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Outline Computer Vision

+» Computer vision and image analysis
% ECV methods

4 ECV applications % The “art” of making computers see (and understand what

they see)
%+ Computer vision vs image processing
“ Sub-topics:
* Image acquisition

+ Evolutionary deep learning

< Major events + Image enhancement
+» References + Image segmentation
< Acknowledgement + 3D-information recovery/feature extraction

* Image understanding




Computer and Human

Vision
HUMAN COMPUTER
Perception Image acquisition
Selective information Feature enhancement
extraction (signal/image processing)
Grouping by ‘similarity’ Segmentation

Extraction of spatial
relationships

Object recognition and Image Understanding
semantic interpretation

3D-information Recovery

Computer and Human
Vision

COMPUTER

Extraction of spatial 3D-information Recovery

relationships

Object recognition and
semantic inte i

Image Understanding

Computer and Human Vision

H
Perception

Selective information
extraction

Feature enhancement
(signal/image processing)

Computational Intelligence (CI)

“*Symbolic intelligence vs CI
“*Neural Networks

“*Evolutionary Computation
» Evolutionary Algorithms
« Swarm Intelligence
* Others

“*Fuzzy Systems

% Other
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Application Taxonomy Applications (Stefano Cagnoni)

« EC techniques

- GA, GP, ES, EP, PSO, DE, LCS, EMO, EDA, etc. + Optimization of filter/detector AND algorithm
. _ parameters for event detection and image
% Solution types segmentation
. (P)gt(i)misation of parameters of specific solutions (using GA, ES,
Related with a well-defined task or for a whole system ‘:’ DeSign Of_ ImpIICItIy para”el binary image Operators
» Generation of solutions from scratch (GP, ...) and classifiers

Performance optimization based on specific objective functions
It is difficult to choose a model with reasonable assumptions

+“ Qualitative optimization of image processing

% Role of EC techniques algorithms
» Interactive qualitative comparisons between solutions . . . .
+ Generation of emergent collective solutions > ObjeCt detection, segmentation, tracking

Achievement of higher-level and complex tasks from collective use of trivial,
local, hard-wired behaviours: generation of full EC-based solutions, NOT
parameter optimization tasks
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Applications

++EC techniques: GP, PSO, LCS, EMO
**Image Analysis
* Object tracking
Edge detection
Segmentation
Motion detection
Object/digit recognition
“*English stress detection(signal processing)

«»Pattern Recognition: feature selection and
biomarker detection

13

GP for ECV Applications
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Genetic Programming -- Origin

+» Genetic algorithms (GAs) with tree-like
representation

+» Automatic programming: one of the major
challenges of computer science --- use a
computer to do what needs to be done
without telling/knowing the specific steps.

% GP = Automatic programming + GAs

“+ GP genetically breeding a population of
computer programs using principles of
Darwinian natural selection and biologically
inspired operations
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GP: Representations

+» Tree based GP: John Koza
+ Lisp programs
» Koza:92 vs 1980s: Cramer
* Most commonly used

¢ Linear GP: Wolfgang Banzhaf
+ C/C++/Java programs

» Graph: like NNs but not fully connected and more
flexible

% Grammar based GP/Grammatical Evolution:
Peter Whigham, Bob McKay, Michael O’Neill

+» Cartesian GP: Julian Miller
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GP for Vision Tasks

“* Object detection

% Object classification
“ Object tracking
“*Motion detection

*+ Edge detection

% Segmentation

X Many domains: medical, military, agriculture, biology,
transportation, ...
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GP for Object Tracking

**Use GP to track an object in low-quality
webcam footage, at a real-time speed.

“*Test the GP method on two object tracking
problems of varying difficulty.
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Object Tracking Task

Tracker

Frame 102
Object at dot

Frame 103 Frame 103
Object position Object at dot
unknown

GP System
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Tracker Programs

Frame 1 Frame 2
9
O . S| [
9
final distance fv,
v fitness
. \\ 9s
Estimate  Refine in— @
aim -
position P
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Standard Evolved Programs

(+) “+»Evolved programs (or genetic

programs)
@ @

» Tree-like expression structure
@ 6 * Internal nodes are functions
constants or input (feature)
9 @ values.

» Leaf nodes (terminals) are
(F2 -3 *F1) +sin(4) * Evaluating program produces a

GP Tracker Program
e ++» Non-standard
+* Nodes deal with two-valued vectors
@ + Not single values
0 * Program output is a two-valued vector

+ Input features are functions
* Not terminals
* Not just elements in a fixed length feature-

@ o @
vector

@ «+ Still uses a tree
((1,4) rot. by I(2,5)) + D(4,2)
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single value. 21
Training
% Specify target object L i
position

++ Evaluate tracker program
at a set of training points
around target producing
refined estimates.

% Fitness of program = avg.
distance from target
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Data Sets

+* We used two short pieces of webcam footage of a
person moving around at a fixed distance from the
camera.

» 358 x 288, 15 fps, 256 shade, greyscale

* Very low quality.

« Fast movement looks very blurry.

* Include some tricky movements like moving close to the
border, looking up, moving quickly and obscuring face.

+ Two tasks

+ Lefteye
» Centre of forehead

24




Experiment 1:Tracking the left eye

Tracking, every 20™ frame
Trails of tracker convergence

“*Tracks well, even when the face was
quite blurry due to fast movement.

25

Example Videos
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Experiment 2:Tracking the head

Tracking, every 20™ frame
Trails of tracker convergence

s»Tracks well, even when the face was quite
blurry due to fast movement and when the

head looks up.
26

Summary

“» GP programs very successfully tracked the objects in
the video-sequences.

+* No domain knowledge was necessary
» programs automatically constructed
» Just 15 images with object positions located

“ Non-standard GP program structure was critical.
* Vector outputs
» Feature functions

++ Evolution identifies a small number of point features
to compute while tracking
» Efficient.
% Tracks about nine times faster than real-time

» This is with non-compiled evolved programs

» Compiled would be faster. i




GP for Image Segmentation

» A figure-ground segmentation method is developed
using GP to evolve segmentors from the local image
information.

» Based on this proposed method, a wide range of features
have been investigated as terminal sets.

