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Abstract - Accurate detection of natural or intentional 

contamination events in water distribution pipes is critical to 

drinking water safety. Efficient early warning systems that can 

detect contamination events require detection algorithms that can 

accurately predict the occurrence of such events. This paper 

presents the development of adaptive neuro-fuzzy inference system 

(ANFIS) models for detecting the safety condition of water in pipe 

networks when concentrations of water quality variables in the 

pipes exceed their maximum thresholds. The event detection is 

based on time series data composed of pH, turbidity, color and 

bacteria count measured at the effluent of a drinking water utility 

and nine different locations of sensors in the distribution network 

in the city of Ålesund, Norway. The proposed ANFIS models 

correctly detected between 92% and 96% of the safety condition of 

the water in the pipe network, with approximately 1% false alarm 

rate during the testing stage. The models also achieved high rates 

of specificity and precision, with very high correlations between 

the predictions and actual conditions of the water in the pipes. The 

accuracy of the models achieved in this study suggests that the 

models can be useful in real time contamination event detection in 

the pipe networks. 

 

Keywords: Water safety, distribution network, contaminant 

detection, machine-learning algorithms. 
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I. INTRODUCTION 

Water distribution systems are vulnerable to further contamination 

of treated water as a result of physical or hydraulic breaches such 

as cross-contamination, breakages in pipes, wastewater intrusion 

and water quality integrity. Pathogens can enter such deficient pipe 

networks through backflow from cross-connections and from leaks 

and cracks [1]. This mode of contamination of drinking water is 

one of the main causes of poor public health worldwide. Even when 

treatment plant effluent is compliant with drinking water quality 

regulations, malfunctioning in water distribution networks can lead 

to increased gastrointestinal illnesses (GII), and potentially a health 

risk to consumers of tap water [2]. Deficiencies in distribution 

systems are therefore identified as potential risk factors for 

intermittent GII incidences in microbial risk assessment models [3]. 

 

The WHO estimates that 62 million people in Europe live in houses 

without direct water supply, and as a result of unsafe drinking water 

and poor hygiene and sanitation, an average of 10 deaths per day 

from diarrhea are assumed to occur in this region [4]. Despite great 

improvement in water supply systems in Norway over the recent 

years, there is still a risk of water contamination before reaching 

the consumer. Further, not only do fractures and leakages increase 

the risk of GII in the country, but also the re-contamination of 

drinking water is likely to increase in future as a result of 

vulnerabilities in aging pipelines [5]. The provision of safe drinking 

water to the public is vital for ensuring the welfare of the society, 

therefore, development of early warning systems (EWS) for 

detecting and/or predicting contamination events in water 

distribution pipes is an active area of research in recent times. 

Water quality motoring sensors are usually placed at different 

locations in distribution networks to provide real time changes in 

the quality of treated water. The optimal placement of these sensors 

in the pipe networks necessary for efficient coverage have been 

widely investigated by researchers [6]. The accuracy in the 
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detection of contamination events from either natural or intentional 

causes is also vital to the security of water supply systems. 

However, few studies have explored the analysis of the 

measurements from these sensors and their ability to detect critical 

changes in the quality of water that are necessary for developing 

EWS. 

 

Such EWS composed of online sensors, connected supervisory 

control and data acquisition (SCADA), detecting algorithms, and 

decision support systems [7], can mitigate the health risks 

associated with contaminations in water distribution systems when 

efficiently installed. In EWS, the detecting algorithm used can be 

critical to the accuracy of detecting contamination events and 

distinguishing them from normal fluctuations in the water quality 

parameters [8]. One approach to such event detection is to use data-

driven techniques to evaluate the data measured by the online 

sensors [9]. For instance, Klise and McKenna, 2006 [10]  applied 

multivariate Euclidean Distance (MED) method to classify new 

sets of water quality data from sensors as normal or anomalous. In 

a related study, McKenna et al. in 2008 [8] compared the 

performances of three water quality change detection algorithms at 

four different locations in the US. The three methods they applied 

were; linear prediction filters (LPF), in which a current value is 

predicted as a linear combination of previous samples, MED 

method, which involves comparison of two successive distances in 

a multivariate space defined by the water quality signals, and time 

series increments methods. The approach involved spiking each 

data set with simulated water quality values. Other researchers have 

applied supervised learning techniques including artificial neural 

network (ANN) and support vector machine (SVM) to distinguish 

anomalous  water quality values from normal values, as well as 

evaluate potential quality  threats in water distribution systems [11, 

12]. Although these artificial intelligence methods are highly 

efficient, they are opaque, and therefore difficult to understand and 

interpret, particularly when the results are used for making far-

reaching decisions. 

