
1

Evolutionary Computation and Evolutionary Deep Learning 
for Image Analysis, Signal Processing and Pattern 

Recognition
Mengjie Zhang1 and Stefano Cagnoni2

1 Evolutionary Computation Research Group, Victoria University of 
Wellington, Wellington, New Zealand

2 IBIS Lab, University of Parma, Parma, Italy
Mengjie.zhang@ecs.vuw.ac.nz, cagnoni@ce.unipr.it

http://gecco-2018.sigevo.org/

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for third-party components of this work must be honored. For all other 
uses, contact the owner/author(s).
GECCO ’18 Companion, July 15--19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). 978-1-4503-5764-
7/18/07...$15.00
DOI https://doi.org/10.1145/3205651.3207859

2

- Mengjie Zhang is a Professor of Computer Science at the School of 
Engineering and Computer Science, Victoria University of Wellington 
(VUW), New Zealand. His research is mainly focused on evolutionary 
computation, particularly genetic programming, particle swarm 
optimization and evolutionary deep learning in image analysis, multi-
objective optimization, classification with unbalanced data, feature 
selection and reduction, and job shop scheduling. He has published over 
500 academic papers in refereed international journals and conferences. 
He has been serving as an associated editor or editorial board member 
for five international journals (including IEEE Transactions on 
Evolutionary Computation and the Evolutionary Computation Journal) and 
as a reviewer of over fifteen international journals. He has been serving 
as a steering committee member and a program committee member for 
over eighty international conferences.

- Stefano Cagnoni is an Associate Professor at the University of Parma. 
Recent research grants include co-management of a project funded by 
Italian Railway Network Society (RFI) aimed at developing an automatic 
inspection system for train pantographs, and a "Marie Curie Initial 
Training Network" grant, for a four-year research training project in 
Medical Imaging using Bio-Inspired and Soft Computing. Editor-in-chief of 
the "Journal of Artificial Evolution and Applications"  from 2007 to 2010. 
Since 1999, he has been chair of EvoIASP, an event dedicated to 
evolutionary computation for image analysis and signal processing, now a 
track of the EvoApplications conference. Since 2005, he has co-chaired 
MedGEC, workshop on medical applications of evolutionary computation 
at GECCO. Co-editor of special issues of journals dedicated to 
Evolutionary Computation for Image Analysis and Signal Processing. 
Member of the Editorial Board of the journals “Evolutionary Computation” 
and “Genetic Programming and Evolvable Machines”.

Instructors

Outline

v Computer vision and image analysis
v ECV methods
v ECV applications

v Evolutionary deep learning

v Major events
v References
v Acknowledgement

3

Computer Vision

v The “art” of making computers see (and understand what 
they see)

v Computer vision vs image processing
v Sub-topics:

• Image acquisition
• Image enhancement
• Image segmentation
• 3D-information recovery/feature extraction
• Image understanding
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Computational Intelligence (CI)

vSymbolic intelligence vs CI
vNeural Networks
vEvolutionary Computation

• Evolutionary Algorithms
• Swarm Intelligence
• Others

vFuzzy Systems
vOther
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Evolutionary Computation
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Evolutionary Computation 
Process
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Application Taxonomy

v EC techniques
• GA, GP, ES, EP, PSO, DE, LCS, EMO, EDA, etc.

v Solution types
• Optimisation of parameters of specific solutions  (using GA, ES, 

PSO…) 
Related with a well-defined task or for a whole system

• Generation of solutions from scratch (GP, …) 
Performance optimization based on specific objective functions
It is difficult to choose a model with reasonable assumptions

v Role of EC techniques
• Interactive qualitative comparisons between solutions
• Generation of emergent collective solutions

Achievement of higher-level and complex tasks from collective use of trivial, 
local, hard-wired behaviours: generation of full EC-based solutions, NOT 
parameter optimization tasks
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Applications (Stefano Cagnoni)

vOptimization of filter/detector AND algorithm 
parameters for event detection and image 
segmentation

vDesign of implicitly parallel binary image operators 
and classifiers 

vQualitative optimization of image processing 
algorithms 

vObject detection, segmentation, tracking
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Applications 

vEC techniques: GP, PSO, LCS, EMO
vImage Analysis

• Object tracking
• Edge detection
• Segmentation
• Motion detection
• Object/digit recognition

vEnglish stress detection(signal processing)
vPattern Recognition: feature selection and 

biomarker detection
13

GP for ECV Applications
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Genetic Programming -- Origin
vGenetic algorithms (GAs) with tree-like 

representation
vAutomatic programming: one of the major 

challenges of computer science --- use a 
computer to do what needs to be done 
without telling/knowing the specific steps.

