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Benjamin Doerr: Theory of Evolutionary Computation

Instructor: Benjamin Doerr
Benjamin Doerr is a full professor at the French École Polytechnique. 

He received his diploma (1998), PhD (2000) and habilitation (2005) in 
mathematics from the university of Kiel (Germany). His research area is 
the theory both of problem-specific algorithms and of randomized search 
heuristics like evolutionary algorithms. Major contributions to the latter 
include runtime analyses for evolutionary algorithms and ant colony 
optimizers, as well as the further development of the drift analysis 
method, in particular, multiplicative and adaptive drift. In the young area 
of black-box complexity, he proved several of the current best bounds. 

Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several 
journals, among them Artificial Intelligence, Evolutionary Computation, 
Natural Computing, and Theoretical Computer Science. Together with 
Anne Auger, he edited the book Theory of Randomized Search 
Heuristics.
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This Tutorial: A Real Introduction to Theory
GECCO, CEC, PPSN always had a good number of theory tutorials

They did a great job in educating the theory community

However, not much was offered for those attendees which

have little experience with theory

but want to understand what the theory people are doing (and why)

This is the target audience of this tutorial. We try to answer those 
questions which come before the classic theory tutorials.
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History/Evolution of This Tutorial:
A difficult start: GECCO 2013 and GECCO 2015 did not accept the 
proposal for a real beginner’s theory tutorial.

Real beginners theory tutorials:
PPSN 2014 (with Anne Auger): the first real beginners theory tutorial, 
covering both discrete and continuous optimization
GECCO 2016 & WCCI 2016 (with Carola Doerr): only discrete search 
spaces
PPSN 2016: added adaptive parameter settings
CEC 2017 & GECCO 2017: added fast genetic algorithms

This tutorial:
15% overlap with PPSN 2014
40% overlap with GECCO/CEC 2016
60% overlap with PPSN 2016
80% overlap with CEC 2017/GECCO 2017
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Questions Answered in This Tutorial 
What is theory in evolutionary computation (EC)?

Why do theory? How does it help us understanding EC?

How do I read and interpret a theory result?

What type of results can I expect from theory (and which not)?

What are current “hot topics” in the theory of EC?
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Focus: EAs with Discrete Search Spaces
In principle, we try to answer these questions independent of a particular 
subarea of theory

However, to not overload you with definitions and notation, we focus on  
evolutionary algorithms on discrete search spaces

Hence we intentionally omit examples from

genetic programming, estimation of distribution algorithms, ant colony 
optimizers, swarm intelligence, …

all subareas of continuous optimization

As said, this is for teaching purposes only. There is strong theory 
research in all these areas. All answers this tutorial give are equally valid 
for these areas
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A Final Word Before We Start
If I’m saying things you don’t understand or if you want to know more 
than what I had planned to discuss, 
don’t be shy to ask questions at any time!

This is “your” tutorial and I want it to be as useful for you as possible

I’m trying to improve the tutorial each time I give it. For this, your 
feedback (positive and negative) is greatly appreciated!

So talk to me after the tutorial, during the coffee breaks, social 
event, late-night beer drinking, … or send me an email
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Structure of the Tutorial
Part I: What is Theory of EC?

Part II: A Guided Walk Through a Famous Theory Result

an illustrative example to convey the main messages of this tutorial

Part III: How Theory Has Contributed to a Better Understanding of EAs

3 ways how theory has an impact (new: fast mutation)

Part IV: Current Hot Topics in the Theory of EAs

in particular: dynamic/adaptive parameter choices

Part V: Concluding Remarks

Appendix: glossary, references
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Part I:

What is 
Theory of EC

9

Definition of theory of EC

Other notions of theory

What can you achieve with theoretical research and what not?

Comparison: theory vs. experiments
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What Do We Mean With Theory?
Definition (for this tutorial): 
By theory, we mean results proven with mathematical rigor

Mathematical rigor:

make precise the evolutionary algorithm (EA) you regard

make precise the problem you try to solve with the EA

formulate a precise statement how this EA solves this problem

prove this statement

Example:
Theorem: The (1+1) EA finds the optimum of the OneMax test function 

in an expected number of at most 
iterations. 
Proof: blah, blah, …
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Other Notions of Theory
Theory: Mathematically proven results

Experimentally guided theory: Set up an artificial experiment to 
experimentally analyze a particular question

example: add a neutrality bit to two classic test functions, run a GA on 
these, and derive insight from the outcomes of the experiments

Descriptive theory: Try to describe/measure/quantify observations

example: fitness-distance correlation, schema theory, …

“Theories”: Unproven claims that (mis-)guide our thinking

example: building block hypothesis
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Why Do Theory? Because of the Results!
Absolute guarantee that the result is correct (it’s proven)

you can be sure

reviewers can check truly the correctness of results

readers can trust reviewers or, with moderate maths skills, check the 
correctness themselves

Many results can only be obtained by theory; e.g., because you make a 
statement on a very large or even infinite set

all bit-strings of length , 

all TSP instances on vertices, 

all input sizes ,

all possible algorithms for a problem
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Why Do Theory? Because of the Approach!
A proof (automatically) gives insight in

how things work ( working principles of EC)

why the result is as it is

Self-correcting/self-guiding effect of proving: 

when proving a result, you are automatically pointed to the questions 
that need more thought

you see what exactly is the bottleneck for a result

Trigger for new ideas

clarifying nature of mathematics

playful nature of mathematicians

14
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Limitations of Theoretical Research
All this has its price… Possible drawbacks of theory results include:

Restricted scope: So far, mostly simple algorithms could be analyzed for 
simple optimization problems

Less precise results: Constants are not tight, or not explicit as in 
“ ” = “less than for some unspecified constant ”

Less specific results: 

You obtain a (weaker) guarantee for all problem instances

but not a stronger guarantee for those instances which show up in 
your application

Theory results can be very difficult to obtain: The proof might be short 
and easy to read, but finding it took long hours

Usually, there is no generic way to the solution, but you need a  
completely new, clever idea
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Part II: 
A Guided Walk Through a 

Famous Theory Result

16

We use a simple but famous theory result 

as an example for a non-trivial result

to show how to read a theory result

to explain the meaning of such a theoretical statement

to illustrate what we just discussed
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A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function

in an expected number of iterations.