Construction of GP-based Method
using Local Information

Generate a classifier

¥

Use the classifier to sweep the test image,
assign a label to sub-images

b

Use a voting scheme to finalize each
pixel’s label, generate the output.
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Function Set
Function Set
Function Name Definition Type
Add(al, 112) a1+ ax Arithmetic
Sub(ay, a;) a, —ap Arithmetic
Mul(aq, a2) ay * ap Arithmetic
-
Div(ay, a2) { gl /a2 §Z2'2200 Arithmetic
ap if aq is true. .
IF(ay, a2, a3) { a5 if oy is false, Relation
B true ifa <=ay .
<= (o) { false if otherwise Relation
_ true ifay >=ay .
>= (a1,0) { false if otherwise elation
L true ifay == ay .
== (a,) { false if otherwise Relation
true ifay <=a <=a .
Between(ay, a3, a3) { false if oiherwi;e e Relation
31

Terminal Sets

Terminal Set

Terminal Set 1 Raw Pixel Values Brightness

Terminal Set 2 | Histogram Statistics

GLCM Statistics

Terminal Set 3 (Grey-Level Co-occurrence

Matrix)
Texture
Terminal Set 4 LBP (Local Binary Patterns)
Terminal Set 5 Fourier Power Spectrum
Terminal Set 6 Gabor Features
Terminal Set 7 Moments + Gradient Statistics Shape

32




Fitness Function and Parameters

_ Number of correctly classified samples

Number of total training samples

Crossover Rate 0.9 Mutation Rate 0.1
Max tree depth 6 Max tree depth 17
for initialization for evolution process
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Database

Bitmap

Brodatz

Descriptions

B

o

utterfly

Size: 256*256

Synthetic, binary images

Weizmann

horseOO(;

horsel21

Size: 320*160

Grayscale images

horsel19

horse317

Average Size:248%211

Real images

Varing horse positions

One object

PASCAL

(Name prefix:

2007_00)

Average Size:500*350
Real images
Varing object locations/sizes

Multiple objects
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Result Evaluation Measures

Segmentation
Accuracy

Simple; commonly-used.
The higher the better.

Problem: insufficient (e.g. a small object in a test

image is segmented totally as background, the
accuracy can still be high)

Svaluation Combine precision and recall together.
Vieasures F1 Measure
Best at 1, worst at 0.
Negative Rate Metric Cons.ld.er mismatches between a
(NRM) prediction and ground truth.
Best at 0, worst at 1.

35

Results

Results on Bitmap Images

Intensity H .

Intensity

Ground Truth Result Examples Accuracy(%) Fi NMR
[
. 98.81£0.22 099 0.20
9596 £1.27 096 0.12
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Results on Texture Images

Results

Results on Weizmann Images

Name
(Prefix: 006 010 027 110 119 121 122 159 165 317
horse)

Inten.

-.'.?ib L-mml f'"'i

Hist.
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Feature Result Examples Accuracy(%) F; NMR

Ground Truth m -

Intensity m 94.26+ 2.75 0.94 0.15

Histogram Statistics m 93.98 £ 2.30 0.94 0.07

GLCM Statistics m 92.67 £ 1.45 0.92 0.15

LBP m 66.82 £ 10.06 0.53 0.35

Fourier Power Spectrum u! 91.16 £ 0.94 0.90 0.13

Gabor n! 90.91 £ 0.72 0.90 0.15

Moments + Gradient 92.02 £2.11 0.92 0.39
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Results
Statistical Results on Weizmann Images

Feature Accuracy (%) | Fi | NRM
Intensity 74.41 4+ 8.37 0.62 | 0.47
Histogram Statistics 77.37+£9.09 0.84 | 047
GLCM Statistics 76.74 £ 3.92 0.68 | 0.47
LBP 66.19 + 10.95 0.52 0.48
Fourier 68.38 + 7.38 0.61 | 0.50
Gabor 78.29+5.40 0.66 | 0.42
Moments + Gradient statistics | 65.04 £+ 10.39 | 0.58 | 0.50
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Results

Results on PASCAL Images

Name
(Prefix: 0033
2007_.00)
G.T.
Inten.
Hist.
GLCM
LBP
F.P.S.

Gabor

M.G.

0256 0738 1288 1761 2099 2266
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Results

Statistical Results on PASCAL Images

Feature Accuracy (%) | Fi | NRM
Intensity 71.39£10.63 | 0.49 | 0.50
Histogram Statistics 74.56 £ 6.89 0.61 | 0.50
GLCM Statistics 67.39 + 9.60 0.49 | 0.52
LBP 63.75+14.07 | 0.54 | 0.50
Fourier 75.10 £ 7.90 0.61 | 0.46
Gabor 75.60+8.10 0.62 | 0.46
Moments + Gradient statistics 74.53 + 7.83 0.59 | 048
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Summary

» When segmenting complex images, higher-level
information (e.g. spectral or statistical information) is
necessary.

» The GP-based method using local image information can
achieve accurate segmentation across a wide range of
images.

» Results on images from Weizmann and PASCAL datasets
are obviously worse than those on binary or texture
images. Need better features

» This local information based method often produces
inaccurate boundaries. Need global information
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GP for Motion Detection:

without noise

Motion Detection: with noise

43
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Test Detector 1 in raining day Test Detector 2

Detector 2 can perform well on videos with additive noise of variance 50.
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Comparison:
Background Modelling -1

All pixels in motion are marked in red, including pedestrians and minor false positives.

Note: the camera position was fixed in this experiment.

Moving camera
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Comparison:
Background Modelling -2

Left: model trained on no-noise data performing on raining day. (No camera movement)

Right: model trained on noise data performing on raining day. (No camera movement)
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Comparison:
Background Modelling-3

Applying background model on unseen data.

Left: unseen raining condition.

Right: changed camera angel (not even a moving camera).

50

PSO for Edge Detection

51

Particle Swarm Optimisation

€ PSO as a global optimisation method was proposed
by Kennedy and Eberhart in 1995

@ It is a simulation of a simplified social model like bird
flocking and fish schooling
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Key Concepts in PSO

@ Particle: there is a population containing m potential
solutions (called particles)

® Velocity and Position Equations: the particles move
through n-dimensional search space according to position
and velocity update equations

Xi(t+1) = Xi(t) + Vi(t+1)
Vi(t+1) = wVi(t) + CrRand (X ppest, — Xi(1)) + CoRanda (Rioager — Xi(t))

@ Topology: defines how particles are connected to each
other as an information sharing or exchanging mechanism

53

Some of Well-Known Static Topologies

Fully Connected Graph Ring Star
@
) ® ) ® © @ ) @
O o ° ® o o o
@ ()
@ pe @ @ - @ ° @
oroida
Tree-based graph o o 0 o Von Neumann
MR RESE.
[ @ @
@ 0 0 0o © 0 0.0
000000000000
@O 00 400 ¢

Convolution of Red Rectangle
on an Image

Original Image Edge Map

N

A New Fitness Function

€ Maximise distances among an intensity of pixels
belonging to two regions separated by a continuous
edge and minimise distances within the regions.