vGP = Automatic programming + GAs
vGP genetically breeding a population of 

computer programs using principles of
Darwinian natural selection and biologically 
inspired operations
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GP: Representations

vTree based GP:  John Koza
• Lisp programs 
• Koza:92 vs 1980s: Cramer 
• Most commonly used

vLinear GP: Wolfgang Banzhaf
• C/C++/Java programs
• Graph: like NNs but not fully connected and more 

flexible
vGrammar based GP/Grammatical Evolution: 

Peter Whigham, Bob McKay, Michael O’Neill
vCartesian GP: Julian Miller
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GP for Vision Tasks

vObject detection
vObject classification
vObject tracking
vMotion detection
vEdge detection
vSegmentation
vMany domains: medical, military, agriculture, biology, 

transportation, …
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GP for Object Tracking

vUse GP to track an object in low-quality 
webcam footage, at a real-time speed. 

vTest the GP method on two object tracking 
problems of varying difficulty.
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Tracker

Object Tracking Task

GP System

}

Frame 103
Object position
unknown

Frame 102
Object at dot

Frame 103
Object at dot
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Tracker Programs

Frame 1 Frame 2

Estimate Refine
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Standard Evolved Programs

vEvolved programs (or genetic 
programs)
• Tree-like expression structure
• Internal nodes are functions
• Leaf nodes (terminals) are 

constants or input (feature) 
values.

• Evaluating program produces a 
single value.
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-

(F2 – 3 * F1) + sin(4)
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GP Tracker Program

v Non-standard
v Nodes deal with two-valued vectors

• Not single values
• Program output is a two-valued vector

v Input features are functions
• Not terminals
• Not just elements in a fixed length feature-

vector

v Still uses a tree
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Training

v Specify target object 
position

v Evaluate tracker program 
at a set of training points 
around target producing 
refined estimates.

v Fitness of program = avg. 
distance from target
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Data Sets

v We used two short pieces of webcam footage of a 
person moving around at a fixed distance from the 
camera.
• 358 x 288, 15 fps, 256 shade, greyscale
• Very low quality.
• Fast movement looks very blurry.
• Include some tricky movements like moving close to the 

border, looking up, moving quickly and obscuring face.

v Two tasks
• Left eye
• Centre of forehead
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Experiment 1:Tracking the left eye

vTracks well, even when the face was 
quite blurry due to fast movement.

Tracking, every 20th frame
Trails of tracker convergence
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Experiment 2:Tracking the head

vTracks well, even when the face was quite 
blurry due to fast movement and when the 
head looks up.

Tracking, every 20th frame
Trails of tracker convergence
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Example Videos
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Summary
v GP programs very successfully tracked the objects in 

the video-sequences.
v No domain knowledge was necessary

• programs automatically constructed
• Just 15 images with object positions located

v Non-standard GP program structure was critical.
• Vector outputs
• Feature functions

v Evolution identifies a small number of point features 
to compute while tracking
• Efficient.

v Tracks about nine times faster than real-time
• This is with non-compiled evolved programs
• Compiled would be faster.
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GP for Image Segmentation

ÿ A figure-ground segmentation method is developed
using GP to evolve segmentors from the local image
information.

ÿ Based on this proposed method, a wide range of features
have been investigated as terminal sets.
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Construction of GP-based Method 
using Local Information

Use the classifier to sweep the test image, 
assign a label to sub-images

Use a voting scheme to finalize each 
pixel’s label, generate the output.