Reference:
[DJW02]  S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) 
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81, 
2002.

-- famous paper (500+ citations, maybe the most-cited pure EA theory paper)

-- famous problem (20+ papers working on exactly this problem, many very 
useful methods were developed in trying to solve this problem)
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Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function

in an expected number of iterations.

(1+1) evolutionary algorithm to maximize :
1. choose uniformly at random
2. while not terminate do
3.     generate from by flipping each bit independently

with probability (“standard-bit mutation”)
4.     if then 
5. output 

Reading This Result

18

at most for some 
unspecified constant 

a hidden all-quantifier: we claim 
the result for all

performance measure: number of iterations or 
fitness evaluations, but not runtime in seconds

A mathematically 
proven result

should be made 
precise in the paper to 
avoid any ambiguity
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Why is This a Good Result?
Gives a proven performance guarantee

General: a statement for all linear functions in all dimensions 

Non-trivial 

Surprising 

Provides insight in how EAs work 

Theorem: The (1+1) evolutionary algorithm finds the maximum of any 
linear function 

in an expected number of iterations.

19

more on these 3 items 
on the next slides
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True

20
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True

Hard to prove
7 pages complicated maths proof in [DJW02]
we can do better now, but only because we developed deep analysis 
techniques (artificial fitness functions, drift analysis)

No “easy” explanation
monotonicity: if the are all positive, then “flipping a 0 to a 1 always 
increases the fitness” (monotonicity).

wrong: monotonic functions are easy to optimize for an EA 
(because you only need to collect 1s) – disproved in [DJS+13]

separability: a linear function can be written as a sum of functions 
such that the depend on disjoint sets of bits

wrong: the optimization time of is not much more than the 
largest optimization time of the (because the are optimized in 
parallel) – disproved in [DSW13]

21 Benjamin Doerr: Theory of Evolutionary Computation

Surprising: Same Runtime For Very 
Different Fitness Landscapes

Example 1: OneMax, the function counting the number of 1s in a string, 

unique global maximum at 

perfect fitness distance correlation: if a search point has higher 
fitness, then it is closer to the global optimum

Example 2: BinaryValue (BinVal or BV for short), the function mapping a 
bit-string to the number it represents in binary

unique global maximum at 

Very low fitness-distance correlation. Example: 

, distance to optimum is 

, distance to opt. is 
22
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Insight in Working Principles
Insight from the result:

Even if there is a low fitness-distance correlation (as is the case for 
the BinVal function), EAs can be very efficient optimizers

Insight from the proof:

The Hamming distance of to the optimum measures 
very well the quality of the search point :

If the current search point is , then the expected number of 
iterations to find the optimum satisfies

independent of 
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A Glimpse on a Modern Proof
Theorem [DJW12]: For all problem sizes and all linear functions 
with the (1+1) EA finds the optimum of in an 
expected number of at most iterations.

1st proof idea: Without loss, we can assume that 

2nd proof idea: Regard an artificial fitness measure!

Define “artificial weights” from to 

Key lemma: Consider the (1+1) EA optimizing the original . Assume that 
some iteration starts with the search point and ends with the random 
search point . Then

expected artificial fitness distance reduces by a factor of 

3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t. 
the artificial fitness into a runtime bound

roughly: the expected runtime is at most the number of iterations needed to 
get the expected artificial fitness distance below one.

24

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen
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Multiplicative Drift Theorem
Theorem [DJW12]: Let be a sequence of random variables taking 
values in the set . Let . Assume that for all , we have

Let . Then 

On the previous slide, this theorem was used with 

and the estimate .

Bibliographical notes: Artificial fitness functions very similar to this were already used in 
[DJW02] (conference version [DJW98]). Drift analysis (“translating progress into runtime”) 
was introduced to the field in [HY01] to give a simpler proof of the [DJW02] result. A 
different approach was given by [Jäg08]. The multiplicative drift theorem [DJW12] 
(conference version [DJW10]) proves the [DJW02] result in one page and is one of the 
most-used drift theorems today.

25

“Drift analysis”: 
Translate expected 

progress into
expected (run-)time
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Limitations of the Linear Functions Result

An unrealistically simple EA: the (1+1) EA

Linear functions are “trivial” artificial test function

Not a precise result, but 

only in [DJW02] 

or a most likely significantly too large constant in the [DJW12] result 
just shown 

Two answers (details on the following slides)

despite these limitations, we gain insight

the 2002-results was the start, now we know much more

26
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Limitation 1: Only the Simple (1+1) EA
Insight: Using nothing else than standard-bit mutation is enough to 
optimize problems with low fitness-distance correlation

Newer Result: The (1+ ) EA optimizes any linear function in time 
(= number of fitness evaluations)

This bound is sharp for BinVal, but not for OneMax, where the 
optimization time is 

Not all linear functions have the same optimization time! [DK15]