[ 77y
. 7|

\

[ J 1]
W
NN
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Probability Score of Curve C

— - NMSu(P) = |{P:|i € 1.6, Edge Magm(P:) < Edge Magm(P)}|

7 1 maz
Ug= ———— I —1I
P2 | Py | P | P, €= 255« (max) X; e #il
i=
| P; P | [ P, |

5 Py | Py Ps | Py PScore(C) =

vaﬁc PScorem;(P;)/(maz + 1)
1+ Uc

o 57

1 Inter Dism (P)
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A New Fitness Function With Two
Constraints

Fitness(C) = PScore(C) — CCost(C)

@ Subject to two constraints:
@® The curve C never crosses itself.

@ The probability score of the curve C must be larger than the
predefined threshold HP.

Cross(C) =0 and PScore(C)> HP

@ A simple preservation method is used to handle these constraints in PSO.
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Image Set

(From South Florida University Database)

Impulsive noise Gaussian Noise
NP=10% PSNR=16 dB
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Example 1: PSO vs Canny and RRO

Impulsive
Noise
NP=10%

Gaussian
Noise
PSNR=16dB

Example 2: PSO vs Canny and RRO

Impulsive
Noise
NP=10%

Gaussian
Noise
PSNR=16dB

Impulsive
Noise
NP=10%

Gaussian
Noise
PSNR=16dB
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LCS for Hand-written Digit
Recognition

64




Learning Classifier Systems

« Machine learning for Robotics:

« Needs to be reinforcement-based and
online

. Preferably also adaptive and transparent
« Learning from visual input is hard:

. High-dimensionality vs. sparseness of data
« Why Learning Classifier Systems

. Robust reinforcement learning

« Limited applications for visual input

65

Learning Classifier Systems

Conditions Match
‘ (M]

Classifier Population ‘l’

Select
[A]

v

Effect

Action

Rule

Discovery
(GA) v

Credit

A

Reward

Environment <
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MNIST Digits Dataset

. Well known handwritten digits dataset
. 60 000 training examples, 10 classes

. Examples from 250 subjects

. 28x28 pixel grey-scale (0..255) images

« 10 000 evaluation examples (test set,
different subjects)

67

MNIST results

. Performance:
. Training set: 92%
o Testset: 91%
. Increase to 96% (after improvement)

« Supervised and off-line methods reach

99%

. Encouraging initial results for

reinforcement learning

68




Why not 100% performance?

o 5595
5833249
8278

w...mm

5_
2
P
3

Demo

s Feature Pattern Classifier System
(FPCS)
**Handwritten Digit Classification with LCS

«» Toktam Ebadi, Ignas Kukenys, Will N. Browne, Mengjie Zhang: Human-Interpretable
Feature Pattern Classification System Using Learning Classifier Systems. Evolutionary
Computation 22(4): 629-650 (2014)
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GP for English Stress Detection — Signal
Processing

< English becomes more and more important as a
communication tool in the world.

+ Provide P2P training to ESL students is very expensive.
Therefore, software is desirable.

% Correct rhythmic stress in ESL students’ speech is a key
point to make the speech sound like native. Therefore, to
accurately detect rhythmic stress in spoken English
becomes an important functionality in this kind of
software.

71

Known Stress Classifiers

+ Bayesian classifier

“* Support vector machine classifier
+» Decision tree classifier

+»* Neural networks classifier

The best accuracy is around 85%. It is not
high enough for a commercial use.
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Overview of the whole project

Analysis

Dialogues Speech

Learner
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The Speech Analyser

Text Sound Target
Patterns

Identified Stress or Rhythm Errors

The Stress Detector

Sound (Phoneme Labelled)

Feature|  yoo...00
Vectors| @bo0---00

Stress Pattern ... 1 -1 ...
75

74
Classifier Learning Procedure
Training Training Training
Sound Files Phoneme Label Files Stress Pattern Files
ety
Feature
Vectors
10000 000
- 0000 000
=[J000-000
S
Classifier
etc
76




GP adapted to stress detection

s»Feature extraction & normalisation
“*GP configuration

» Terminal sets and the function set

* Fitness function

» Genetic parameters

» Termination criteria

77

Feature extraction & normalisation

Rhythmic stress is related to:

* Prosodic features — such as duration,
amplitude, pitch, and etc.

* Vowel quality — full vowel and reduced vowel.

It is defined by the configuration of the tongue,

jaw, and lips.

78

Feature extraction & normalisation
— Prosodic (cont,)

> Calculatlon of prosodic features is well known
Duration is how long a syllable lasts
* Amplitude relates to the loudness of the syllable

» Pitch is the perceptual correlate of the fundamental frequency of
the sound signal

+* Need several levels of normalisations to reduce

variations of differences between speakers, recording
situations or utterance context, etc.

% There are 17 prosodic features used in our study
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Feature extraction & normalisation
— Vowel Quality (cont)

it N\wm W

Extract

Vowel
Segmen

P“A‘)W il r{"" lf I

ses

EEEE BB "vEss
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Feature extraction & normalisation
— Vowel Quality (cont.)

% Find the score of the expected vowel type S, the score of the best
matching full vowel S;and the score of the best matching reduced
vowel S, from the above 20 scores.

« Compare S; and S, to S, respectively and measure the difference
between the likelihoods and the ratio of the likelihoods.

—log(S, —Se) 1 Se < S,
Rg = 0 it S = S,
{ log(Se — Sy) it Sg = S, I {r = 10}-’(( 'Sve ;"’{Sr) = l(l§_’,' 'S'e - lﬂ}{ Ig"r
{ —los(Sy = Se) 15 < Sp = log(Se/Sy) = log S — log S
Fa= 0 if Se =S¢
log(Se — S¢) if Se = Sy

<+ Also include a Boolean feature to deal with cases where these 4
features can’t be calculated if the vowel segment is so short.
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GP configuration

»* A linear-structured GP

% Terminal sets
* |:17 prosodic features
+ 1I: 5 vowel quality features
* |lIl : combination of sets | and Il

+» The Function Set
{abs, sqrt, cos, sin, +, -, *, /, iflt, ifpr, ifnr}
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GP configuration (cont,)

«» Fitness function — error rate.

+ Genetic parameters
» Population size: 1024
* Tournament size: 4 I I I

* Initial program size: 80 Crossover rate 71% | 57% | 47%
* Max program size: 256

Mutation rate 97% 87% 83%

¢+ The learning process stops when:
* Max number of generations without improvement reaches 200
» Fitness of the best program is zero on the training data set
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Experiment Design

+»» Data set: 703 vowels in 60 utterances of ten distinct
sentences produced by 6 female speakers — 340
stressed and 363 unstressed

% Scaled feature values in the range [-1,1] are also used.

% Three experiments are conducted on the three terminal
sets respectively.