Generate a classifier
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Function Set

Function Set
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Terminal Set

Terminal Sets

Features Category

Terminal Set 1 Raw Pixel Values Brightness

Terminal Set 2 Histogram Statistics

Texture

Terminal Set 3

GLCM Statistics
(Grey-Level Co-occurrence 
Matrix)

Terminal Set 4 LBP (Local Binary Patterns)

Terminal Set 5 Fourier Power Spectrum

Terminal Set 6 Gabor Features

Terminal Set 7 Moments + Gradient Statistics Shape
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Population Size 500 Generation Number 51

Crossover Rate 0.9 Mutation Rate 0.1

Max tree depth 
for initialization

6 Max tree depth 
for evolution process
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Fitness Function and Parameters
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Negative Rate Metric
(NRM)

Evaluation 
Measures

Segmentation
Accuracy

F1 Measure

Simple; commonly-used.
The higher the better.
Problem: insufficient (e.g. a small object in a test 
image is segmented totally as background, the 
accuracy can still be high)

Consider mismatches between a 
prediction and ground truth.
Best at 0, worst at 1. 

Combine precision and recall together.
Best at 1, worst at 0.

Result Evaluation Measures
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Results on Bitmap Images

Results

Intensity

Intensity
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Results on Texture Images
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Results on Weizmann Images

Results
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Statistical Results on Weizmann Images

Results
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Results on PASCAL Images

Results
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Statistical Results on PASCAL Images

Results
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Summary

ÿ When segmenting complex images, higher-level
information (e.g. spectral or statistical information) is
necessary.

ÿ The GP-based method using local image information can
achieve accurate segmentation across a wide range of
images.

ÿ Results on images from Weizmann and PASCAL datasets
are obviously worse than those on binary or texture
images. Need better features

ÿ This local information based method often produces
inaccurate boundaries. Need global information
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GP for Motion Detection: 
without noise
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Motion Detection: with noise
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Test Detector 1 in raining day
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Test Detector 2

Detector 2 can perform well on videos with additive noise of variance 50. 
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Test Detector 2 in raining day

Moving camera 47

Comparison: 
Background Modelling -1

All pixels in motion are marked in red, including pedestrians and minor false positives.

Note: the camera position was fixed in this experiment.
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Comparison: 
Background Modelling -2

Left: model trained on no-noise data performing on raining day. (No camera movement)

Right: model trained on noise data performing on raining day. (No camera movement)
49

Comparison: 
Background Modelling-3 

Applying background model on unseen data. 

Left: unseen raining condition. 

Right: changed camera angel (not even a moving camera).
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PSO for Edge Detection
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Particle Swarm Optimisation

uPSO as a global optimisation method was proposed 
by Kennedy and Eberhart in 1995

u It is a simulation of a simplified social model like bird 
flocking and fish schooling
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Key Concepts in PSO

uParticle: there is a population containing m potential 
solutions (called particles)

uVelocity and Position Equations: the particles move 
through n-dimensional search space according to position 
and velocity update equations

uTopology: defines how particles are connected to each 
other as an information sharing or exchanging mechanism
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Some of Well-Known Static Topologies

RingFully Connected Graph Star

Tree-based graph Von Neumann 
Toroidal
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Convolution of Red Rectangle 
on an Image

Original Image Edge Map
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A New Fitness Function

uMaximise distances among an intensity of pixels 
belonging to two regions separated by a continuous 
edge and minimise distances within the regions.

DL
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Probability Score of Curve C
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Curvature Cost of Continuous Edges

7 6 7 6 6 6 6 6 7
7 5 5 7 5 7 6 6 7

0 1 1 1 0 0 0 0 1
0 2 0 2 2 2 1 0 1

First Derivative

0.0015625 0.03125 58

A New Fitness Function With Two 
Constraints

uSubject to two constraints:
uThe curve C  never crosses itself.
uThe probability score of the curve C  must be larger than the 

predefined threshold HP. 

u A simple preservation method is used to handle these constraints in PSO.
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Image Set 
(From South Florida University Database)

Impulsive noise       Gaussian Noise          Ground Truth
Clean NP=10% PSNR=16 dB
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Example 1: PSO vs Canny and RRO

Canny                       RRO                      PSO

Gaussian 
Noise

PSNR=16dB

Impulsive 
Noise

NP=10%
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Example 2: PSO vs Canny and RRO

Canny                    RRO                      PSO

Gaussian 
Noise

PSNR=16dB

Impulsive 
Noise

NP=10%
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Example 3: PSO vs Canny and RRO

