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Cybersecurity

m Cybersecurity aims to minimize an attack surface over time.
m The attack surface is the portion of a system that has vulnerabilities.

m Attackers attempt to influence the system’s nominal state and operation
by varying their interactions with the attack surface in a non-compliant,
and, usually, hard-to-detect manner.

Intrusion/anomaly detection
m Intrusion detection systems (IDSs),
m IDSs by means of anomaly detection,
m characteristics of the anomaly detection problem, and

m ‘classical’ approaches to anomaly detection.

Nature-inspired anomaly detection
m Artificial immune systems (AlSs), and

m genetic programming (GP) approaches.

VorAlS/VorEAl & PAO
m VorEAI: Voronoi diagram evolutionary algorithm.

m PAO: Progressive addition of objectives to deal with VorEAl issues.

Intrusion detection system (IDS)'

Methods for detection of intrusion attacks can be grouped in two main
classes:
Signature-based IDSs, that look for a priori known patterns of attacks in
system activities,
Anomaly-based IDSs, which model the normal behavior of the
system/network under supervision and flag deviations from normal as
anomalous, and hence, possible attacks.
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Signature-based IDSs

m Can detect known attacks for which patterns have been discerned.

m It is impossible for them to detect new or unknown attacks, as, by their
very nature, they do not possess a known pattern for such attacks.

m This fact limits the applicability of this class of IDS.

The Internet of Things case

In loT scenarios, where low or little maintenance can be expected and the
multiplicity of devices implies that many more patterns should be elaborated
than are practically discovered and maintained.

What is an anomaly?

Network intrusion detection — anomaly detection

A Machine Learning problem

Detecting intrusion by detecting anomalies.

A particular case of semi-supervised classification problem.

Data items must be tagged either as ‘normal’ or ‘anomalous’.

Datasets are heavily imbalanced: more ‘normal’ than ‘anomalous’.

Areas of input space with no data are also anomalous — capacity to
repel unknown attacks.

A Multiobjective Optimization Problem (MOP)
Two classes of objective functions:

objectives quantifying the model as classifier (e.g., classification
accuracy and recall).

objectives aiming at a compact representation of ‘normal’ data to a
better detection of anomalies not present in the dataset.

Anomaly detection

Definition

Anomaly Detection (or outlier detection) is the identification of items, events
or observations which do not conform to an expected pattern or other items
in a dataset.

Types of anomalies
m Point anomalies,
m contextual anomalies,

m collective anomalies.



Anomaly detection: (more) formal definition

Anomaly detection can be posed as a particular case of the classification
problem in which data items must be tagged as either ‘normal’ or
‘anomalous’.

m relying on a dataset

Anomaly detection as a machine learning problem

Supervised anomaly detection
m Labels available for both normal data and anomalies.

m Similar to classification with high class imbalance.

Unsupervised anomaly detection

V= {x(i), y(i)} m No labels assumed.
. ) ) i m Based on the assumption that anomalies are very rare compared to
in which, without loss of generality, we have

normal data.

x € R" and y(i) € {normal, anomaly} m Posed as a one-class classification problem?.

m we describe a classifier that correctly detects instances that correspond Semi-supervised anomaly detection

to each of the two categories. m Few labeled data,

® in some cases, labels are available only for one class of data.
Because of this fact, existing metrics devised to assess the quality of a

classification algorithm are also applicable in this context. The most likely case you face in a real-world scenario.
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nomal [ ne- lassificati
Anoma Y detection and one-class classification Anomaly-based IDSs have employed different statistics, machine learning

m By definition, anomalies are uncommon. and bio-inspired methods®.

m Therefore, density estimation and methods like one-class support vector m Distribution-based approaches: Does data follows a pre-computed
machines are useful. distribution?

m Depth-based approaches: Layers of convex hulls and flag objects in the
outer layer.

Outlier detection

m Clustering approaches.

m Distance-based approaches: How distant is an element from a subset of
the elements closest to it.

—— learned decision function
% o trueinliers
o true outliers

” e  — leamed decision function
° ® o trueinliers
-6 ¢ o trueoutliers

T m Density-based approaches: i.e. outlier detection by means of the local
outlier factor (LOF).

m Spectral decomposition: Embed the data in lower dimensional subspace
in which the data instances can be discriminated easily.
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m Classification approaches: In this case, the problem is posed as the
identification of which categories an observation belongs to.

