripts & learning from humans (unstuck, wandering...)
- 2007-2011: bots 25-30% vs. humans 35-80% human
- 6/2012 best bot better than 50% of the humans
- ▶ 9/2012...?





DEMO



# Adapting to Opponent Strategies in Poker (2)

| Opponent            | Evolved LSTM | Slumbot 2017 |
|---------------------|--------------|--------------|
| Scared Limper       | 999          | 702          |
| Calling Machine     | 46114        | 2761         |
| Hothead Maniac      | 42333        | 4988         |
| Candid Statistician | 9116         | 4512         |
| Random Switcher     | 8996         | 2102         |
| Loose Aggressive    | 20005        | 2449         |
| Tight Aggressive    | 509          | 284          |
| Half-a-Pro          | 278          | 152          |
| Slumbot 2017        | 19           |              |

- Adapts strategy dynamically according to opponent
  - Exploits weaknesses better than Slumbot (in mBB)
  - Ties against Slumbot (although evolved only with weak)
- Indeed LSTMs extend neuroevolution to strategic behavior
  - · Extend from reactive to strategic behavior



FIGHT OF

ATTACE



#### References II

- [14] D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: From architectures to learning, Evolutionary Intelligence, 1:47-62 (2008),
- [15] D. Floreano and J. Urzelai. Evolutionary robots with on-line self-organization and behavioral fitness. Neural Networks 13:431-4434 (2000)
- [16] B. Fullmer and R. Miikkulainen, Using marker-based genetic encoding of neural networks to evolve finite-state behaviour, in: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, F. J. Varela and P. Bourgine, eds., 255–262, MIT Press, Cambridge, MA (1992).
- [17] J. J. Gauci and K. O. Stanley, A case study on the critical role of geometric regularity in machine learning, in: Proceedings of the Twenty-Third National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2008)
- F. Gomez, Robust Non-Linear Control Through Neuroevolution, Ph.D. thesis, Department of Computer [18] Sciences, The University of Texas at Austin (2003).
- F. Gomez, D. Burger, and R. Miikkulainen, A neuroevolution method for dynamic resource allocation on a chip [19] multiprocessor, in: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 2355-2361, IEEE, Piscataway, NJ (2001).
- [20] F. Gomez and R. Miikkulainen, Incremental evolution of complex general behavior, Adaptive Behavior, 5:317-342 (1997).
- [21] F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through cooperatively coevolved synapses, Journal of Machine Learning Research, 9:937-965 (2008).
- [22] B. Greer, H. Hakonen, R. Lahdelma, and R. Miikkulainen, Numerical optimization with neuroevolution, in:
- Proceedings of the 2002 Congress on Evolutionary Computation, 361-401, IEEE, Piscataway, NJ (2002). F. Gruau and D. Whitley, Adding learning to the cellular development of neural networks: Evolution and the [23] Baldwin effect, Evolutionary Computation, 1:213-233 (1993).
- H. Hoos, Programming by optimization, Communications of the ACM, 55:70-80 (2012).
- A. K. Hoover, M. P. Rosario, and K. O. Stanley, Scaffolding for interactively evolving novel drum tracks for [25] existing songs, in: Proceedings of the Sixth European Workshop on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Springer, Berlin (2008).
- C. Igel, Neuroevolution for reinforcement learning using evolution strategies, in: Proceedings of the 2003 [26] Congress on Evolutionary Computation, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, eds., 2588-2595, IEEE Press, Piscataway, NJ (2003).

## References III

- [27] A. Jain, A. Subramoney, and R. Miikkulainen, Task decomposition with neuroevolution in extended predator-prev domain, in: Proceedings of Thirteenth International Conference on the Synthesis and Simulation of Living Systems, East Lansing, MI, USA (2012). [28] S. Khadka, J. J. Chung, and K. Tumer, Evolving memory-augmented neural architecture for deep memory
- problems, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM (2017).
- [29] R. Koppejan and S. Whiteson, Neuroevolutionary reinforcement learning for generalized control of simulated helicopters, Evolutionary Intelligence, 4:219-241 (2011).
- [30] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, ES is more than just a traditional finite-difference approximator, arXiv:1712.06568 (2017).
- [31] J. Lehman and K. O. Stanley, Abandoning objectives: Evolution through the search for novelty alone, Evolutionary Computation, 19:189-223 (2010).
- [32] D. Lessin, D. Fussell, and R. Miikkulainen, Open-ended behavioral complexity for evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
- [33] D. Lessin, D. Fussell, and R. Miikkulainen, Trading control intelligence for physical intelligence: Muscle drives in evolved virtual creatures, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), Vancouver, BC, Canada (July 2014).
- [34] X. Li and R. Miikkulainen, Evolving adaptive poker players for effective opponent exploitation, in: AAAI-17 Workshop on Computer Poker and Imperfect Information Games, San Francisco, CA, USA (2017).
- [35] X. Li and R. Miikkulainen, Dynamic adaptation and opponent exploitation in computer poker, in: Proceedings of the Genetic and Evolutionary Computation Conference (2018).
- J. Liang, E. Meyerson, and R. Miikkulainen, Evolutionary architecture search for deep multitask networks, in: [36] Proceedings of the Genetic and Evolutionary Computation Conference (2018).
- [37] J. Z. Liang and R. Miikkulainen, Evolutionary bilevel optimization for complex control tasks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015), Madrid, Spain (July 2015), [38] Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning. IEEE Transactions
- on Evolutionary Computation, 4:380-387 (2000).
- [39] A. Lockett and R. Miikkulainen, Neuroannealing: Martingale-driven learning for neural network, in: Proceedings of the Genetic and Evolutionary Computation Conference (2013).
- [40] I. Loshchilov and F. Hutter, CMA-ES for hyperparameter optimization of deep neural networks, CoRR, abs/1604.07269 (2016).