 

The objectives of this study are 1) Apply Pearson’s correlation 

analysis on the water quality time series to evaluate the effects of 

variations in the water quality parameters on the safety condition of 

water in the distribution network. 2) Use adaptive neuro-fuzzy 

inference system (ANFIS) model to detect deviations of water 

quality from baseline values established in Norwegian water safety 

regulations. An efficiently trained and tested model of this nature 

could be linked with the online water quality sensors in the 

distribution networks such that outputs will be obtained from 

routinely measured parameters in the pipes. The ANFIS approach 

applied in this study is aimed at overcoming the limitations present 

in other machine-learning techniques that have been used in 

contamination event detection in water distribution systems. In this 

method, fuzzy relations among water quality variables measured 

from the sensors detect contamination events. This technique offers 

a means of understanding the effects of each water quality variable 

on the overall safety condition of the water. 

 

II. METHODOLOGY 

 

A.  Study Area and Data Set 

Fig. 1 shows the map of study area and the locations of the Ålesund 

water treatment plant (WTP) as well as the various sampling points 

across the water distribution network, where water quality 

parameters used in this study were measured. The WTP draws 

water from the Brusdalsvatnet Lake located on the inland of 

Oksenøya in the Møre and Romsdal County between the Ålesund 

and Skodje municipalities in the West Coast of Norway.  The lake 

has a surface area of approximately 7.1 km2, with a mountainous 

and heavily forested catchment area of approximately 30 km2. The 

Lake is the main source of drinking water for the nearly 50 000 

inhabitants of the city of Ålesund and neighboring Sula 

municipality. The drinking water treatment facility draws 55,000 

m3 of water daily from the Lake at a depth of 35m. The data used 

in this study consist of monthly measurements at the outlet of the 

WTP and the various sampling locations in the distribution pipes. 

The data, which were taken from January 2013 to June 2017, were 

composed of water pH, turbidity (NTU), color (mg Pt/l) and counts 

of total bacteria (counts/ml) in the clean water. To obtain enough 

data for training and testing the models, we merged the data from 

all the locations to constitute 504 data samples.   

 

 
Fig. 1. Map of study site showing the locations of the distribution 

network where water quality parameters were measured. 

 

B.  Descriptive Statistics of Data 

 

Prior to the model development, Pearson correlation coefficients (r) 

among measured water quality parameters from the effluent of the 

treatment plant and the measured parameters from the sensors 

located in the pipes were calculated as follows: 

 

𝑟𝑋𝑌 =
∑ (𝑥𝑖−𝑋̅)(𝑦𝑖−𝑌̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑋̅)𝑛
𝑖=1

2
∗ √∑ (𝑦𝑖−𝑌̅)𝑛

𝑖=1
2
                      (1)                                                          

 

where X and Y are the measured values for two different water 

quality parameters in the treatment plant effluent and the 

distribution pipe respectively 𝑥𝑖 and 𝑦𝑖 are the ith values in the time 
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series, n is the number of data points used to calculate the 

correlations, and 𝑋̅ and 𝑌̅ refer to the mathematical expectation.  

 

C. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

 

Adaptive neuro-fuzzy inference system (ANFIS), proposed by Jang 

(1993) [13], is based on the first-order Sugeno fuzzy model. By 

analyzing mapping relationships between input and output data, 

ANFIS optimizes the distribution of membership functions by 

using a back-propagation gradient descent algorithm either alone or 

combined with a least-squares method [14]. The technique has been 

widely used to model water quality indices [15, 16]. The objective 

of the ANFIS models in this study was to classify the water samples 

in the distribution pipes as “safe” or “unsafe”. The safety condition 

of the water samples were initially determined using domain expert 

information. In this study, two ANFIS models were built, one with 

a triangular objective function and the other with a Gaussian 

function. The proposed ANFIS has four inputs; pH, turbidity, color 

and bacteria count, and two outputs, the safety condition of water 

in the distribution pipes. Three membership functions were 

assigned to each input variable, resulting in 81 fuzzy rules for the 

four input variables. Each input is represented by three fuzzy sets 

and the output by a first-order polynomial of the inputs. The ANFIS 

extracts n rules mapping the inputs to the output from the 

input/output dataset. A typical Sugeno-fuzzy rule can be expressed 

in the following form: 

 

Ri IF pH is A1,j 

AND Turbidity is A1,j 

⋮                                                                         (2) 

AND Color is Am,j 

THEN Safetyi =  fi(pH, Turbidity, … , bacteria count) 

  

where 𝐴1,𝑗 , 𝐴2,𝑗 , ..., 𝐴𝑚,𝑗  are fuzzy sets or fuzzy labels used to 

fuzzify each input,  𝑆𝑎𝑓𝑒𝑡𝑦𝑖 (i.e., safety condition of rule i) is either 
safe or unsafe.  