% 10 times 10-fold cross validation for training and testing
% Comparing with
« DT --C4.5

* SVM -- LibSVM (with Radial Basis Function
kernel and C = 1)

» GP: Discipulus

84




Detection Accuracy (%)

Terminal Set | (prosodic features)

GP DT SVM
Unscaled 91.9 80.4 79.7
Scaled 91.6 80.6 83.2

Terminal Set Il (vowel quality features)

GP DT SVM

Unscaled 85.4 79.7 79.1

Scaled 84.6 78.9 80.5
Terminal Set Il (combination)

GP DT SVM

Unscaled 92.0 79.9 81.3

Scaled 92.6 80.1 82.0
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Summary

“ Amongst prosodic features, duration has a bigger
impact than amplitude and pitch.
% In vowel quality features, features reflecting reduced

vowel quality are far more useful than those reflecting
full vowel quality.

% GP can be used to construct an automatic rhythmic
stress detector.

% GP outperforms DT and SVM on this data set
% GP is more robust at handling irrelevant features and

has stronger feature selection ability than DT and SVM
on our data set

EC for Pattern Recognition

» GP for mathematical modelling

« PSO and EMO for Feature Selection

87

86
Mathematical Modelling
Assessing Christchurch Earthquake Liquefaction
Potential
Human competitive results!
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Computer Vision —
Satellite and Medical Image Analysis

Satellite image —

Object detection --
Land, water, snow, cloud

Human retina image

Feature Selection and
Biomarker Detection

Subset

[nitialisation Subset

Evaluation

89
Biology data — LC-MS/MS
DNA Transcript Proteins Metaholites
s(mRNAs) o)
- X =
Metabolome
[ Genomic] [Transcriptomics] [ Proteomics] Metabolomics
T‘k . ’Lv . . e -;.' . ] - : "
T 1L
bt I Al ity
ettt nin OO .o
L S AR ) s *22  2° lecess * J L ‘Ll‘\k“ \\f
DNA sequenciing RNA arrays Mass spectrometry Mass spectrometry
91

Goodness of
the Subset

Stopping
Criterion

Results
Validation
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Cancer Diagnosis

LC-MS/MS

13/5/2012 7:45:56 AM

LPS_Dec11sample_04-06-1: LPS_Dec11sample_04-05-12

189 min

Liquid Chromatogram
(LC)

zzzzzz

‘‘‘‘‘‘‘‘‘

min

woa:
g4t gs300
orgs 200 35
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Why Feature Selection ?

+“ “Curse of the dimensionality”
» Large number of features: 100s, 1000s, even millions
+ Not all features are useful (relevant)

+» Redundant or irrelevant features may reduce the
performance (e.g. classification accuracy)

% Costly: time, memory, and money

+» Feature selection

 to select a small subset of relevant features from the
original large set of features in order to maintain or even
improve the performance
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Challenges in Feature Selection

% Large search space: 2" possible feature subsets
+ 1990:n<20
+ 1998: n<=50
e 2007: n=100s
« Now: 1000s, 1 000 000s
+» Feature interaction
* Relevant features may become redundant
»  Weakly relevant or irrelevant features may become highly useful

% Slow processing time, or even not possible

94

Multi-objective PSO for Feature Selection

¢ Introduce and develop the first multi-objective PSO
approach to feature selection
» Simultaneously minimise the number of features and the error rate

Hillvalley (100, 43.41)

PSO and Information Theory for Feature
Selection

% Information theory in evolutionary feature selection
» Fast algorithm — mutual information
* New measures, evaluate multiple features
+ Evolutionary multi-objective filter feature selection
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Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective

approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013. [ARC/ERA Tier A, IF 3.783]
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F-MI 0.05 0.05 [0.05] 006 [ 0.07 0.09 0.15 0.18
F-E 2.88 97.7 | 8.64 | 27.95 | 9.85 | 256.57 | 2.96 | 236.42
F-RS 2.07 2485.61| 821 | 55.3 | 14.81 [1372.93] 0.69 | 928.25
F-PRS 2.86 [2766.29 | 8.28 | 38.36 | 9.95 |1827.06| 0.68 911.3
W-SVM | 24.41 |5143.18 | 53.28 [ 270.64 | 118.37|2441.21| 54 [10937.87
W-5NN | 6.12 |9311.59|18.89|264.51| 72.72 |4095.07 | 1.68 | 1936.67
W-DT 5.19 | 189.43 |10.53| 43.15 | 47.87 | 24455 | 3.82 529.7
W-NB 13.46 | 304.08 [15.89[150.37| 1942 | 377.24 | 4.13 | 706.23

Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie Zhang. “A Multi-Objective Particle Swarm Optimisation for Filter Based

Feature Selection in Classification Problems". Connection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang. “Evolutionary Algorithms and Information Theory for Filter
Based Feature Selection in Classification". International Journal on Atrtificial Intelligence Tools. Vol. 22, Issue 04, August 2013. pp.

1350024 -- 1 - 31. DOI: 10.1142/S0218213013500243.
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EC and Statistical feature clustering

+ Introduce statistical feature clustering to feature selection

and develop the first approach

» reduce the size of the search space

+ #features: from 600 to ~12

 implicitly consider feature interaction

» Example:
— our method achieved accuracy 100%: {10, 7, 3}
— Single feature ranking: 7, 10, 12,1, 9, 11,6, 2, 13,5, 4, 3

Hoai Bach Nguyen, Bing Xue, Ivy Liu, Peter Andreae, Mengjie Zhang. "Gaussian Transformation based Representation in Particle
Swarm Optimisation for Feature Selection”. Proceedings of the 18th European Conference on the Applications of Evolutionary

Computation (EuroApplications 2015). Lecture Notes in Computer Science. Vol. 9028. Copenhagen, Denmark. 8-10 April 2015.
pp. 541-553 (Nominated as Best Paper)
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GP for Feature Construction

-
Constructdll
Features
) [ XA e]

Selected
Features

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and

Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO
2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256.
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EC and Statistical feature clustering
- Multi-Objective

. Multiple Features (649, 1.37%)
- Feature selection:

48 L —=— NSGPSO
- minimise the number of features . “ —= NSGPSO2
P . 2 +* GPSO1
- minimise the error rate | « BPSO
361 \
. . o\c []
- In MO, we aim to find the Pareto s 3] !
front of non-dominated solutions e 04 4
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o
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Bing Xue, Micthell C. Lane, Ivy Liu, Mengjie Zhang, “Particle Swarm Optimisation for Feature Selection Based on Statistical
Clustering”, Evolutionary Computation (Journal, MIT Press), Passed first round review with positive comments [ARC/ERA Tier A]
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Biomarker Detection

ANOH ST IR () New Method (5) Method
biomarkers)

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and

Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO
2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256.
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Evolutionary Deep Learning for
Image Classification