### References IV

- [41] J. R. McDonnell and D. Waagen, Evolving recurrent perceptrons for time-series modeling, IEEE Transactions on Evolutionary Computation, 5:24-38 (1994).
- P. McQuesten, Cultural Enhancement of Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The [42] University of Texas at Austin, Austin, TX (2002). Technical Report AI-02-295.
- [43] E. Meyerson, J. Lehman, and R. Miikkulainen, Learning behavior characterizations for novelty search, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), ACM, New York, NY (2016)
- [44] E. Meyerson and R. Miikkulainen, Discovering evolutionary stepping stones through behavior domination, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, Germany (2017).
- [45] E. Meyerson and R. Miikkulainen, Beyond shared hierarchies: Deep multitask learning through soft layer ordering, in: Proceedings of the International Conference on Learning Representations (2018).
- E. Mjolsness, D. H. Sharp, and B. K. Alpert, Scaling, machine learning, and genetic neural nets, Advances in [46] Applied Mathematics, 10:137-163 (1989).
- [47] D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 762-767, San Francisco: Morgan Kaufmani (1989)
- D. E. Moriarty and R. Miikkulainen, Forming neural networks through efficient and adaptive co-evolution, [48] Evolutionary Computation, 5:373-399 (1997).
- D. E. Moriarty and R. Miikkulainen, Hierarchical evolution of neural networks, in: Proceedings of the 1998 [49] IEEE Conference on Evolutionary Computation (ICEC'98), 428–433, IEEE, Piscataway, NJ (1998).
- [50] G. Morse and K. O. Stanley, Simple evolutionary optimization can rival stochastic gradient descent in neural networks, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), ACM, New York, NY (2016).
- [51] S. Nolfi and D. Parisi, Good teaching inputs do not correspond to desired responses in ecological neural networks, Neural Processing Letters, 1(2):1-4 (1994).
- [52] D. Pardoe, M. Ryoo, and R. Miikkulainen, Evolving neural network ensembles for control problems, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005)
- M. A. Potter and K. A. D. Jong, Cooperative coevolution: An architecture for evolving coadapted [53] subcomponents, Evolutionary Computation, 8:1-29 (2000).

### References V

- [54] A. Rawal and R. Miikkulainen, Evolving deep lstm-based memory networks using an information maximization objective, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2016), ACM, New York, NY (2016).
- [55] A. Rawal and R. Miikkulainen, From nodes to networks: Evolving recurrent neural networks, arXiv:1803.04439 (2018).
- [56] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, Regularized evolution for image classifier architecture search, arXiv:1802.01548 (2018).
- [57] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. Le, and A. Kurakin, Large-scale evolution of image classifiers, CoRR, abs/1703.01041 (2017).
- [58] J. Reisinger and R. Miikkulainen, Acquiring evolvability through adaptive representations, in: Proceeedings of the Genetic and Evolutionary Computation Conference, 1045-1052 (2007).
- J. Reisinger, K. O. Stanley, and R. Miikkulainen, Evolving reusable neural modules, in: Proceedings of the Genetic and Evolutionary Computation Conference (2004)
- T. P. Runarsson and M. T. Jonsson, Evolution and design of distributed learning rules, in: Proceedings of The [60] First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 59-63, IEEE, Piscataway, NJ (2000).
- T. Salimans, J. Ho, X. Chen, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement [61] learning, CoRR, abs/1703.03864 (2017).
- [62] J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms and neural networks: A survey of the state of the art, in: Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, D. Whitley and J. Schaffer, eds., 1-37, IEEE Computer Society Press, Los Alamitos, CA (1992).
- J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61:85-117 (2015).
- J. Schrum, I. Karpov, and R. Mikkulainen, Humanlike combat behavior via multiobjective neuroevolution, in: Believable Bots, P. Hingston, ed., Springer, New York (2012).
- [65] J. Schrum and R. Miikkulainen, Evolving agent behavior in multiobjective domains using fitness-based shaping, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).
- J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik, and K. O. Stanley, Picbreeder: A case study in collaborative evolutionary exploration of design space, Evolutionary Computation, 19:345-371 (2011).