Figure 2 shows the structure of the five-layered ANFIS model built 

in this study. The first layer is the fuzzification layer, where all 

inputs are fuzzified. The degrees of membership of each input is 

calculated using either a triangular membership function or a 

Gaussian function. Layer 2 is the rule layer, where the membership 

functions are multiplied at each node to produce the firing strength 

of each rule. In the third layer, the value at each node is calculated 

as a ratio of the firing strength of the ith rule to the sum of the rule’s 

firing strengths. Each node in layer 4 as adaptive, and contains a 

node function, and layer 5 is a single fixed node that calculates the 

overall output as a summation of all the incoming signals. 

 

 

Fig.1. ANFIS architecture for first order Sugeno fuzzy model as 
used in this study. 

 

D.  ANFIS Model Development 

 

To classify the measured data points as safe of unsafe, we used 

values from the Norwegian Guide to Drinking Water Regulations 

[17]. According to this regulation, concentration of total bacteria in 

the treated water should not exceed 100 CFU/ml, and there should 

be no irregular variations in the concentration for a given period. 

Moreover, the acceptable range of water pH is 6.5 – 9.5, while 

turbidity and color have no specific thresholds, although no 

irregular variations should occur. Nonetheless, the Norwegian 

Food Safety Authority recommends that for water supply systems 

that rely on surface water bodies, the turbidity of the treated water 

should not exceed 1 NTU. Similar regulations exist for color, with 

the maximum threshold set to 20 mg Pt/l. When the threshold 

values for total bacteria, pH, turbidity and color were used to sort 

the data in this study, 13 data points were classified as unsafe, out 

of the 504 samples. In order to obtain enough data points for 

training an efficient model, we tightened the values in these 

regulations, with thresholds of 80 CFU/ml and 6.5 – 9 for total 

bacteria and water pH respectively.  

 

This resulted in a total of 89 samples found unsafe and the rest 504-

89= 415 found safe. To have a dataset which equally and fairly 

represents the two cases, 89 sample taken from the 415 samples that 

are safe in random. Thus, there were 89 samples of safe water and 

89 samples of unsafe water. Finally, all safe data points were 

assigned (+1) whereas all unsafe points were labelled (-1). The 

resulting data set was normalized using principal component 

analysis (PCA). The normalized data set was randomly partitioned 

into two; 70 % for mode training and 30 % for testing. The random 

partitioning was carried out to ensure equal representation of the 

variabilities in the water quality for both training and testing sets 

such that genuine assessment of the predictive ability of the model 

can be assessed during testing. Two ANFIS models were trained 

using the data set, one with Gaussian Membership functions (MFs) 

and the other with Triangle Membership functions. 
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III. RESULTS 

 

A.  Results of Descriptive Statistics  

 

The distributions of the four water quality variables in the pipes 

between January 2013 and October 2017 are shown in Fig. 3 (a). 

High variabilities exist in the data generally, but this variability is 

less pronounced in the water pH. The count of bacteria, turbidity, 

and color are highly skewed, although the values mostly fall below 

their respective maximum thresholds in the drinking water safety 

standards of Norway. Fig. 3 (b) shows the results of the Pearson’s 

correlation coefficients among the water quality variables in the 

pipes.  

 

 
Fig. 2. Boxplots of raw data set (a) and Pearson’s correlation matrix 

of water quality variables in the distribution pipes. 

 

The safety condition of the water in the pipes was also included as 

a dummy variable, and overall, this condition was negatively 

correlated with all the parameters. The magnitudes of these 

correlations were higher with respect to the bacteria count (r = -

0.30) and turbidity (r = -0.58). This was partly due the use of the 

bacteria count as the key determinant of the safety of the water.  