— learned decision function == learned decision function
% o trueinliers % o trueinliers
o true outliers o true outliers
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3. Isolation Forest (errors: 2) 4. Local Outlier Factor (errors: 2)

from http://scikit-learn.org/stable/modules/outlier_detection.html. 3Chando|a, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3):15
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Anomaly detection: Statistical approach

Probabilistic definition of outlier

An outlier is an object that has a low probability wrt a probability
distribution model of the data.

Anomaly score function

Given a data instance x from a dataset D,
)= o

X)= ——.

P(x|D)

Working principle

Determining threshold t
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m What would be a natural choice for the value of threshold #?

Calculate the anomaly score, f(x), for each data point in the dataset.

Use a threshold ¢t on this score to determine outliers. That is,

x is an outlier <= f(x) > t.

Example: Applying a normal model

m For example, assume that we want to classify 20% of the dataset
instances as anomalies.

m In this case, what threshold value would you pick based on the plot
above?

Example: Applying (stacked) MLP autoencoders

A typical Multi-Layer Perceptron (MLP)

Hidden
layer 22 =1




Example: Applying (stacked) autoencoders

Autoencoders
Input Output
layer layer

Hidden Input layer
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If the autoencoder fails to reconstruct the input, it may be an anomaly.

Nature-inspired anomaly detection

Assessing anomaly detection methods
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The natural immune system as an anomaly detector

MHC protein ~ Pathogen

Activated B cell
(Plasma cell)
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from De Castro, L. N., & Von Zuben, F. J. (1999). Artificial immune systems: Part I-basic

theory and applications. Universidade Estadual de Campinas, Tech. Rep, 210(1).

m Innate vs

acquired

immunity.

m Notion of
self/non-self.

m Representation.

m Affinity.

m Negative

selection.




A ‘generic’ evolutionary algorithm Requirements for an anomaly detection EA
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O. o © o m Spatial representation of ‘normal’ and ‘anomaly’ areas of the space,
@ C
o 8 OO m take into account different classification metrics — multi-objective,
Of 8? @® ° |© m ability to deal with the imbalance in the dataset, and
H ® . . .
— O — m learn in a semi-supervised way.

m A population of individuals,
m individuals are ranked and selected relying on a fitness function;

m variation operators inspired by the natural evolutionary process are
applied, and

m individuals with better fitness have a more active role.

Genetic programming' Evolving anomaly detectors with genetic programming

m GP can be used to evolve classifiers,” and

m those classifiers can be applied for anomaly detection.

- lmefivieizels e e irieraeEiee) m Tree-based representation seemed the most apt representation.

programs.
m The results are computer programs m Hybrid Flexible Neural Trees for Intrusion Detection:* mixes genetic
able to perform well in a predefined programming and particle swarm optimization.
task. m Genetic Programming Ensemble for Distributed Intrusion Detection
m Adequacy of a given individual Systems:’ concurrently evolve decision trees using an ensemble.
fcprofiram) is defined by the fitness m Stream Genetic Programming:® boosting-based distributed ensemble
unction.

methods to learn from streaming data.

m Programs can be encoded in multiple
complex representation languages,
like linear structures, trees and

graphs.

m One-Class Multi-Objective Genetic Programming:’ aims to create
classifiers from datasets containing only positive (non-anomalous)
examples.
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Using Voronoi diagrams as individuals

m Voronoi diagrams are geometrical constructs that were known by
ancient Greeks.

m A set of points {Si, ..., Sm}, known as Voronoi sites, in a given
n-dimensional Euclidean space £ defines a Voronoi diagram, i.e.,

m a partition of the space into Voronoi cells.

Pareto dominance The

The optimality of a set of solutions can be defined based on the so-called 16
Pareto dominance relation".

For the optimization problem specified, and
having x1,x; € D.

x1 is said to dominate x;, (expressed as x; < xj) iff
Vfj fi(x1) < fj(x2) and

3f; such that fi(x1) < fi(x2).

Consumption (£/100 km)

Multi-objective optimization problem

minimize F(x) = (fi(x), ..., fm(x)),

withx € D.

D: feasible set — can be defined as constraints;

O: objective set;

optimality — Pareto dominance;

D*: Pareto-optimal set;

O*: Pareto-optimal front, and;

P*: optimizer solution.

Optimality is defined in terms of the Pareto dominance relation.

Many-objective problems

Problems with four or more objectives.

multi-objective car example revisited"

New cars sold in France in 2015
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Anomaly detection with VorEAI

Need of volume-based objectives

> A data instance that falls in an area not covered by learning dataset
should be interpreted as an anomaly.