Canny                    RRO                      PSO

Gaussian 
Noise

PSNR=16dB

Impulsive 
Noise

NP=10%
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LCS for Hand-written Digit 
Recognition
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Learning Classifier Systems

l Machine learning for Robotics:
l Needs to be reinforcement-based and 

online
l Preferably also adaptive and transparent

l Learning from visual input is hard:
l High-dimensionality vs. sparseness of data

l Why Learning Classifier Systems
l Robust reinforcement learning
l Limited applications for visual input
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Learning Classifier Systems
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MNIST Digits Dataset

l Well known handwritten digits dataset
l 60 000 training examples, 10 classes
l Examples from 250 subjects
l 28x28 pixel grey-scale (0..255) images
l 10 000 evaluation examples (test set, 

different subjects)
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MNIST results

l Performance:
l Training set: 92%
l Test set: 91%
l Increase to 96% (after improvement)

l Supervised and off-line methods reach 
99%

l Encouraging initial results for 
reinforcement learning
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Why not 100% performance?
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Demo

vFeature Pattern Classifier System 
(FPCS)
vHandwritten Digit Classification with LCS

v Toktam Ebadi, Ignas Kukenys, Will N. Browne, Mengjie Zhang: Human-Interpretable 
Feature Pattern Classification System Using Learning Classifier Systems. Evolutionary 
Computation 22(4): 629-650 (2014)
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GP for English Stress Detection – Signal 
Processing
v English becomes more and more important as a 

communication tool in the world.

v Provide P2P training to ESL students is very expensive. 
Therefore, software is desirable.

v Correct rhythmic stress in ESL students’ speech is a key 
point to make the speech sound like native. Therefore, to 
accurately detect rhythmic stress in spoken English 
becomes an important functionality in this kind of 
software.
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Known Stress Classifiers

v Bayesian classifier
v Support vector machine classifier
v Decision tree classifier
v Neural networks classifier

The best accuracy is around 85%. It is not 
high enough for a commercial use.
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Overview of the whole project

Pedagogic 
Component

Speech 
Analyser

Learner
Dialogues Speech

Analysis

Feedback
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The Speech Analyser

Speech Recogniser

Stress Detector

Matcher

Identified Stress or Rhythm Errors

Phoneme
HMMs

Text Sound Target
Patterns

Stress
Classifier
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The Stress Detector

K      V         m      @

Sound (Phoneme Labelled)

Feature Extraction & Normalisation

Feature
Vectors …

V
@

…
…           …

…           …

Stress
Classifier

Classifying

Stress Pattern … 1 –1 …
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Classifier Learning Procedure
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GP



GP adapted to stress detection

vFeature extraction & normalisation
vGP configuration

• Terminal sets and the function set
• Fitness function
• Genetic parameters
• Termination criteria
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Feature extraction & normalisation

Rhythmic stress is related to:

• Prosodic features – such as duration, 
amplitude, pitch, and etc.

• Vowel quality – full vowel and reduced vowel. 
It is defined by the configuration of the tongue, 
jaw, and lips. 
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Feature extraction & normalisation
– Prosodic (cont.)

v Calculation of prosodic features is well known
• Duration is how long a syllable lasts
• Amplitude relates to the loudness of the syllable
• Pitch is the perceptual correlate of the fundamental frequency of 

the sound signal

v Need several levels of normalisations to reduce 
variations of differences between speakers, recording 
situations or utterance context, etc.

v There are 17 prosodic features used in our study
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Feature extraction & normalisation
– Vowel Quality (cont.)
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Feature extraction & normalisation
– Vowel Quality (cont.)

v Find the score of the expected vowel type Se, the score of the best 
matching full vowel Sf and the score of the best matching reduced
vowel Sr from the above 20 scores. 

v Compare Sf and Sr to Se respectively and measure the difference 
between the likelihoods and the ratio of the likelihoods.

v Also include a Boolean feature to deal with cases where these 4 
features can’t be calculated if the vowel segment is so short.
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GP configuration
v A linear-structured GP

v Terminal sets
• I : 17 prosodic features
• II : 5 vowel quality features
• III : combination of sets I and II

v The Function Set
{abs, sqrt, cos, sin, +, -, *, /, iflt, ifpr, ifnr}
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GP configuration (cont.)

v Fitness function – error rate.

v Genetic parameters
• Population size: 1024
• Tournament size: 4
• Initial program size: 80
• Max program size: 256

v The learning process stops when:
• Max number of generations without improvement reaches 200
• Fitness of the best program is zero on the training data set