*+*GAs and PSO for evolving CNNs
++GAs for evolving Auto-encoders and CNNs
++GP for deep learning
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s Evolving Unsupervised Deep Neural
Networks for Learning Meaningful
Representations

. » -l
Y i _. T -
: Encode Crossover Mutation Evaluate Selection
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Ko & #%—» man —>E3 S Classifier | Dg

+ The algorithm is composed of two stages

% The first stage one is for exploration, and the second
stage is for exploitation

+ The two stages collectively guarantee the best
performance
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Re p res e n tat I 0 n of Evolving Unsupervised Deep Neural Networks for Learning Meaningful

Renresentations

n n-1
'R /R
' {. X i E nu”(al) } '
S b a a, J
S —
(AN SN B B N NN NN B B AW HE N B |

chromosome

+« The upper bound of the weight for a n-dimensional input
is set to be n X n based on Yang’s principle

% Randomly initialize a matrix with the size of n x n
+ Randomly initialize a n-dimensional vector b
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Re p res e n tatl 0 n of Evolving Unsupervised Deep Neural Networks for Learning Meaningful

Renresentations

n n-1
' {. X i nu”(al) } '
$ 4 )
S b a a; - a,
/ /
(A BN S B B W NN NN N § NAN NN NS W |

|
chromosome

s Computea; =S xb
% Find the null space of a;

% Encode b with real number and the using of {a,, -+, a,,}
with bit string
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Re p res e n tat I 0 n of Evolving Unsupervised Deep Neural Networks for Learning Meaningful

Renresentations

n n-1
TR /R

i 4 4

S b a; a - ay

/ /
(AN SN B B N NN NN B B AW HE N B |

chromosome

*» Another two bits in the chromosome are used to encode
the type of predefined three activation functions

+» Each chromosome is with the same length
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F I t n eS S Eva I u atl O n of Evolving Unsupervised Deep Neural Networks for Learning Meaningful

Representations

wp Predict True
Label Label

<
<%

back-propagation m

% Using the learned matrix to initialize the network
+ BP is used to train the network

+ A SVM is added to the top of the network to estimate the
classification accuracy on validate data

106

G e n etl c O p e rato r of Evolving Unsupervised Deep Neural Networks for Learning Meaningful

Representations

++ One-point crossover operator is used twice for the
parameters encoding b and {a,, -*-, a,}

+ Polynomial mutation operator with distribution index of
20 is used for mutation

+» Top 20% elitisms are kept into the next generation
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Datasets and Experimental Design . couig unsupenised peen

Neural Networks for Learning Meaningful Representations

% MNIST, MNIST-basic, MNIST-rot, MNIST-back-rand,
MNIST-back-image, MNIST-rot-back-image, Rectangles,
Rectangles-image, Convex and Cifar10-bw are used as
the datasets

+ The proposed algorithm is implemented based on auto-
encoder and RBM (EUDNN-AE, EUDNN-RBM)

++ Denosing auto-encoder (DAE), contractive auto-encoder
(CAE), sparse auto-encoder (SAE) and deep belief
network (DBN) with up to three layers are used the
compared algorithms

108




Da tasets and EXperim en tal Design of Evolving Unsupervised Deep Neural

Networks for Learning Meaningful Representations

% Learning rate is selected from {0.0001,0.001,0.01, 0.1},
batch sizes vary in {10,100, 200}

+* Number of neurons for compared algorithms vary
from 200 to 3,000

+« Independently run 30, and Mann-Whitney-Wilcoxon
rank-sum test with a 5% significant level for statistical
conclusion
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Ex pe ri m e ntal Res u Its of Evolving Unsupervised Deep Neural Networks for Learning

Meaningful Representations

+ Classification Accuracy

Benck 1 EUDNN

k AE REM DAE CAE SAE DBN
MNIST 0.9878(0.0075T) | 0.9885(0.00255) [ 0.9820(0.00506)(+) | 0.9843(0.00699)(+) | 0.9832(0.00891)(+) | 0.9771(0.00959)(+)
MNIST-basic 0.9674(0.00616) | 0.9633(0.00473) | 0.9580(0.00352)(+) | 0.9635(0.00831)(+) | 0.9776(0.00585)(-) | 0.9658(0.00550)(+)
MNIST-rot 0.7952(0.00917) | 0.7549(0.00286) | 0.7274(0.00757)(+) | 0.7706(0.00754)(+) | 0.7852(0.00380)(+) | 0.7639(0.00568)(+)

MNIST-back-rand 0.8843(0.00076) | 0.8386(0.00054) | 0.7725(0.00531)(+) | 0.5741(0.00779)(+) | 0.8851(0.00934)(=) | 0.8221(0.00130)(+)

MNIST-back-image 0.4325(0.00569) | 0.4830(0.00469) | 0.4022(0.00012)(+) | 0.4010(0.00337(+) | 0.4638(0.00162)(+) | 0.4587(0.00794)(+)

MNIST-rot-back-image | 0.8925(0.00906) | 0.8879(0.00815) | 0.8691(0.00127)(+) | 0.6574(0.00913)(+) [ 0.8733(0.00632)(+) [ 0.8830(0.00098)(=)

Rectangles 0.9627(0.00311) | 0.9681(0.00829) | 0.9232(0.00166)(+) | 0.6275(0.00602)(+) | 0.9408(0.00263)(+) | 0.9622(0.00154)(=)

R imagy 0.7521(0.00689) | 0.7716(0.00048) | 0.7598(0.00451)(+) | 0.7810(0.00784)(=) | 0.7725(0.00002)(-) | 0.7628(0.00913)(+)

Convex 0.8113(0.00052) | 0.8085(0.00826) | 0.7930(0.00538(+) | 0.8016(0.00996)(+) | 0.8053(0.00878)(+) | 0.7895(0.00443)(+)

Cifar10-bw 0.4798(0.00107) | 0.4331(0.00962) | 0.4309(0.00005)(+) | 0.4860(0.00775)(+) | 0.4423(0.00817)(+) | 0.4598(0.00869)(+)
+-I= 10/0/0 9/0/1 7121 8/072

+* Visualization

First layer

S u m m a ry of Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations

+ The proposed algorithm is capable of improving the
classification accuracy against the compared algorithms

« Meaningful representations are learned in the
intermediary layers
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Evolving Deep Convolutional Neural Networks
for Image Classification

Parent
Evaluate solution
selection

Environmental
selection

Generate
offspring

Select best one
for deep training
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Re p res e n tat I 0 n of Evolving Deep Convolutional Neural Networks for Image Classification

+» One chromosome is divided into two parts
+« The first part is for convolutional and pooling layers
+ The second part for fully connected layers