> Must represent known data as compact as possible.

> Relation between the volumes of the Voronoi cell and the convex hull of
the training data that it contains.

VorEAI: Voronoi-based Evolutionary Algorithm®

m Evolves Voronoi diagrams. Classification metrics:

m Encodes areas of ‘normal’ or
‘anomalous’ data.

m Multi-objective alla NSGA-II.

m accuracy and recall.
Objectives for representation:
m compactness of representation,
m total empty volume.
Individual: set of Voronoi sites,
Z = {S;} with S;.¢ € {OK,Anom}
Classification: label of nearest site,

clfy(Z,x) = §*.¢ with

S$* = arg min|x — S;|| .
S,eZ

1
2Marti, L., Fansi-Tchango, A, Navarro, L., and Schoenauer, M. (2016). Anomaly detection with the Voronoi diagram evolutionary
algorithm. In Handl, J., Hart, E., Lewis, R. P., Lopez-Ibafiez, M., Ochoa, G., and Paechter, B., editors, Proceedings of the 14th International
Conference Parallel Problem Solving from Nature (PPSN XIV), pages 697-706, Berlin/Heidelberg. Springer International Publishing

Volume-based objectives: Compactness

Represent know data as compact as possible.

Relation between volumes of Voronoi cells and the convex hulls of the
data that they contain.

voI(convex_huII(Dsi))
C(I) = ZS,‘GI vol(cell(S;))
0 in other case.

if |D,| > Nmin »

m vol(c): volume of convex hull ¢,
m cell(S): Voronoi cell corresponding to site S,
B Npyin: minimum diagram length, and
m Dg: subset of learning dataset classified by site §
Ds = {x € V;d(x,S) < d(x,S§"), V§* € I}



Volume-based objectives: Total empty volume VorEAIl variation operators

Promote (big) cells that do not contain data to be labeled as ‘Anom’.

Mating operator Mutation operator
m Volume of cells labeled as anomaly rated it by the number of data . A random cutting hyperplane = Mutate s.ltes locatlons,‘ similar
. . . is generated. to evolutionary strategies,
instances it contains.
. . - . P ites lying i h si i i
m Sites with few data inside should become empty as the evolution takes = Parents sites lying in each side OISR
of the hyperplane are m add sites, and
place. ’
exchanged. .
H remove sites.
VO[ (Cel I (S,)) 15 Parent 1 Parent 2
D= 3, 1+ 2In(|Ds,| — fmin + 1) ‘
S,e7, S min
S;/=Anom
m vol(c): volume of convex hull ¢, ot

m cell(S): Voronoi cell corresponding to site S, and

B Npyin: Minimum diagram length.

- 15 L0
5-10-5 0 5 10 15 -15-10 -5 0 5 10 15

NSL-KDD’99 benchmark® NSL-KDD’99 and current state of the art
Hypersphere SelfOnly —— —— Classifier name Accuracy (%) FPR (%)
._—.1_.'." NSAp 72.314+4.73 1.88+0.94
Vyperectange Sl sl B NSAY, 80.58 + 0.56 2.94 & 0.55
— D NSA . 71.09 +5.57 0.76 £ 0.18
v s NSA;; 82,624 1.60 5.46 +2.25
VorEAI 97.34 4 2.54 2.95+0.32
Hypersphere Self Only — e
HWZMZ i :' RIS Decision Tree 81.05 N/A
Hyperectange St ony B Naive Bayes 76.56 N/A
Random Forest 80.67 N/A
Mg st +—— — SVM 69.52 N/A
VorEal 0 '—Dﬂ— AdaBoost 90.31 3.38
ot SOM 75.49 5.77
ANN 81.20 3.23
peptssarony —e MNB+N2B 38.89 27.80
topersphereSetitensdt Coe HE DMNB+RP 81.47 12.85
Hh DMNB+PCA 94.84 4.40
Frperctngie seiorsell - +— (I — DMNB+N2B 96.50 3.00
g~ ERB-ANN 94.70 N/A
L S ERB-ANN + VQ 97.06 N/A
ANN + indicator variable and rough set 96.7 3.00

13 . .
NSL-KDD dataset. http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html. Accessed: 2016-02-03
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Directions for VorEAl improvement

VorEAl is currently being applied by Thalés as part of their network
intrusion detection probe.