I II III

Crossover rate 71% 57% 47%

Mutation rate 97% 87% 83%
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Experiment Design

v Data set: 703 vowels in 60 utterances of ten distinct 
sentences produced by 6 female speakers – 340 
stressed and 363 unstressed

v Scaled feature values in the range [-1,1] are also used.
v Three experiments are conducted on the three terminal 

sets respectively.
v 10 times 10-fold cross validation for training and testing
v Comparing with 

• DT -- C4.5 
• SVM -- LibSVM (with Radial Basis Function

kernel and C = 1)
• GP: Discipulus 
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Terminal Set I (prosodic features)
GP DT SVM

Unscaled 91.9 80.4 79.7
Scaled 91.6 80.6 83.2

Terminal Set II (vowel quality features)
GP DT SVM

Unscaled 85.4 79.7 79.1
Scaled 84.6 78.9 80.5

Terminal Set III (combination)
GP DT SVM

Unscaled 92.0 79.9 81.3
Scaled 92.6 80.1 82.0

Detection Accuracy (%)
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Summary

v Amongst prosodic features, duration has a bigger 
impact than amplitude and pitch. 

v In vowel quality features, features reflecting reduced 
vowel quality are far more useful than those reflecting 
full vowel quality. 

v GP can be used to construct an automatic rhythmic 
stress detector. 

v GP outperforms DT and SVM on this data set
v GP is more robust at handling irrelevant features and 

has stronger feature selection ability than DT and SVM 
on our data set

86

EC for Pattern Recognition 

• GP for mathematical modelling
• PSO and EMO for Feature Selection
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Mathematical Modelling
Assessing Christchurch Earthquake Liquefaction 
Potential

Human competitive results!
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Computer Vision –
Satellite and Medical Image Analysis

Satellite image –
Land, water, snow, cloud

Object detection --
Human retina image
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Feature Selection and 
Biomarker Detection
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Biology data – LC-MS/MS

DNA sequencing RNA arrays Mass spectrometry Mass spectrometry

DNA Transcript
s(mRNAs)

Proteins Metabolites

Proteome Metabolome

Genomic Transcriptomics Proteomics Metabolomics

Genome Transcriptome

DNA sequencing RNA arrays Mass spectrometry Mass spectrometry
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Cancer Diagnosis
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v “Curse of the dimensionality”
• Large number of features: 100s, 1000s, even millions

vNot all features are useful (relevant) 
vRedundant or irrelevant features may reduce the 

performance (e.g. classification accuracy)
vCostly: time, memory, and money

v Feature selection 
• to select a small subset of relevant features from the 

original large set of features in order to maintain or even 
improve the performance

Why Feature Selection ?

93

v Large search space: 2n possible feature subsets 
• 1990: n < 20
• 1998: n <= 50

• 2007: n ≈ 100s
• Now: 1000s, 1 000 000s

v Feature interaction
• Relevant features may become redundant 
• Weakly relevant or irrelevant features may become highly useful 

v Slow processing time, or even not possible

Challenges in Feature Selection
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v Introduce and develop the first multi-objective PSO 
approach to feature selection
• Simultaneously minimise the number of features and the error rate

Multi-objective PSO for Feature Selection

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective 
approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013. [ARC/ERA Tier A, IF 3.783] 95

v Information theory in evolutionary feature selection
• Fast algorithm — mutual information
• New measures, evaluate multiple features 
• Evolutionary multi-objective filter feature selection

PSO and Information Theory for Feature 
Selection

Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie Zhang. “A Multi-Objective Particle Swarm Optimisation for Filter Based 
Feature Selection in Classification Problems". Connection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang. “Evolutionary Algorithms and Information Theory for Filter
Based Feature Selection in Classification". International Journal on Artificial Intelligence Tools. Vol. 22, Issue 04, August 2013. pp. 
1350024 -- 1 - 31. DOI: 10.1142/S0218213013500243.