We are optimistic that the theory community will make progress towards 
more complicated EAs. Known open problems include, e.g., 
crossover-based algorithms and ant colony optimizers
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Limitation 2: Only Linear Functions
Insight: Linear functions are easy, monotonic functions can be difficult

some understanding which problems are easy and hard for EAs

Newer runtime analyses for the (1+1) EA (and some other algorithms): 
Eulerian cycles [Neu04,DHN06,DKS07,DJ07]
shortest paths [STW04,DHK07,BBD+09]
minimum spanning trees [NW07,DJ10,Wit14]
and many other “easy” optimization problems

We also have some results on approximate solutions for NP-complete 
problems like partition [Wit05], vertex cover [FHH+09,OHY09], maximum 
cliques [Sto06]

We have some first results on dynamic and noisy optimization

28
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Limitation 3: 
Insight: Linear functions are easy for the (1+1) EA – for this insight, a 
rough result like is enough

Newer result [Wit13]: The runtime of the (1+1) EA on any linear function 
is , that is, at most for some constant 

still an asymptotic result, but the asymptotics are only in a lower order 
term

[Wit13] also has a non-asymptotic result, but it is hard to digest
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Summary “Guided Tour”
We have seen one of the most influential theory results: The (1+1) EA 
optimizes any linear function in iterations

We have seen how to read and understand such a result

We have seen why this result is important

non-trivial and surprising

gives insights in how EAs work

spurred the development of many important tools (e.g., drift analysis)

We have discussed the limitations of this theory result

30
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Part III: 
How Theory Can Help 

Understanding and 
Designing EAs

31

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and 
algorithms

3. Invent new representations, operators, and algorithms

Contains a long section 
with very recent results 

on “fast mutation” Benjamin Doerr: Theory of Evolutionary Computation

Contribution 1: Debunk Misconceptions

When working with EA, it is easy to conjecture some general rule from 
observations, but without theory it is hard to distinguish between “we 
often observe” and “it is true that”

Reason: it is often hard to falsify a conjecture experimentally

the conjecture might be true “often enough”, but not in general

Danger: misconceptions prevail in the EA community and mislead the 
future development of the field

2 (light) examples on the following slides
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Misconception 1: Functions Without Local 
Optima are Easy to Optimize

A function has no local optima if each non-optimal search point has 
a neighbor with better fitness

if ( ) is not maximal, then by flipping a single bit of you can get a better 
solution

Misconception: Such functions are easy to optimize…

because all you need to do is flipping single bits

Truth: There are functions 

without local optima, but 

where all reasonable EAs with high probability need time exponential in to 
find even a reasonably good solution [HGD94,Rud97,DJW98]

Reason: yes, it is easy to find a better neighbor if you’re not optimal yet, but you 
may need to do this an exponential number of times because all improving paths 
to the optimum are that long
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Misconception 2: Monotonic Functions are 
Easy to Optimize for EAs

A function is monotonically strictly increasing if the fitness increases 
whenever you flip a 0-bit to 1

special case of “no local optima”: each neighbor with additional ones is better

Misconception: Such functions are easy to optimize for standard EAs…

because already a simple hill-climber flipping single bits (randomized local 
search) does the job in time 

Truth: There are (many) monotonically strictly increasing functions such that with 
high probability the (1+1) EA with mutation probability needs exponential time 
to find the optimum [DJS+13]

Johannes Lengler (private communication): the can be lowered to 

Unpublished: For the EA, , the exponential runtime shows up 
already for the standard mutation rate 

34
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Summary Misconceptions

Intuitive reasoning or experimental observations can lead to wrong beliefs.

It is hard to falsify them experimentally, because

counter-examples may be rare (so random search does not find them)

counter-examples may have an unexpected structure

There is nothing wrong with keeping these beliefs as “rules of thumb”, but 
it is important to distinguish between what is a rule of thumb and what is 
really the truth

Theory is the right tool for this!
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Contribution 2: Help Designing EAs

When designing an EA, you have to decide between a huge number of 
design choices: the basic algorithm, the operators and representations, 
and the parameter settings.

Theory can help you with deep and reliable analyses of scenarios similar 
to yours

The question “what is a similar scenario” remains, but you have the 
same difficulty when looking for advice from experimental research

Examples:

fitness-proportionate selection

edge-based representations in graph problems

when to use crossover (or not)

good values for mutation rate, population size, etc.

36

more on these 2     
on the next slides
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Designing EAs: 
Fitness-Proportionate Selection

Fitness-proportionate selection has been criticized (e.g., because it is not 
invariant under re-scaling the fitness), but it is still used a lot.

Theorem [OW15]: If you use

the Simple GA as proposed by Goldberg [Gol89] (generational GA, 
fitness-proportionate selection) 

to optimize the OneMax test function 

with a population size or less

then with high probability the GA in a polynomial number of iterations 
does not create any individual that is 1% better than a random individual

Interpretation: Most likely, fitness-proportionate selection makes sense 
only in rare circumstances in generational GAs

more difficulties with fitness-proportionate selection: [HJKN08, NOW09]
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Designing EAs: Representations
Several theoretical works on shortest path problems [STW04, DHK07, 
BBD+09]. All use a vertex-based representation: 

each vertex points to its predecessor in the path

mutation: rewire a random vertex to a random neighbor

[DJ10]: How about an edge-based representation?

individuals are set of edges (forming reasonable paths)

mutation: add a random edge (and delete the one made obsolete)

Result: All previous algorithms become faster by a factor of 

[JOZ13]: edge-based representation also preferable for vertex cover

Interpretation: While there is no guarantee for success, it may be useful 
to think of an edge-based representation for graph-algorithmic problems

38

typical theory-
driven curiosity
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Summary Designing EAs
By analyzing rigorously simplified situations, theory can suggest 

which algorithm to use

which representation to use

which operators to use

how to choose parameters

As with all particular research results, the question is how representative  
such a result is for the general usage of EAs
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Contribution 3: Invent New Operators
and Algorithms

Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms. 