Better selection methods
m VorEAIl was becoming many-objective, therefore
m better selection methods are needed.
m SMS-EMOA™ selection based on hypervolume contribution.

m NSGA-III"” selection based on reference points.

Adaptation in high-dimensional domains
m Number of sites/cells in individuals (Voronoi diagrams) is variable.
m Upper limit, nmax, is impossible to set for complex problems.

m Substitute nyax by an objective that minimizes number of cells.

7
Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based on dominated hypervolume.
European Journal of Operational Research, 181(3):1653-1669
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Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated
sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4):577-601

...and this is when spooky things started to happen!

Adding a new objective function

This new Voronoi diagrams size minimization objective was formulated as

1
14 0.01(|Z] — Amin)’

(T)

B Nnin: lower bound for individual size.

[(+) characteristics
m Bounded in [0, 1], and
m is to be maximized -as the other objectives.

m In those aspects, better than directly using the number of sites, |Z|.

Effect of adding the number of sites/cells objective

—6— Accuracy —A— Recall —6— Accurac

0 50 100 150 200 250 0 50 100
Iterations

Introducing the number of sites/cells minimization objective lead to severe
diversity loss and poor performance.



Reflections

The new objective degraded diversity and performance significantly.

In a ‘perfect world’ we could just wait as selection preserves all
non-dominated individuals...

...but we are in the ‘real world’ and we need solutions in a viable time frame.

Our proposal: Progressive Addition of Objectives

Hypothesis

m Reducing the number of sites is very easy to attain — just create small
individuals...

m ...but small individuals do not yield good performance in terms of the
other objectives.

...and, this could also be happening in other contexts:

m Genetic programming — reducing bloat might create small but useless
programs.

m Evolutionary machine learning — most compact structures tend to not
perform well.

Starting point

Paraphrasing Orwell*:
All objectives are important, but some objectives
are more important than others!

m In real-world practice there are generally
some primary objectives: the main
features we want to optimize.

GEORGE ORWELL

m Other objectives express desirable
features, like minimum model size.

What if we start with the primary
objectives and progressively add the
secondary ones?

1
GOrweII, G. (1945). Animal Farm. Secker and Warburg, London, UK



MOP performance indicators

Hypervolume indicator”

For a set of solutions A,

hyp (A) = volume U hypercube(a,r) | ,
Vac A

m r, reference point.

Additive epsilon indicator"
m Relies on the e-dominance concept.

B Minimum value of € that makes set A e-dominate set B,

Iy (A B) = ;2111; {Vy € B, 3x € Asuch that x <1 y} .

”Auger, A., Bader, )., Brockhoff, D., and Zitzler, E. (2009). Theory of the hypervolume indicator: Optimal p-distributions and the
choice of the reference point. In Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, FOGA’09, pages
87-102, New York, NY, USA. ACM
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Knowles, J., Thiele, L., and Zitzler, E. (2006). A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. 214,
Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland. revised version

Progressive Addition of Objectives (PAO)”

A general approach usable in any (many-objective) MOP.

m A greedy methodology.

m Starts with a set of primary objectives.

m Progressively select which objectives to add from the set of secondary
objectives by selecting the least disruptive one.

m Select the objective that degrades as little as possible the convergence
and diversity of the population.

m We need a function \(-) that can be defined relying on performance
indicators.
m S-PAO: PAO based on the hypervolume indicator.
m £-PAO: PAO based on the additive ¢ indicator.

2l Marti, L., Fansi-Tchango, A., Navarro, L., and Schoenauer, M. (2017). Progressively adding objectives: A case study in anomaly
detection. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pages 593-600, New York, NY, USA. ACM

Detecting convergence

Sophisticated heuristic stopping criteria are subject of intensive research®.

On-line convergence detection criterion (OCD)*
m Robust and well understood method for convergence detection.
m Computes a (set of) performance indicators on consecutive populations.

m Determines if they have remained stable in a non-progress state
applying a statistical hypothesis tests.

We use OCD to determine if the evolution is stagnating and, therefore, it is
time to add a secondary objective.