96



v Introduce statistical feature clustering to feature selection 
and develop the first approach
• reduce the size of the search space
• #features: from 600 to ~12
• implicitly consider feature interaction
• Example: 

– our method achieved accuracy 100%: {10, 7, 3}
– Single feature ranking: 7, 10, 12, 1, 9, 11, 6, 2, 13, 5, 4, 3

EC and Statistical feature clustering

Hoai Bach Nguyen, Bing Xue, Ivy Liu, Peter Andreae, Mengjie Zhang. "Gaussian Transformation based Representation in Particle 
Swarm Optimisation for Feature Selection". Proceedings of the 18th European Conference on the Applications of Evolutionary 
Computation (EuroApplications 2015). Lecture Notes in Computer Science. Vol. 9028. Copenhagen, Denmark. 8-10 April 2015. 
pp. 541-553 (Nominated as Best Paper)
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- Feature selection: 
- minimise the number of features
- minimise the error rate

- In MO, we aim to find the Pareto 
front of non-dominated solutions 

- Two new MO methods: NSGPSO, 
NSGPSO2

EC and Statistical feature clustering  
- Multi-Objective

Bing Xue, Micthell C. Lane, Ivy Liu, Mengjie Zhang, “Particle Swarm Optimisation for Feature Selection Based on Statistical 
Clustering”, Evolutionary Computation (Journal, MIT Press), Passed first round review with positive comments [ARC/ERA Tier A]
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GP for Feature Construction

Selected 
Features

Constructed 
Features

ted 

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and
Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 
2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256.
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Biomarker Detection

Apple minus m/z (5 
biomarkers) New Method (5 ) Method B  (2)

463.0 Yes No

447.09 Yes Yes

273.03 Yes Yes

435.13 Yes No

227.07 Yes No

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and
Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 
2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256.
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Evolutionary Deep Learning for 
Image Classification

vGAs and PSO for evolving CNNs
vGAs for evolving Auto-encoders and CNNs
vGP for deep learning 

101 102

vEvolving Unsupervised Deep Neural 
Networks for Learning Meaningful 
Representations

v The algorithm is composed of two stages
v The first stage one is for exploration, and the second 

stage is for exploitation
v The two stages collectively guarantee the best 

performance
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Representation of Evolving Unsupervised Deep Neural Networks for Learning Meaningful 
Representations

v The upper bound of the weight for a !-dimensional input
is set to be ! " ! based on Yang’s principle

v Randomly initialize a matrix with the size of ! " !
v Randomly initialize a !-dimensional vector "
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Representation of Evolving Unsupervised Deep Neural Networks for Learning Meaningful 
Representations

v Compute #$ = ! " "
v Find the null space of #$
v Encode " with real number and the using of {#%,& , #'}

with bit string
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Representation of Evolving Unsupervised Deep Neural Networks for Learning Meaningful 
Representations

v Another two bits in the chromosome are used to encode
the type of predefined three activation functions

v Each chromosome is with the same length
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Fitness Evaluation of Evolving Unsupervised Deep Neural Networks for Learning Meaningful 
Representations

v Using the learned matrix to initialize the network
v BP is used to train the network
v A SVM is added to the top of the network to estimate the

classification accuracy on validate data
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Genetic Operator of Evolving Unsupervised Deep Neural Networks for Learning Meaningful 
Representations

v One-point crossover operator is used twice for the
parameters encoding ! and {"#,$ , "%}

v Polynomial mutation operator with distribution index of
20 is used for mutation

v Top 20% elitisms are kept into the next generation
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Datasets and Experimental Design of Evolving Unsupervised Deep 
Neural Networks for Learning Meaningful Representations

v MNIST, MNIST-basic, MNIST-rot, MNIST-back-rand, 
MNIST-back-image, MNIST-rot-back-image, Rectangles, 
Rectangles-image, Convex and Cifar10-bw are used as
the datasets

v The proposed algorithm is implemented based on auto-
encoder and RBM (EUDNN-AE, EUDNN-RBM)

v Denosing auto-encoder (DAE), contractive auto-encoder
(CAE), sparse auto-encoder (SAE) and deep belief 
network (DBN) with up to three layers are used the
compared algorithms
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Datasets and Experimental Design of Evolving Unsupervised Deep Neural 
Networks for Learning Meaningful Representations

v Learning rate is selected from {0.0001, 0.001, 0.01, 0.1},
batch sizes vary in {10, 100, 200}

v Number of neurons for compared algorithms vary
from 200 to 3,000

v Independently run 30, and Mann-Whitney-Wilcoxon 
rank-sum test with a 5% significant level for statistical
conclusion
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Experimental Results of Evolving Unsupervised Deep Neural Networks for Learning 
Meaningful Representations