+ Encoded information of the convolution/pooling/fully
connected layer

Unit Type Encoded Information
convolutional the filter width, the filter height, the number of
layer feature maps, the stride width, the stride height, the

convolutional type, the standard deviation and the mean

value of filter elements

pooling layer the kernel width, the kemel height, the stride width,

the stride height, and the pooling type (i.e., the average

or the maximal)

fully connected | the number of neurons, the standard deviation of
layer connection weights, and the mean value of connection

weights
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Re p res e n tatl 0 n of Evolving Deep Convolutional Neural Networks for Image Classification

+* The mean value and standard derivation are also
encoded into the chromosome for initializing the weight
matrix

«» Each chromosome may be with different lengths
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F Itn eSS Eva I u at I 0 n of Evolving Deep Convolutional Neural Networks for Image Classification

+ Each individual is trained by BP with only several
epochs for the classification accuracy

+» The mean and standard derivation of the classification
accuracy in the last epoch are calculated

% Using the mean value as the fitness of the individual, if
with the same mean value, the standard derivation is
used

+* Large mean value or small standard derivation denotes
the individual with good quality
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G e n etl c O pe rato r of Evolving Deep Convolutional Neural Networks for Image Classification

“ The crossover is composed of three steps: unit
collection, unit align and crossover and unit restore

+ Convolutional + Pooling E + Full connection -

C #1 Ci #
Colete - e | [« o 1= [ 1 e
Convolutional Pooling Full connection | Convolutional Pooling i i
unit list unit list unit list i unit list unit list

(=] |

] | ]

| N
|

(b) Unit Align and Crossover

Offspring #1 Offspring #2
‘In alcelcf= [EETE] (<= nlulw_‘

(c) Unit Restore
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G e n etl C O p e rato r of Evolving Deep Convolutional Neural Networks for Image Classification

+ An unit with the type of convolution/pooling fully
connected may be added/removed/modified during the
mutation

+» The probability is 1/3 for choosing the unit type, and
also 1/3 for the adding, removing and modifying
operation

++ During modifying, the polynomial mutation operator is
used
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Datasets and EXperimental Design of of Evolving Deep Convolutional Neural

Networks for Image Classification

% Fashion, Rectangle, Rectangle Images (RI), Convex
Sets (CS), MNIST Basic (MB), MNIST with Background
Images (MBI), MNIST with Random Background (MRB),
MNIST with Rotated Digits (MRD), MNIST with RD plus
Background Images (MRDBI) datasets are used

% The proposed algorithm (EvoCNN) is compared with a
series of state-of-the-arts including 2C1P2F+Dropout,
2C1P, 3C2F, 3C1P2F+Dropout, GRU+SVM+Dropout,
GoogleNet, AlexNet, SqueezeNet-200, MLP 256-128-
64, and VGG16 on the Fashion dataset, and CAE-2,
TIRBM, PGBM+DN-1, ScatNet-2, RandNet-2, PCANet-2
(softmax), LDANet-2, SVM+RBF, SVM+Poly, NNet,
SAA-3 and DBN-3 on other datasets.
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Datasets and EXpe rimental DeSign of Evolving Deep Convolutional Neural

Networks for Image Classification

“» EVOCNN is initialized with the population size of 100
+ Independently run 30 times

+« The classification accuracy of the compared algorithms
are from their seminal papers
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EX pe ri m e n ta I Res u ItS of Evolving Deep Convolutional Neural Networks for Image

Classification

+ Classification Accuracy on Fashion dataset

classifier | error(%) ] # parameters | # epochs
2C1P2F+Drouout 8.40(+) 3.27TM 300
2C1P 7.50(+) 100K 30
3C2F 9.30(+) — —
3C1P2F+Dropout 7.40(+) 7.14M 150
GRU+SVM-+Dropout 10.30(+) — 100
GoogleNet [43] 6.30(+) 101M —
AlexNet [3] 10.10(+) 60M —
SqueezeNet-200 [53] 10.00(+) 500K 200
MLP 256-128-64 10.00(+) 41K 25
VGG16 [54] 6.50(+) 26M 200
EvoCNN (best) 5.47 6.68M 100
EvoCNN (mean) 7.28 6.52M 100
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EX p e ri m e n ta I Res u ItS of Evolving Deep Convolutional Neural Networks for Image

Classification

+¢ Classification Accuracy

classifier | MB [ MRD [ MRB | MBI | MRDBI | Rectangle | RI [ Convex
CAE-2 [55] 248(+) | 9.66(+) | 10.90(+) | 1550(+) | 4523(+) | 121(+) | 21.54(+) [ —
TIRBM [56] — | 42000 — — [ 35.5004) — — —
PGBM+DN-1 [57] — — 6.08(+) | 1225(+) | 36.76(+) — — —
ScatNet-2 [58] 127(+) | 748¢+) | 1230(+) | 1840(+) | 5048(+) | 001(=) | 8.02(+) | 6.50(+)
RandNet-2 [59] 125+) | 847(+) | 1347(+) | 11.65(+) | 43.69(+) | 0.09+) | 17.00+) | 545(+)
PCANet-2 (softmax) [39] | 1.40(+) | 8.52(+) | 6.85(+) | 1155+) | 35.86(+) | 049(+) | 13.39(+) | 4.190)
LDANet-2 [59] 105() | 752+) | 681(+) | 1242(+) | 38.54(+) | 0.014(+) | 1620(+) | 7.22(+)
SVM+RBF [52] 303+ | IL1I() | 1458¢+) | 2261(+) | 55.18(+) | 215(+) | 24.04(+) | 19.13(+)
SVM+Poly [52] 3.69(+) | 1542(+) | 16.62+) | 24.01(+) | 5641(+) | 2.15(+) | 24.05(+) | 19.82(+)
NNet [52] 460(+) | 18.11(+) | 20.04(+) | 2741(+) | 62.16(+) | 7.16(+) | 33.20(+) | 3225+
SAA3 [52] 346(+) | 1030(+) | 1128(+) | 23.00(+) | 51.93(+) | 241(+) | 24.05(+) | 1841(+)
DBN-3 [52] 311(+) | 1030(+) | 673(+) | 1631(+) | 47.39+) | 2.61(+) | 22.50(+) | 18.63(+)
EvoCNN (best) 1.18 522 2.80 453 35.03 0.01 503 482
EvoCNN (mean) 128 546 3.59 462 37.38 0.01 5.97 5.39
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EX pe ri m e n ta I Res u ItS of Evolving Deep Convolutional Neural Networks for Image

Classification

% Performance regarding weight initialization

+ The compared algorithm is the widely used Xavier
method
60 T T T T

I vcight initializaed by EVOCNN
50~ ] weight initialized by Xavier

37.38
41.88

40|

30+ -

20 -

Classification error (%)