9
Wagpner, T, Trautmann, H., and Marti, L. (2011). A taxonomy of online stopping criteria for multi-objective evolutionary algorithms.
In Takahashi, R. H. C., Deb, K., Wanner, E. F., and Greco, S., editors, 6th International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2011), volume 6576, pages 16-30, Berlin/Heidelberg. Springer. 10.1007/978-3-642-19893-9_2

ZOWagner, T., Trautmann, H., and Naujoks, B. (2009). OCD: Online convergence detection for evolutionary multi-objective algorithms
based on statistical testing. In Ehrgott, M., Fonseca, C. M., Gandibleux, X., Hao, J.-K., and Sevaux, M., editors, 5th International Conference
on Evolutionary Multi-Criterion Optimization (EMO 2009), volume 5467 of Lecture Notes in Computer Science, pages 198-215,
Berlin/Heidelberg. Springer

Some PAO notation

minimize fi, ..., fu; F = {f1, s fm} -

m FP'M set of primary objectives and 7, set of secondary
objectives,

J,—_-prim U Fsec — f; J,—_-prim N F5e = &,

m EA(P, F): EMOA instance with population P and F objective functions.

m P, Pa: = evolve(e, At): evolves an instance, e, until convergence is
detected by the OCD method.

m Returns the last population, P, and Pa;, the one obtained At iterations
before.

m P = evolve; (e, tmax): evolves an instance, e, for .y iterations.
m Returns P, population of the last iteration.



PAO Algorithm

1: function PAQ(FP1m, Fsec X\ At)
JFPrim: primary objectives.
F3¢¢: secondary objectives.
A (+): performance indicator.
At: rollback iterations.
P < rand_init.
F* o ‘Fprim.
P, Par < evolve (EA (P, F*),At).
while 7*¢¢ £ & do
for all f; € 7°¢“ do

Al G e & Y

i = arg min; \(P, P, F*).

F* — FrU{fi}; F « F=\ {fi}

P,Pnas < evolve (EA (P, F*),At).
return P

P 9 »

Pj < evolve; . (EA(Pan F*U{fi}),At).

Experimenting with PAO

At

F*U{fa} Pa
- At . "
Fru{f} P3 «—arg min;, \(P, P;, F*)
) - At
o+ pprim Fru{f} P2 F* e F U{fs};
]:seC:{f]’fz’fé’ﬂ} ]-'*U{f} At P ]:SGCH]_-seC\{fs}V
1 1
| 4 Al
— T
PO \%t// P
OCD fired!
Iterations
Fup -2t p,
R Fup-2p, Fuip—2p,
f‘ﬂ:{lf‘,fz_fz} &}_‘Um} At P, &Pum} At P, <{f|}>
OCDTﬂred OCD fired OCDTfired

Iterations

Applying PAO to the improved VorEAls

Objective
m Impact of using PAO on VorEAL.

m Involve NSGA-IIl and SMS-EMOA selection.
m Also included some baseline methods:

m negative selection algorithm (NSA)%,
m one-class vector machines (SVMs)®, and
m naive Bayes classifier®.

22
Ji, Z. and Dasgupta, D. (2004). Real-valued negative selection algorithm with variable-sized detectors. Lect Notes Comput Sc,
3102:287-298

stax, D. M. ). and Duin, R. P. W. (2004). Support vector data description. Machine learning, 54(1):45-66

24
Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier under zero-one loss. Mach. Learn.,
29(2-3):103-130



Experimental setup
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m Each problem poses a different challenge.

o OK & Anom

m Added noise in test problems validate the concept of adding
volume-based objectives.

m Compute accuracy, recall and specificity.

m Bergmann-Homme
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statistical test procedure for assessing classifiers.
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» Bergmann, B. and Hommel, G. (1988). Improvements of general multiple test procedures for redundant systems of hypotheses. In
Multiple Hypothesenpriifung/Multiple Hypotheses Testing, pages 100~115. Springer

Bergmann-Hommel tests
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plots of the results
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Summarized tests results by problem and metric*
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Understanding when objectives are added

Ploting the iteration(s) when objective functions were selected by PAO in

Objective addition sequences

Cluster in cluster

each run.
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Final remarks

m We have examined VorEAI and PAO.
m VorEAl is in use by Thalés.

m PAO provides a methodology for progressive adding objectives to
complex and/or many-objective problems.

m Applied PAO on extended versions of VorEAI with substantial positive
results.
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m Is PAO a new approach to many-objs?

m Can out choice for \() be improved?

m How to extend to other areas? GP, ML, etc.

m How to incorporate results from other areas like objective reduction?
m Preparing MOP benchmarks that can be used to analyze PAO.

m Currently applying PAO+VorEAI in more realistic datasets (NSL-KDD,
ISCX 2012).

m More theory is needed!



Thank you! Danke sehr! Merci beaucoup! Obrigado!

iGracias!
Questions?
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