v Classification Accuracy

v Visualization

First layer Second layer Third layer
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Summary of Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations

v The proposed algorithm is capable of improving the
classification accuracy against the compared algorithms

v Meaningful representations are learned in the
intermediary layers

Evolving Deep Convolutional Neural Networks 
for Image Classification
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Representation of Evolving Deep Convolutional Neural Networks for Image Classification

v One chromosome is divided into two parts
v The first part is for convolutional and pooling layers
v The second part for fully connected layers

v Encoded information of the convolution/pooling/fully
connected layer
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Representation of Evolving Deep Convolutional Neural Networks for Image Classification

v The mean value and standard derivation are also
encoded into the chromosome for initializing the weight
matrix

v Each chromosome may be with different lengths
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Fitness Evaluation of Evolving Deep Convolutional Neural Networks for Image Classification

v Each individual is trained by BP with only several
epochs for the classification accuracy

v The mean and standard derivation of the classification
accuracy in the last epoch are calculated

v Using the mean value as the fitness of the individual, if
with the same mean value, the standard derivation is
used

v Large mean value or small standard derivation denotes
the individual with good quality
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Genetic Operator of Evolving Deep Convolutional Neural Networks for Image Classification

v The crossover is composed of three steps: unit
collection, unit align and crossover and unit restore
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Genetic Operator of Evolving Deep Convolutional Neural Networks for Image Classification

v An unit with the type of convolution/pooling fully
connected may be added/removed/modified during the
mutation

v The probability is 1/3 for choosing the unit type, and
also 1/3 for the adding, removing and modifying
operation

v During modifying, the polynomial mutation operator is
used
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Datasets and Experimental Design of of Evolving Deep Convolutional Neural 
Networks for Image Classification

v Fashion, Rectangle, Rectangle Images (RI), Convex 
Sets (CS), MNIST Basic (MB), MNIST with Background 
Images (MBI), MNIST with Random Background (MRB), 
MNIST with Rotated Digits (MRD), MNIST with RD plus 
Background Images (MRDBI) datasets are used

v The proposed algorithm (EvoCNN) is compared with a
series of state-of-the-arts including 2C1P2F+Dropout, 
2C1P, 3C2F, 3C1P2F+Dropout, GRU+SVM+Dropout, 
GoogleNet, AlexNet, SqueezeNet-200, MLP 256-128-
64, and VGG16 on the Fashion dataset, and CAE-2, 
TIRBM, PGBM+DN-1, ScatNet-2, RandNet-2, PCANet-2 
(softmax), LDANet-2, SVM+RBF, SVM+Poly, NNet, 
SAA-3 and DBN-3 on other datasets.
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Datasets and Experimental Design of Evolving Deep Convolutional Neural 
Networks for Image Classification

v EvoCNN is initialized with the population size of 100
v Independently run 30 times
v The classification accuracy of the compared algorithms

are from their seminal papers
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v Classification Accuracy on Fashion dataset
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v Classification Accuracy
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v Performance regarding weight initialization
v The compared algorithm is the widely used Xavier

method
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Summaryof Evolving Deep Convolutional Neural Networks for Image Classification

v The proposed algorithm can find a set of convolutional
neural networks with significantly differences on the
model complexity but similar performance

v The best model found by the proposed algorithm can
achieve the comparative performance to state-of-the-art,
but quite less number of parameters

v The proposed algorithm can find the best architecture of
convolutional neural network, which gives rise to a
better classification accuracy

v The proposed algorithm can also find the appreciable
parameters for initializing the weight matrix