Example 1 (long): What is the right way to do mutation?

A thorough analysis how EAs optimize jump functions suggests a 
heavy-tailed mutation operator (instead of a binomial one)

best-paper nominee in the Genetic Algorithms (GA) track

Example 2 (maybe omitted for reasons of time): The GA

Invent an algorithm that profits from inferior search points

40
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Example 1: Invent a New Mutation Operator
Short storyline: The recommendation to flip bits independently with 
probability might be overfitted to ONEMAX or other easy functions. 

Longer storyline of this (longer) part:

4 young researchers ask themselves what is the right mutation rate to 
optimize jump functions (which are not “easy”)

surprise: for jump size , the right mutation rate is and this 
speeds-up things by a factor of roughly 

but: missing this optimal mutation rate by a factor of increases 
the runtime again by a factor of at least  

solution: design a parameter-less mutation operator where the 
Hamming distance of parent and offspring follows a power-law

solves all problems 

41 Benjamin Doerr: Theory of Evolutionary Computation

General Belief on Mutation

Note: In this part, we only deal with bit-string representations, that is, the 
search space is for some , but things hold in a similar manner for 
other discrete search spaces.

General belief: A good way of doing mutation is standard-bit mutation, 
that is, flipping each bit independently with some probability (“mut. rate”)

global: from any parent you can generate any offspring (possibly with 
very small probability) algorithms cannot get stuck forever in a local 
optimum (“convergence”)

General recommendation: Use a small mutation rate like 

42
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Informal Justifications for 

If you want to flip a particular single bit, then

a mutation rate of is the one that maximizes this probability

reducing the rate by a factor of reduces this prob. by a factor of 

increasing the rate by a factor of reduces this prob. by a factor of 

Mutation is destructive: If your current search point has a Hamming 
distance of less than from the optimum , then the offspring 
has (in expectation) a larger Hamming distance and this increase is 
proportional to :

43

at most for some constant 
at least for some constant 
both and 
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Proven Results Supporting a Mut. Rate
Optimal mutation rates for (1+1) EA:

for OneMax [Müh92; Bäc93]

for LeadingOnes [BDN10]

for all linear functions [Wit13]

monotonic functions [Jan07; DJSWZ13]: 

, gives a runtime on all monotonic functions 
with unique optimum, 

gives , 

gives an exponential runtime on some monotonic functions.

When , then the optimal mutation rate for the EA optimizing 
OneMax is [GW15].

44

Theory supports 
using standard-bit 
mutation with 
mutation rate 
around 
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Really?
Can we really say that is good (at least “usually”)?

More provocative: Can we really say that standard-bit mutation the right 
way of doing mutation?

What made us skeptical is that these results regard easy unimodal 
optimization problems (where flipping single bits is a very good way of 
making progress)

OneMax, LeadingOnes, linear functions, monotonic functions

Plan for the next few slides:

regard functions (not unimodal)

observe something very different

design a new mutation operator

show that it is pretty good for many problems
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Jump Functions [DJW02]
: fitness of an -bit string is the number of ones, except if

, then the fitness is the number of zeroes. 

Observations: 

All with form an easy to reach local optimum.

From there, only flipping (the right) bits gives an improvement.

The unique global optimum is .

46
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Runtime Analysis
Theorem: Let denote the expected optimization time of the (1+1) 
EA optimizing with mutation rate . For ,

Corollary (speed-up at least exponential in ): For any ,

Clearly, here is not a very good mutation rate!

Proof of theorem uses standard theory methods:

upper bound: classic fitness level method

lower bound: argue that the runtime is essentially the time it takes to 
go from the local to the global optimum

47

here and later: all implicit 
constants indep. of and 
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Optimal Mutation Rates

Theorem: Let . Then:

.

If or , then 

In simple words: is essentially the optimal mutation rate, but a small 
deviation increases the runtime massively. 

Dilemma: To find a good mutation rate, you have to know how many 
bits you need to flip 

Reason for the dilemma: When flipping bits independently at random 
(standard-bit mutation), then the Hamming distance of parent and 
offspring is strongly concentrated around the mean 

exponential tails of the binomial distribution

Maybe standard-bit mutation is not the right thing to do?
48
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Solution: Heavy-tailed Mutation
Recap: What do we need?

No strong concentration of 

Larger numbers of bits flip with reasonable probability

1-bit flips occur with constant probability (otherwise we do bad on easy 
functions)

Solution: Heavy-tailed mutation (with parameter , say ) 

choose randomly with [power-law distrib.]

perform standard-bit mutation with mutation rate 

Some maths: The probability to flip bits is 

no exponential tails 

, e.g., 32% for ( 37% for classic mut.)
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Heavy-tailed Mutation: Results
Theorem: The (1+1) EA with heavy-tailed mutation ( ) has an 
expected optimization time on of

This one algorithm for all is only an factor slower than 
the EA using the (for this ) optimal mutation rate!

Compared to the classic EA, this is a speed-up by a factor of .

Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than 
– by taking – is unavoidable:

For sufficiently large, any distribution on the mutation rates in has an 
such that .

But let’s go back to understanding what we can gain from the heavy-
tailed mutation operator…

50
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Experiments (m=8, n=20..150)

51

Runtime of the (1+1) EA on (average over 1000 runs). To allow this number of 
experiments, the runs where stopped once the local optimum was reached and the remaining 
runtime was sampled directly from the geometric distribution describing this waiting time.
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Beyond Jump Functions
Example (maximum matching): Let be an undirected graph having 
edges. A matching is a set of non-intersecting edges. Let be the size 
of a maximum matching. Let be constant and . 