Values of turbidity and color measured in the pipe networks over 

the study period were much lower than the threshold values 

indicated in the regulations. Thus, it was it was not possible to use 

the water turbidity to classify the water in terms of safety. However, 

turbidity showed the strongest negative correlation with the safety 

condition of the water. This may be due to its positive association 

with the count of bacteria in the water, as it was the only parameter 

that had a positive correlation with the count of bacteria in the 

water, although this correlation was week (r = 0.18).  

 

B. ANFIS Model Results 

 

Table 1 shows samples of the fuzzy rules that define the mapping 

of the water quality parameters to the safety condition of the water. 

The network was trained using two different objective functions; 

triangular and Gaussian, each of which was composed of three 

membership functions (low, medium, and high). Thus, we applied 

81 rules (34) in training the model using first order Sugeno type 

training algorithm. Results of the model from the two objective 

functions are presented in the subsequent sections. 

 

Table 1. Fuzzy rules generated in the first ANFIS model with 

triangular MFs  

Rule 

num

ber 

Rule 

1 If (Bacteria is low) and (pH is low) and (Turbidity 

is low) and (Color is low) then Water Safety = 

51.0337*B-1.1555*pH-7.7349*T-

28.6089*C+3.2130. 

… … 

74 If (Bacteria is high) and (pH is high) and (Turbidity 

is low) and (Color is medium) then Water Safety = 

-0.0254*B-0.0121*pH+0.0026*T+0.0002*C-

0.0280. 

 

1) Triangle Objective Function with 3 MFs 

Fig. 3 illustrates the structure of the first ANFIS model used in 

classifying the safety condition of the water in the pipes. The rules 

indicated in table 1 were used to adjust these functions. The model 

has 81 rules but effectively there are only 40 rules with nonzero 

linear coefficients, effective rules are 1, 2, 4, 5, 7, 8, 10, 11, 12, 13, 

14, 16, 17, 19, 20, 28, 29, 31, 32, 34, 35, 37, 38, 39,  40, 41, 43, 44, 

46, 47, 55, 56, 58, 59, 64, 65, 67, 68, 73, and 74. The ANFIS model 

applies the adaptive capability to adjust the triangular membership 

functions until the classification error is minimized. This involves 

iterative mapping of the input parameters in the training data set 

with the aim achieving the least error.  

 

The output of the classification of the first model is shown in Fig. 

4. The training involved 125 data samples (70 %), while the testing 

data set constituted 55 samples. The target condition of the water 
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were given threshold values; +1 for safe water and -1 for unsafe 

water. The same number of safe and unsafe samples were initially 

prepared, but the partitioning for training and testing samples was 

done by selecting random samples to constitute the 70% and 30%. 

This was meant to enable the model to adapt to a typical situation 

that may occur in the distribution pipes. 

 
Fig. 3. Structure of the first ANFIS model trained using the 

triangular membership function 

 

 

 

 

 
Fig. 4. Results of the classification of the safety condition of water 

samples during training and testing using the triangular 

membership functions. 

 

It is evident from this plot that the model was capable of learning 

from the data set with very good accuracy. In some instances, the 

model could not predict values within the threshold values of +1 

and -1. This may be an indication of overfitting in the model. 

However, majority of the training samples were within the 

threshold. During the model testing stage (shown in blue in Fig. 4 

a), the model generally performed well, although significant over-

predictions occurred, since the model predicted values beyond the 

thresholds. It can further be noted that there was only one occasion 

for which the model misclassified the safety condition of the water. 

This is obviously not very good, since it would have triggered a 

false alarm if the model were applied to the online sensors that 

measure the water quality parameters in the distribution network. 

We further set a threshold to the predicted values during the model 

testing stage to limit the range of values the model outputs. Results 

of the model testing after this imposed restriction showed distinct 

improvement over the previous model. The errors associated with 

the training and the two testing stages are shown in Fig. 4 b. This 

shows that, if the model is integrated with the sensors at the various 

locations of the distribution network, the safety or otherwise of the 

flowing water can be reliably determined with acceptable accuracy. 

 

To further evaluate the performance of the ANFIS model, we 

computed the confusion matrix from the results of the training and 

testing stages. The outputs for the first model with the triangular 

membership functions are shown in table 2. The table compares the 

actual safety conditions of the water as used in the model training 

and testing, with the predicted safety conditions. The model made 

a total of 125 predictions during training, and 53 during testing, 

comprising 178 safety conditions (safe water (+1) and unsafe water 

(-1)). Thus, out of the 125 input samples, the model training stage 

predicted 63 safe water samples and 62 unsafe samples. The 

training stage therefore achieved a high accuracy without any false 

alarms. In the testing stage however, while the model predicted the 

exact number of safe water conditions (22 samples), 4 false 

negatives were predicted.  