An Experimental Study on Hyper-parameter 
Optimization for Stacked Auto-Encoders

vThis is an experimental study on hyper-
parameter optimization for stacked auto-
encoders

vThe compared optimization methods are particle
swarm optimization and grid search
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Representation of An Experimental Study on Hyper-parameter Optimization for Stacked Auto-Encoders

v All auto-encoder models are general auto-encoder (AE), 
sparse auto-encoder (SAE), denosing auto-encoder 
(DAE) and contractive auto-encoder (CAE), their 
encoded parameters are:
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Fitness Evaluation of An Experimental Study on Hyper-parameter Optimization for Stacked Auto-
Encoders

v Each individual encoded by PSO is trained by BP with
only several epochs in the pre-training and fine tuning
for the classification accuracy

v The classification accuracy is used as the fitness

v The standard velocity update operation of PSO is used
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Datasets and Experimental Design of of Evolving Deep Convolutional Neural 
Networks for Image Classification

v MNIST Basic (MB), MNIST with Background Images 
(MBI), MNIST with Random Background (MRB), MNIST 
with Rotated Digits (MRD), MNIST with RD plus 
Background Images (MRDBI), Rectangle, Rectangle 
Images (RI) and Convex Sets (CS) datasets are used as 
the benchmarks.

v The PSO for hyper-parameter optimization (PSO-HO)
and grid search for hyper-parameter optimization are
the compared algorithms
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Datasets and Experimental Design of of Evolving Deep Convolutional Neural 
Networks for Image Classification

v The epochs of pre-training, fine tuning and final training
are set to be 30, 20 and 100.

v The PSO for hyper-parameter optimization (PSO-HO)
and grid search for hyper-parameter optimization are
the compared algorithms

v Independently run 20 times, Mann-Whitney-Wilcoxon 
rank-sum test with a 5% significant level is employed to
statistically conduct the results
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Datasets and Experimental Design of Evolving Deep Convolutional Neural 
Networks for Image Classification

v The auto-encoder models are investigated with up to
three layers

v The range of searched parameters are:
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v Classification Accuracy on the first layer
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v Classification Accuracy on the second layer
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v Classification Accuracy on the third layer
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Experimental Results of Evolving Deep Convolutional Neural Networks for Image 
Classification

v The numbers of trials are calculated for measuring the
computational complexity
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Summary of Evolving Deep Convolutional Neural Networks for Image Classification

v PSO-HO can achieve the comparative classification 
accuracy but only take 10% to 1% computational 
complexity to that of grid search.

v J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, 
“Kpca plus lda: a complete kernel fisher discriminant 
framework for feature extraction and recognition,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, vol. 27, no. 2, pp. 230–244, 2005.

GP for Image Recognition/Classification
The traditional way
Domain-specific pre-extracted features approach 

The input is raw image pixel values

The feature areas need to be designed by domain-
experts

Transform the pixel values of the selected areas to 
a different domain

Select a subset out of the extracted features 
(optional)

Feed the extracted features (with or without 
selection) to a GP-based classifier
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Two-Tier GP Method
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v Method: DWST
v Dataset: Faces
v Accuracy

• Training: 97.23%
• Test:        

97.27%
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Other Applications

vThere have been many ECV applications 
for the past >15 years

vThe work can be seen from;
• Past EvoIASP workshop proceedings
• CEC proceedings, special session on ECV
• GECCO applications, EuroGP proceedings
• IEEE TEC, IEEE TSMC (Part B) or TCYB, 

ECJ, PRL letters, …
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Conclusions
v EC techniques play more and more

important role in image analysis,
signal processing and pattern
recognition tasks

v Difficult and Challenging tasks even
need more EC.

v Evolutionary deep learning will be the
current and future directions for image
classification for the next 5-10 years
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Upcoming Conferences

v Special Session on Evolutionary Computer Vision, CEC 2019: IEEE 
Congress on Evolutionary Computation 
• Organisers: Mengjie Zhang, Victor Ciesielski, Mario Koeppen, 
• Paper Submission deadline: 07 Jan 2019

v Evostar 2019/EvoIASP 2019: Track on Evolutionary Computation in 
Image Analysis, Signal Processing and Pattern Recognition
• Track Chairs: Stefano Cagnoni, Mengjie Zhang
• Time/Venue: Amsterdam
• Paper Submission deadline: 10 Nov 2018

v Special Session on Evolutionary Computation in Feature Selection and 
Construction, CEC 2019: IEEE Congress on Evolutionary Computation 

• Organisers: Bing Xue, Mengjie Zhang, Yaochu Jin
• Paper Submission deadline: 07 Jan 2019
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10-13 June 2019
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The 31st Australasian Joint Conference on 
Artificial Intelligence

4-7 December 2018, Wellington, New Zealand

https://ecs.victoria.ac.nz/Events/AI2018/
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35 people -- several people are missing!

More Recent Group Photo
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