The classic (1+1) EA finds a matching of size in an expected 
number of at most iterations, where is some number in 

. [GW03]

The (1+1) EA with heavy-tailed mutation does the same in expected 
time of at most . 

2nd example: Vertex cover in bipartite graphs (details omitted)

52

Riemann zeta function:
for 



Benjamin Doerr: Theory of Evolutionary Computation

Performance in Classic Results
Since the heavy-tailed mutation operator flips any constant number of 
bits with constant probability, many classic results for the standard (1+1) 
EA remain valid (apart from constant factor changes):

runtime on OneMax

runtime on LeadingOnes

runtime on MinimumSpanningTree [NW07]

and many others…

The largest expected runtime that can occur on an is

for the classic (1+1) EA [DJW02 (Trap); Wit05 (minimum 
makespan scheduling)]

for the heavy-tailed (1+1) EA
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Working Principle of Heavy-Tailed Mutation
Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

Distribute this free probability mass in a power-law fashion on all other 
-bit flips 

increases the prob. for a -bit flip from roughly to roughly 
reduces the waiting time for a -bit flip from to 

This redistribution of probability mass is a good deal, because we 
usually spend much more time on finding a good multi-bit flip

: spend time on all 1-bit flips, but time to find 
the one necessary -bit flip

These elementary observations are a good reason to believe that 
heavy-tailed mutation is advantageous for a wide range of multi-modal 
problems. 
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Side Remark: Heavy-tailed -Bit Flips
We built on standard-bit mutation, but (of course) you can also build on 

-bit flips: Choose according to a power-law and flip bits.

Caveat: Choose , not to obtain globality

Strange effect: The probability of obtaining the inverse search-point 
is overly high ( ) polynomial runtime on Trap

Implementation of -bit flips for large ?
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Heavy-Tailed “Fast”
Heavy-tailed mutation has been experimented with in continuous 
optimization (with mixed results as far as I understand)

simulated annealing [Szu, Hartley ‘87]

evolutionary programming [Yao, Lui, Lin ‘99]

evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger, 
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

estimation of distribution algorithms [Posik ’09, ‘10]

Algorithms using heavy-tailed mutation were called fast by their 
inventors, e.g., fast simulated annealing.

we propose to call our mutation fast mutation and the resulting 
EAs fast, e.g., 
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Practical Experience
Most interesting question: How does this work for real problems? 

Markus Wagner (personal communication): very preliminary 
experiments for the travelling thief problem

“surprisingly good results for a first non-optimized try”

Mironovich, Buzdalov ’17 (GECCO’17 student workshop): Solid 
experiments for a test case generation problem

fast mutation significantly beats classic mutation-based approaches

fast mutation slows down the best-so-far crossover-based approach
crossover was already able to generate far-away offspring?

More experience needed: You can help us a lot by simply taking your 
favorite discrete problem and replacing classic mutation with the heavy-
tailed mutation operator!
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Summary Fast Mutation – A Theory-Guided 
Invention

By rigorously analyzing the performance of a simple mutation-based EA on 
the non-unimodal JUMP fitness landscape, we observe that

higher mutation rates are useful to leave local optima

standard-bit mutation with a fixed rate is sub-optimal on most problems

Solution: Use standard-bit mutation, but with a random mutation rate 
sampled from a power-law distribution

factor speed-up for 

factor improvement of the runtime guarantee for max. matching

first promising experimental results

Big question: Will this work in practice and will practitioners use it?
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Example 2: Invent New Algorithms (1/3)
Theory can also, both via the deep understanding gained from proofs 
and by “theory-driven curiosity” invent new operators and algorithms. 
Here is one recent example: 

Theory-driven curiosity: Explain the following dichotomy!

the theoretically best possible black-box optimization algorithm for 
OneMax (and all isomorphic fitness landscapes) needs only 

fitness evaluations

all known (reasonable) EAs need at least fitness evaluations

One explanation (from looking at the proofs): profits from all search 
points it generates, whereas most EAs gain significantly only from search 
points as good or better than the previous-best

Can we invent an EA that also gains from inferior search points?

YES [DDE13,GP14,DD15a,DD15b,Doe16,BD17], see next slides

59 Benjamin Doerr: Theory of Evolutionary Computation

New Algorithms (2/3)
A simple idea to exploit inferior search points (in a (1+1) fashion):

1. create mutation offspring from the parent by flipping random bits

2. select the best mutation offspring (“mutation winner”)

3. create crossover offspring via a biased uniform crossover of 
mutation winner and parent, taking bits from mutation winner with 
probability only

4. select the best crossover offspring (“crossover winner”)

5. elitist selection: crossover winner replaces parent if not worse

Underlying idea: 

If is larger than one, then the mutation offspring will often be much 
worse than the parent (large mutation rates are destructive)

However, the best of the mutation offspring may have made some 
good progress (besides all destruction)

Crossover with parent repairs the destruction, but keeps the progress
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New Algorithms (3/3)
Performance of the new algorithm, called (1+( , )) GA:

solves OneMax in time (=number of fitness evaluations) 
, which is for 

the parameter can be chosen dynamically imitating the 1/5th rule, 
this gives an ( ) runtime

experiments: 

these improvements are visible already for small values of and 
small problem sizes 