7.28
9.28
1.28
2.45
5.46
6.24

Fashion MB MRD MRB MBI MRDBI Rectangle RI Convex
Benchmark datasets
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S u m m a ryof Evolving Deep Convolutional Neural Networks for Image Classification

% The proposed algorithm can find a set of convolutional
neural networks with significantly differences on the
model complexity but similar performance

+ The best model found by the proposed algorithm can
achieve the comparative performance to state-of-the-art,
but quite less number of parameters

+» The proposed algorithm can find the best architecture of
convolutional neural network, which gives rise to a
better classification accuracy

+» The proposed algorithm can also find the appreciable
parameters for initializing the weight matrix
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An Experimental Study on Hyper-parameter
Optimization for Stacked Auto-Encoders

Esmg PSO to :)ptlr.mze tthe compare the classification
yper-parameters in auto- accuracy on benchmark

encoder models

Using grid search to optimize compare the computational

the hyper-parameters of auto-

complexit
encoder models P Yy

“* This is an experimental study on hyper-
parameter optimization for stacked auto-
encoders

“* The compared optimization methods are particle
swarm optimization and grid search
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Re p res e n tat I 0 n of An Experimental Study on Hyper-parameter Optimization for Stacked Auto-Encoders

+ All auto-encoder models are general auto-encoder (AE),
sparse auto-encoder (SAE), denosing auto-encoder
(DAE) and contractive auto-encoder (CAE), their
encoded parameters are:

Model Hyper-parameter
number of neurons n

AE .
weight balance factor A
number of neurons n
SAE weight balance factor A

predefined sparsity p
sparsity balance factor /3

number of neurons n
DAE weight balance factor A
corruption level z

number of neurons n
CAE weight balance factor A
contractive term balance factor ~y
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F I t n eS S Eva I u atl 0 n of An Experimental Study on Hyper-parameter Optimization for Stacked Auto-

Encoders

+» Each individual encoded by PSO is trained by BP with
only several epochs in the pre-training and fine tuning
for the classification accuracy

% The classification accuracy is used as the fitness

+ The standard velocity update operation of PSO is used
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Datasets and EXperimental DeSign of of Evolving Deep Convolutional Neural

Networks for Image Classification

“ MNIST Basic (MB), MNIST with Background Images
(MBI), MNIST with Random Background (MRB), MNIST
with Rotated Digits (MRD), MNIST with RD plus
Background Images (MRDBI), Rectangle, Rectangle
Images (RI) and Convex Sets (CS) datasets are used as
the benchmarks.

« The PSO for hyper-parameter optimization (PSO-HO)
and grid search for hyper-parameter optimization are
the compared algorithms
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Datasets and EXperimental Design of of Evolving Deep Convolutional Neural

Networks for Image Classification

% The epochs of pre-training, fine tuning and final training
are set to be 30, 20 and 100.

% The PSO for hyper-parameter optimization (PSO-HO)
and grid search for hyper-parameter optimization are
the compared algorithms

% Independently run 20 times, Mann-Whitney-Wilcoxon
rank-sum test with a 5% significant level is employed to
statistically conduct the results
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Datasets and EXpe rimental DeSign of Evolving Deep Convolutional Neural

Networks for Image Classification

+ The auto-encoder models are investigated with up to
three layers

+ The range of searched parameters are:

Search range for Number
Layer number Interval .
the number of neurons of trials
First layer [500, 3, 000] 0.12 23
Second layer [500, 4, 000] 0.12 26
Third layer (1,000, 6, 000] 0.12 23
Name of Search range Interval Num.ber
hyper-parameter of trials
weight balance factor A [le — 10, 1e — 5] 0.15 112
predefined sparsity p [le — 10, 7e — 1] 2.0 18
sparsity balance factor 3 [le — 10, 1le + 1] 1.0 20
corruption level z [le — 10, 7e — 1] 2.0 18
contractive term balance factor v | [le — 10, 1le + 1] 1.0 20
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EX pe ri m e n tal Res u ItS of  Evolving Deep Convolutional Neural Networks for Image

Classification

+ Classification Accuracy on the first layer

ikt AE SAE DAE CAE

PSO-HO Grid Search PSO-HO Grid Search PSO-HO (rid Search PSO-HO Grid Search

MB 0958(8.3E-4) | 0958(LOE-3) = | 0930(1.2E-3) | 0926(8.1E-3) + || 0.958(7.2E-3) | 0952(1.3E-3) + || 0.960(1.3E-2) | 0.955(1.5E-2) +

) ) )

MBI 075284E-3) | 07498.7E-3) + || 0683(6.3E-3) | 0.7059.8E-3) - || 0739(13E-2) | 0.7525.9E3) - || 0.759(89E-3) | 0.743(L7E-2) +
MRB || 0.780(12E-3) | O779(LOE-3)= || 0737(3.8E-3) | 0.765(3.5E-2) + || 0793(9.3E-3) | 0T71(73E-3) + || 0.833(4.0E-3) | 0.823(78E-3) +
MRD || 0.869(15E-3) | 0.867(L6E3) + || 0.544(L5E-D) | 0.4638.2E-D) + || 0.8633.5E-2) | 0.844(13E-3) + || 0.6323.3E) 0455(8IE3
MRDBI 0449(14E 3) | 0450(4.2E-3) + || 0336(73E-3) | 0.333(3.2E-2) + || 0434(21E-3) | 0391(L2E3) + || 0442(49E-3) | 042239E-D) +
Rectangle || 0.9223.7E-4) | 0.9222.8E-4)= || 0.688(8.9E-3) | 0.649(5.8E-2) + || 0915(.5E-2) | 0932LIE4)- || 0872(5.7E-3) 0777(7 SED) +

Rl 076](2 -3) | 0761(3.5E-3) = || 0736(1.2E-2) | 03559.0E-2) + || 0754(1.0E-2) | 0.755(5.8-3) = || 0.754(28E-3) | 0.754(84E-3) =

s 0.797(4.1E3) | 0.79948E-3) - || 0671(26E-D) | 0357G.9E-D) + || 07959.3E-3) | 0.7T94(.2E-3) + || 0.7528.5E-3) | 0.735(3.6E-2) +
H-= 34 0 s i
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EX p e ri m e n ta I Res u ItS of  Evolving Deep Convolutional Neural Networks for Image

Classification

+ Classification Accuracy on the second layer

EX pe ri m e n tal Res u ItS of  Evolving Deep Convolutional Neural Networks for Image

Classification

% Classification Accuracy on the third layer

I AE SAE DAE CAE

PSO-HO Grid Search PSO-HO Grid Search PSO-HO Grid Search PSO-HO Grid Search

S AE SAE DAE CAE

PSO-HO Grid Search PSO-HO Grid Search PSO-HO Grid Search PSO-HO Grid Search

MB 09593.1E-3) | 09552TED) + || O85041E-D) | 0221(19E-1) + || 0.960(7.5E-3) | 0959(34E-3) + || 0.10354E3) | 0.100G.0E-3) +