#### References VI

- [67] J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stanley, Picbreeder: Evolving pictures collaboratively online, in: Proceedings of Computer Human Interaction Conference, ACM, New York (2008)
- [68] A. A. Siddiqi and S. M. Lucas, A comparison of matrix rewriting versus direct encoding for evolving neural networks, in: Proceedings of IEEE International Conference on Evolutionary Computation, 392–397, IEEE, Piscataway, NJ (1998).
- [69] K. Sims, Evolving 3D morphology and behavior by competition, in: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), R. A. Brooks and P. Maes, eds., 28-39, MIT Press, Cambridge, MA (1994),
- [70] K. O. Stanley, Efficient Evolution of Neural Networks Through Complexification, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2003).
- [71] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Evolving adaptive neural networks with and without adaptive synapses, in: Proceedings of the 2003 Congress on Evolutionary Computation, IEEE, Piscataway, NJ (2003).
- [72] K. O. Stanley and J. Lehman, Why Greatness Cannot Be Planned: The Myth of the Objective, Springer, Berlin (2015).
- K. O. Stanley and R. Miikkulainen, Evolving Neural Networks Through Augmenting Topologies, Evolutionary [73] Computation, 10:99-127 (2002).
- K. O. Stanley and R. Miikkulainen, A taxonomy for artificial embryogeny, Artificial Life, 9(2):93–130 (2003).
- D. G. Stork, S. Walker, M. Burns, and B. Jackson, Preadaptation in neural circuits, in: International Joint [75] Conference on Neural Networks (Washington, DC), 202-205, IEEE, Piscataway, NJ (1990).
- [76] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv:1712.06567 (2017)
- [77] M. Suganuma, S. Shirakawa, and T. Nagao, A genetic programming approach to designing convolutional neural network architectures, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM (2017).
- [78] W. Tansey, E. Feasley, and R. Miikkulainen, Accelerating evolution via egalitarian social learning, in: Proceedings of the 14th Annual Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, Pennsylvania, USA (July 2012).

### References VII

- [79] M. Taylor, S. Whiteson, and P. Stone, Comparing evolutionary and temporal difference methods in a reinforcement learning domain, in: Proceedings of the Genetic and Evolutionary Computation Conference (2006)
- [80] D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds., Proceedings of the 1990 Connectionist Models Summer School, San Francisco: Morgan Kaufmann (1990).
- [81] J. Urzelai, D. Floreano, M. Dorigo, and M. Colombetti, Incremental robot shaping, Connection Science, 10:341-360 (1998)
- [82] V. K. Valsalam and R. Miikkulainen, Evolving symmetric and modular neural networks for distributed control, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2009, 731-738, ACM, New York, NY, USA (2009).
- [83] A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Adaptive control utilising neural swarming, in: Proceedings of the Genetic and Evolutionary Computation Conference, W. B. Langdon, E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. K. Burke, and N. Jonoska, eds., San Francisco: Morgan Kaufmann (2002).
- [84] A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Intelligent process control utilizing symbiotic memetic neuro-evolution, in: Proceedings of the 2002 Congress on Evolutionary Computation (2002).
- [85] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, Show and tell: A neural image caption generator, in: Proc. of CVPR, 3156-3164 (2015).
- S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, Evolving keepaway soccer players through task [86] decomposition, Machine Learning, 59:5–30 (2005). S. Whiteson and P. Stone, Evolutionary function approximation for reinforcement learning, Journal of Machine
- [87] Learning Research, 7:877-917 (2006).
- [88] S. Whiteson and D. Whiteson, Stochastic optimization for collision selection in high energy physics, in: Proceedings of the Nineteenth Annual Innovative Applications of Artificial Intelligence Conference (2007). [89] D. Whitley, S. Dominic, R. Das, and C. W. Anderson, Genetic reinforcement learning for neurocontrol
- problems, Machine Learning, 13:259-284 (1993). [90] A. P. Wieland, Evolving controls for unstable systems, in: Touretzky et al. 80, 91-102.
- R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, [91] Machine Learning, 8:229-256 (1992).
- [92] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9):1423–1447 (1999).