[GP14]: good results for satisfiability problems 

Interpretation: Theoretical considerations can suggest new algorithmic 
ideas. Of course, much experimental work and fine-tuning is necessary 
to see how such ideas work best for real-world problems.
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Summary Part 3
Theory has contributed to the understanding and use of EAs by

debunking misbeliefs (drawing a clear line between rules of thumb and 
proven fact)

e.g., “no local optima” and “monotonic” do not mean “easy”

giving hints how to choose parameters, representations, operators, and 
algorithms

e.g., if fitness-proportionate selection with comma selection cannot 
even optimize OneMax, maybe it is not a good combination

inventing new representations, operators, and algorithms: this is fueled 
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

e.g., if leaving local optima generally needs more bits to be flipped, 
then we need a mutation operator that does so sufficiently often 

heavy-tailed mutation
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Part IV: 
Current Topics of Interest

in the Theory of EC
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Dynamic/adaptive parameter choices (long section)
Precise runtime guarantees
Population-based EAs
Dynamic optimization, noisy environments
Non-elitism
Black-box complexity
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What We Currently Try to Understand
Dynamic/adaptive parameter choices
Precise runtime guarantees
Population-based EAs
Dynamic optimization, noisy environments
Non-elitism
Black-box complexity

Examples for all will be given on the next slides.

Parallel to these topics, we study also methodical questions 
(e.g., drift analysis), but these are beyond the scope of this tutorial
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Dynamic Parameter Choices
Instead of fixing a parameter (mutation rate, population size, …) once 
and forever (static parameter choice), it might be preferable to use 
parameter choices that change

depending on time 
depending on the current state of the population
depending on the performance in the past

Hope:
different parameter settings may be optimal at different stages of the 
optimization process, so by changing the parameter value we can 
improve the performance
with self-adjusting parameters, we do not need to know the optimal 
parameters beforehand, but the EA finds them itself

Experimental work suggests that dynamic parameter choices often 
outperform static ones (for surveys see [EHM99,KHE15])
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Theory for Dynamic Parameter Choices: 
Deterministic Schedules

Deterministic variation schedule for the mutation rate [JW00, JW06]: 

Toggle through the mutation rates 

Result: There is a function where this dynamic EA takes time 
, but any static EA takes exponential time

For most functions, the dynamic EA is slower by a factor of  
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Theory for Dynamic Parameter Choices: 
Depending on the Fitness

Fitness-dependent mutation rate [BDN10]: When optimizing the 
LeadingOnes test function with the (1+1) EA

the fixed mutation rate gives a runtime of 

the fixed mutation rate gives (optimal fixed mut. rate)

the mutation rate , gives (optimal dynamic rate)

Fitness-dependent offspring pop. size for the GA [DDE13]:

if you choose , then the optimization time on OneMax drops 

from roughly to 

Interpretation: Fitness-dependent parameters can pay off. It is hard to find 
the optimal dependence, but others give improvements as well ( proofs)
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Theory for Dynamic Parameter Choices:
Success-based Dynamics

Success-based choice of island number: You can reduce of the parallel 
runtime (but not the total work) of an island model when choosing the 
number of islands dynamically [LS11]:

double the number of islands after each iteration without fitness gain
half the number of islands after each improving iteration

A success-based choice (1/5-th rule) of in the (1+( , )) GA automatically 
finds the optimal mutation strength [DD15a,DD18]

after each iteration without fitness gain, a constant
after each improving iteration

Important that is not too large and that the fourth root is taken 
( 1/5-th rule). The doubling scheme of [LS11] would not work

Simple mechanisms to automatically find the current-best parameter 
setting (note: this is great even when the optimal parameter does not 
change over time, but is hard to know beforehand)
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Example Run Self-Adjusting GA

69

self-adjusting parameter value
optimal parameter value
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Summary Dynamic Parameter Choices
State of the art: A growing number of results, some very promising

personal opinion: this is the future of discrete EC, as it allows to 
integrate very powerful natural principles like adaption and learning
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An extension of the classi-
fication of Eiben, Hinterding, 
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,DDE13]

[DL16,DWY18]

[LS11,DD15a,DDK16,DDY16,BD17,
DGWY17,DD18]
[hyper-heuristics: AL14,LOW17,DLOW18]
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Precise Runtime Guarantees
Theory results can give advice on how to chose the parameters of an EA

Example: the discussion on optimal mutation rates in part III

The more precisely we know the runtime (e.g., upper and lower bounds 
for its expected value), the more precise recommendations we can give 
for the right parameter choice (e.g., instead of )

in practice, constant factors matter 

Challenge: For such precise runtime bounds often the existing 
mathematical tools are insufficient

in particular, tools from classic algorithms theory are often not strong 
enough, because in that community (for several good reasons) there 
is no interest in bounds more precise than .

71 Benjamin Doerr: Theory of Evolutionary Computation

Population-Based EAs
Population-based: using a non-trivial ( ) population of individuals

In practice, non-trivial populations are often employed

In theory [JJW05,Wit06,DK15,ADFH18]

not much convincing evidence that larger populations are generally 
beneficial (apart from running things in parallel)

the typical result is “up to a population size of …, the total work is 
unchanged, for larger population sizes, you pay extra”

crossover results: often a pop-size of 2 or 3 is enough

some evidence (on the level of artificially designed examples) that 
populations help in dynamic or noisy settings

not many methods to deal with the complicated population dynamics

Big open problem: Give rigorous advice how to profitably use larger 
populations (apart allowing parallel implementations)

and devise methods to analyze such algorithms
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Dynamic Optimization
Dynamic optimization: Optimization under (mildly) changing problem data

Question: How well do EAs find and track the moving optimum?

First theory result [Dro02]: dynamic version of OneMax where the 
optimum changes (by one bit) roughly every iterations

If or larger, then a polynomial number of iterations 
suffices to find or re-find the current optimum

can be quite a bit smaller than the usual runtime!

First indication that EAs do well in dynamic optimization

More recent results: Many examples showing that populations, diversity 
mechanisms, island models, or ant colonies help finding or tracking 
dynamically changing optima [JS05,KM12,OZ15,LW14,LW15,DDDIN18]

Two main open problems: (i) What are realistic dynamic problems?