MB 0959(13E-3) | 0959(14E3)= || 094323E3) | 09I8LIED + || 0.995C.9E-3) | 095%(15E-3)= || 096279E-3) | 0950(15E-2) +
MBL || 0775(18E-2) | OTT3(LIED + || 070SO.7E-3) | 0664(87ED) + || 0.762(14E-2) | 074X14ED) + || 077283E3) | 0.748(4.6E-2) +

MRB || 076%68E-2) | 0.768(6.6B-2) = || 0.770(78E-3) | OT36(LSE-) + || O0.T94(14E-2) | 0.794(7.3E-2)= || 085026E-3) | 08475.3E-3) +

[
(
MRD || 0.867(4.1E-3) | 0.866(3.3E-3) = 0]6796E1) 0160(9.6E-3) + || 0.866(L88E-D) | 0855(L2E3) + || 0.38(43E-3) | 0.112(8TE-
(
(

Rectangle || 0.938(2.3E-3) | 0.940(2.6E-3) - 064745E 2) | 0546(63E-D) + || 0936(.2ED) | 0.932(LGE-3) + || 0.885(3.5E-3) | 0.803(94E-2) +

(

( )

( 3+
MRDBI || 0450(10E-2) | 044909.3E-3) + || 0352G.0B-3) | 0.2808.9E-D) + || 0420(L4E-3) | 040029E-3) + || OMI(T.IED) | 0408(4.3E-2) +

( )

( )

6203.2E

) (
3 50E 2) | 0300G.9E-3) + || OT4X(LTE-D) | 0TS0(46E-3) - || 0.741(6.8E-3) | 0.738(3.6E
) ( ()

Rl 0756(5.08-3) | 0755(5.5E3) + || 0323 )+
(s 08000.9E-3) | 08028.5E3)= || 0620 OSIT(L9ED + | 0805BTE-3) | 0.79%(6IE-3) + || 0753(7.3E-3) | 06719.6E-2) +
#l-= 3 8100 S 8100
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) )

MBI || 0783(20E-2) | 0.698(18E-D) + || 0.619(LSE-1) | 0.619(LOB-1)= || 0.7%9(24E-2) | 0.797(L.IE-2) + || 0.720(3.0E-2) | 0.126(8.8E-2) +
MRB || 0785(3.6E-2) | 0.79028E-3)- || 075228E-2) | 0.94523E-1) + || 0804(29E-2) | 0816(6.263)- || 0821(9.2E-3) | 0.T2(LIE-1) +
MRD || O875(8.5E-3) | 0875(7.8E-3) = 0[50(2 ED) | 015328 = | 0865(13ED) | 0.864(1L.2E-3) + || 0.1822TE-3) | 0.130(22E-3) +
MRDBI || 04928.6E-3) | 0481(1.6E-2) + || 0312(1.8E-D) | 021234E-D) + || 0451(63E-2) | 04225.3E-3) + || 0.1016.2E-3) | 0.1003.1E3) =
Rectangle || 0.956(26E-3) | 09334 1E4) = 05]6(17E D) | 05003.1E-4)+ || 0.949(43E-D) | 0.945(18E-3) + || 0.500(3.1E4) | 0.500(3.0E-4) =

RI 0761609E-3) | 07SIOTE3) + || 0.5002.2E-3) | 030023E-3)= || 0759(15ED) | 0758(5.2E3) = || 0.499(2.2E-3) | 0.500(22E-3) =

(s 0.803(5.8E-3) | 0.786(8.4E-3) + || 0.670L1E-2) | 0307(L2ED) + || 0803(B.E3) | 0.799(6.TE-3) + || 0.510(LIE-2) | 040022E-3) +
= nn 5103 1/l 503
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EX p e ri m e n ta I Res u Its of  Evolving Deep Convolutional Neural Networks for Image

Classification

“ The numbers of trials are calculated for measuring the
computational complexity
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S u m m a ry of Evolving Deep Convolutional Neural Networks for Image Classification

% PSO-HO can achieve the comparative classification
accuracy but only take 10% to 1% computational
complexity to that of grid search.

% J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin,
“Kpca plus Ida: a complete kernel fisher discriminant
framework for feature extraction and recognition,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 2, pp. 230-244, 2005.
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GP for Image Recognition/Classification
The traditional way
Domain-specific pre-extracted features approach

Design

§

Feature
Extraction

§

Feature
Selection

§

Classification

Vs

.

The input is raw image pixel values

N\

J

Ve

.

The feature areas need to be designed by domain-
experts

N\

J

Ve

Transform the pixel values of the selected areas to
a different domain

N

Select a subset out of the extracted features
(optional)

Feed the extracted features (with or without
selection) to a GP-based classifier

Two-Tier GP Method

Classificati
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Analysis

«» Method: DWST

@ AggMin

~ % Accuracy

«» Dataset: Faces
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Other Applications

**There have been many ECV applications
for the past >15 years

**The work can be seen from;

Past EvolASP workshop proceedings

CEC proceedings, special session on ECV
GECCO applications, EuroGP proceedings

IEEE TEC, IEEE TSMC (Part B) or TCYB,
ECJ, PRL letters, ...
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Conclusions

% EC techniques play more and more
important role in image analysis,
signal  processing and  pattern
recognition tasks

% Difficult and Challenging tasks even
need more EC.

* Evolutionary deep learning will be the
current and future directions for image
classification for the next 5-10 years
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Upcoming Conferences

% Special Session on Evolutionary Computer Vision, CEC 2019: IEEE
Congress on Evolutionary Computation
» Organisers: Mengjie Zhang, Victor Ciesielski, Mario Koeppen,
* Paper Submission deadline: 07 Jan 2019

« Evostar 2019/EvolASP 2019: Track on Evolutionary Computation in
Image Analysis, Signal Processing and Pattern Recognition
» Track Chairs: Stefano Cagnoni, Mengjie Zhang
» Time/Venue: Amsterdam
* Paper Submission deadline: 10 Nov 2018

% Special Session on Evolutionary Computation in Feature Selection and
Construction, CEC 2019: IEEE Congress on Evolutionary Computation

» Organisers: Bing Xue, Mengjie Zhang, Yaochu Jin
* Paper Submission deadline: 07 Jan 2019
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10-13 June 2019

& 7 1007 PURE
¢4 NEWZEALAND

The 31st Australasian Joint Conference on
Artificial Intelligence

4-7 December 2018, Wellington, New Zealand

-s .

https://ecs.victoria.ac.nz/Events/AI12018/
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