(ii) What is the best way to optimize these?
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Non-Elitism
Most EAs analyzed in theory use truncation selection, which is an elitist
selection = you cannot lose the best-so-far individual

Mostly negative results on non-elitism are known. For example, [OW15] 
proves that the Simple Genetic Algorithm using fitness-proportional 
selection is unable to optimize OneMax efficiently [see above]

Strong Selection Weak Mutation (SSWM) algorithm [PPHST15], inspired 
by an inter-disciplinary project with populations-genetics: 

worsening solutions are accepted with some positive probability
for improving offspring, acceptance rate depends on the fitness gain
Examples are given in [PPHST15] for which SSWM outperforms 
classic EAs

Black-box complexity view: there are examples where any elitist 
algorithm is much worse than a non-elitist algorithm [DL15]

State of the art: Not much real understanding apart from sporadic results. 
The fact that non-elitism is used a lot in EC practice asks for more work.
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Limits of EC: Black-Box Complexity
EAs are black-box algorithms: they learn about the problem at hand only 
by evaluating possible solutions

What is the price for such a problem-independent approach? 
This is the main question in black-box complexity.

In short, the black-box complexity of a problem is the minimal number of 
function evaluations that are needed to solve it

= performance of the best-possible black-box algorithm
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Black-Box Complexity Insights
Unified lower bounds: The black-box complexity is a lower bound for the 
runtime of any black-box algorithm: all possible kinds of EAs, ACO, EDA, 
simulated annealing, …

Specialized black-box models allow to analyze the impact of algorithmic 
choices such as type of variation in use, the population size, etc. 
[DJK+11, DW12a, DW12b, DDK14, DW14]

Example result: [LW12] proves that every unary unbiased algorithm 
needs function evaluations to optimize OneMax

unary: mutation only, no crossover
unbiased: symmetry in

bit-values 0 and 1
bit positions 1,2,…,

Result implies that algorithms using fair mutation as only variation 
cannot be significantly more efficient on OneMax than the (1+1) EA
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Black-Box Complexity vs. Games –
Where EA Theory Meets Classic CS

Black-box algorithms are strongly related to Mastermind-like guessing 
games: 

algorithm guesses a search point
opponent reveals the fitness

Such guessing games have a long history in
classic computer science due to applications
in security and privacy

We have several (hidden) black-box complexity
publications in classic CS venues (including a
paper [DDST16] in the Journal of the ACM)

EC theory meets classic theory
a chance to get the classic CS community interested in our field!
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Part V: 
Conclusion
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Summary
Theoretical research gives deep insights in the working principles of EC, 
with results that are of a different nature than in experimental work

“very true” (=proven), but often apply to idealized settings only

for all instances and problem sizes, but sometimes less precise

often only asymptotic results instead of absolute numbers

proofs tell us why certain facts are true

The different nature of theoretical and experimental results implies that 
a real understanding is best obtained from a combination of both

Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms
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How to Use Theory in Your Work?
Try to read theory papers, but don’t expect more than from other papers 

Neither a theory nor an experimental paper can tell you the best 
algorithm for your particular problem, but both can suggest ideas

Try “theory thinking”: take a simplified version of your problem and 
imagine what could work and why

Don’t be shy to talk to the theory people!

they will not have the ultimate solution and their mathematical 
education makes them very cautious presenting an ultimate solution

but they might be able to prevent you from a wrong path or suggest 
alternatives to your current approach
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Recent Books (Written for Theory People, 
But Not Too Hard to Read)

Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

Jansen (2013). Analyzing Evolutionary Algorithms, Springer

Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization, 
Springer
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Appendix A
Glossary of Terms Used 

in This Tutorial

84

Big-Oh notation

Optimization, global and local optima

Discrete, pseudo-Boolean

Runtime of an EA
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Big-Oh Notation: Motivation
Big-Oh notation, also called asymptotic notation or Landau symbols, are 
a convenient way to roughly describe how a quantity depends on 
another, e.g., how the runtime depends on the problem size .

We need this, because often

it is often impossible to precisely compute as function of , and

we sometimes intentionally only aim at a general description of a 
phenomenon (e.g., the runtime is linear, quadratic, or exponential) 
than a precise, but hard to understand formula (e.g., the following 
result from [Wit13]).
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Big-Oh Notation: Definition 
Let us continue to use the example of the expected runtime of 
some algorithm on some problem that is defined for all problems sizes 
(e.g., the expected runtime of the (1+1) EA on the -dimensional 
ONEMAX function.

Big-Oh notation allows to describe the asymptotic behavior of the 
runtime, that is, how the runtime depends on when we think of being 
large. On the other hand, we do not say anything for a concrete, fixed 
value of like .

Definition: We say that is for some function if 
there is a constant such for all .  

We write or . Note that the first version does not 
make much sense, but is more common. 

We write when 
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Big-Oh Notation: 
Asymptotic upper bound: 

if there is a constant such for all .  

Asymptotic lower bound: 

if there is a constant such for all .  

Asymptotically equal: 

if and .  

Asymptotically smaller, grows slower than :

if 

Asymptotically larger, grows faster than :

if 
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Optimization
Optimization means that we try to find an optimum (maximum or 
minimum, depending on context) of a given function . 

is a maximum of if for all 

is a minimum of if for all 

In practice, we often resort to finding a solution with .

A local optimum is a solution that is an optimum of restricted to a 
small neighborhood around (where “neighborhood” depends on the 
context). 
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Discrete and Pseudo-Boolean Optimization
Discrete optimization: The search space is a finite set.

Note: In principle, this allows to find an  optimum by computing for 
all . Naturally, we aim at more efficient algorithms. Still, the 
theoretical possibility to find a global optimum is a crucial difference to 
continuous optimization, where (generally) only approximations to 
global optima can be found.

When and , we call a pseudo-Boolean function.

These are very common in evolutionary computation, since there are 
natural variation operators (mutation, crossover) for this representation.
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Runtimes of Evolutionary Algorithms
To make statements on the performance of an evolutionary algorithm 
(EA) in an implementation-independent manner, we regard as runtime (or 
optimization time) the number of fitness evaluations that the EA used 
until it queries for the first time an optimal solution. 

This models that fact that in many EAs, the fitness evaluations are the 
most costly part.

All EAs are randomized algorithms, i.e., they take random decisions 
during the optimization process. Consequently, the runtime (and almost 
everything) are random variables.
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Definition: Runtime of an EA 
Let be an EA, let be a function to be maximized, and let be 
the series of search points evaluated by in a run when optimizing (the 

are also random variables). Then the runtime of on the problem 
is defined by

Several features of this random variable are interesting. We mostly care 
about the expected runtime of an EA. This number is the average 
number of function evaluations that are needed until an optimal solution 
is evaluated for the first time.

Caution: sometimes runtime is stated in terms of generations, not 
function evaluations. Hence this runtime is smaller than ours by a factor 
equal to the number of search points evaluated per iteration.
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Expected Runtimes – Caution!
Caution: Regarding the expectation only can be misleading. For this 
reason, it is desirable to obtain more information about the runtime, e.g., 
its concentration behavior around the expectation.

Misleading expectation: The expected runtime is large, when

occasionally the EA takes very very long, 

but usually the EA is very efficient.

In this case, the expectation does not tell you the full truth. For example, 
the EA with a restart strategy or with parallel runs is very efficient for this 
problem

Example: The DISTANCE function regarded in [DJW02], see next slide
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Expected Runtimes – Caution! 
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Formally, 

We regard a simple hill climber 
(Randomized Local Search, RLS) 
which is 

initialized uniformly at random, 

flips one bit at a time,

always accepts search points of 
best-so-far fitness

With probability (almost) 1/2, the 
algorithm has optimized DISTANCE 

after steps

With probability ~1/2 it does not find 
the optimum at all, thus having an 
infinite expected optimization time
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Appendix B
List of References
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[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and Dorian Nogneng. A new analysis method
for evolutionary optimization of dynamic and noisy objective functions. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO). ACM, 2018. To appear.

B. Doerr: Theory of Evolutionary Computation 97

[Doe16] Benjamin Doerr. Optimal parameter settings for the (1 + (λ, λ)) genetic algorithm. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO), pages 1107–1114. ACM, 2016. Full version available at http://arxiv.org/abs/1604.
01088.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money for nothing: Speeding up evolutionary algorithms
through better initialization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 815–822.
ACM, 2015.

[Dro02] Stefan Droste. Analysis of the (1+1) EA for a dynamically changing OneMax-variant. In Proc. of Congress on Evolutionary
Computation (CEC), pages 55–60. IEEE, 2002.

[DSW13] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do evolutionary algorithms optimize separable functions in parallel?
In Proc. of Foundations of Genetic Algorithms (FOGA), pages 51–64. ACM, 2013.

[DT09] Benjamin Doerr and Madeleine Theile. Improved analysis methods for crossover-based algorithms. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO), pages 247–254. ACM, 2009.

[DW12a] B. Doerr and C. Winzen. Memory-restricted black-box complexity of onemax. Information Processing Letters, 112:32–34,
2012.

[DW12b] B. Doerr and C. Winzen. Reducing the arity in unbiased black-box complexity. In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO), pages 1309–1316. ACM, 2012. best paper award theory track.

[DW14] Benjamin Doerr and Carola Winzen. Ranking-based black-box complexity. Algorithmica, 68:571–609, 2014.

[DWY18] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-adaptive mutation rates. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO). ACM, 2018. To appear.

[EHM99] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 3:124–141, 1999.

[FHH+09] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Analyses of simple hybrid algorithms for
the vertex cover problem. Evolutionary Computation, 17:3–19, 2009.

[FM92] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building block hypothesis. In Proc. of
Foundations of Genetic Algorithms (FOGA), pages 109–126. Morgan Kaufmann, 1992.

B. Doerr: Theory of Evolutionary Computation 98

[FW04] Simon Fischer and Ingo Wegener. The Ising model on the ring: Mutation versus recombination. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO), volume 3102 of Lecture Notes in Computer Science, pages 1113–1124.
Springer, 2004.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary mutations. Evolutionary Computa-
tion, 7:173–203, 1999.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Pub-
lishing Co., Inc., 1989.

[GP14] Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO), pages 785–792. ACM, 2014.

[GW15] Christian Gießen and Carsten Witt. Population size vs. mutation strength for the (1+λ) EA on OneMax. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO), pages 1439–1446. ACM, 2015.

[HGAK06] Nikolaus Hansen, Fabian Gemperle, Anne Auger, and Petros Koumoutsakos. When do heavy-tail distributions help? In
Proc. of Parallel Problem Solving from Nature (PPSN), volume 4193 of Lecture Notes in Computer Science, pages 62–71.
Springer, 2006.

[HGD94] Jeff Horn, David Goldberg, and Kalyan Deb. Long path problems. In Proc. of Parallel Problem Solving from Nature (PPSN),
volume 866 of Lecture Notes in Computer Science, pages 149–158. Springer, 1994.

[HJKN08] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of fitness-proportional selection
for optimizing linear functions. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 953–960.
ACM, 2008.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127:57–
85, 2001.
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