 

Table 2. Confusion matrix calculated from the results of ANFIS 

model 1 (triangular MFs) 

Training 

n=125 predicted  

  +1 -1 

+1 TP=63 FN=0 63 

- 1 FP=0 TN=62 62 

 63 62 125 

 

Testing 

n=53 Predicted  

  +1 -1 

+1 TP=22 FN=4 26 

- 1 FP=0 TN=27 27 

 22 31 53 

 

 

 

2) Gaussian Objective Function with 3 MFs 

Using the same model structure and inputs, the model was trained 

with Gaussian objective function.  A total of fuzzy 81 rules were 

generated in the training process with the three membership 

functions. The resulting model structure after the training stage is 
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shown in Fig. 5. Sample fuzzy rules used in the classification with 

this model are shown in table 3. 

 
Fig. 5. Structure of the second ANFIS model trained using the 

Gaussian membership function 

 

Table3.  Fuzzy rules generated in the second ANFIS model with 

Gaussian MFs  

Rule 

number 
Rule 

1 If (Bacteria is low) and (pH is low) and (Turbidity is 

low) and (Color is low) then Water Safety = 

10.3898*B-5.2938*pH-2.1253*T-10.4479*C 

+0.1953. 

… … 

81 If (Bacteria is high) and (pH is high) and (Turbidity 

is high) and (Color is high) then Water Safety = -

0.5956*B+0.0389*pH-0.1652*T+0.0103*C-0.6996. 

 

Fig. 6 shows the results of the second model. The training results 

of this model achieved very high accuracy compared with the 

previous model, with no discernible difference between the model 

predictions and the actual safety conditions. In addition, all the 

predicted classifications were within the threshold values of +1 and 

-1 used as for training the model. The level of accuracy is also 

reflected in the error associated with the training (Fig. 6 b). 

However, then the model was tested with the remaining data set, 

the accuracy level was similar to the previous model. The model 

could not reproduce the threshold values of +1 (safe) and -1 

(unsafe), although fewer false misclassifications were achieved. 

The confusion matrix calculated from the results of this model is 

shown in table 4. This model predicted all the safe and unsafe water 

samples in the training set, just as the previous model. In addition, 

the model classified only two safe water samples as unsafe, 

compared to 4 misclassifications in the previous model. The 

imposition of restrictions on the threshold outputs of during the 

testing stage also resulted in significant improvement in the model. 

This suggest that with this restriction, both model structures can be 

applied in real time detection of the unsafe variations in the quality 

of water in the distribution pipes. It must be noted though that these 

models were trained with tighter regulations than the actual 

regulations in practice.  

 
Fig. 6. Results of the classification of the safety condition of water 

samples during training and testing (a) and using the Gaussian 

membership functions. 

 

Table 4. Confusion matrix calculated from the results of ANFIS 

model 2 (Gaussian MFs) 

Training 

n=125 predicted  

  +1 -1 

+1 TP=63 FN=0 63 

- 1 FP=0 TN=62 62 

 63 62 125 

 

Testing 

n=53 Predicted  

  +1 -1 

+1 TP=24 FN=2 26 

- 1 FP=0 TN=27 27 

 24 29 53 

 

Moreover, we evaluated the effects of the various input parameters 

on the safety conditions of the water using the fuzzy relations 

generated in the models. Fig. 7 shows the surface plots of the fuzzy 

relations from the ANFIS model 1 with triangular MFs. 

Considering the effect of each input parameter, changes in the 

turbidity, color, and the bacteria count in the clean water have 

greater influence on the safety condition. However, the magnitude 

of the effect of each parameter depends on the variation of other 

parameters in the model. For instance, the effect of the interaction 

between turbidity and bacteria count (Fig. 7 b) indicate that lower 

turbidity values can be associated with unsafe water in the pipes, 

yet the effect of interaction with pH variation suggest that the water 

in the pipes can be more safe at lower turbidity values (Fig. 7 d).  

Similarly, Fig. 7 b suggests that higher bacteria counts can be 

associated with unsafe condition of the clean water, since lower 
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values occur in the water safety column. However, at low pH and 

high bacteria count (Fig. 7 a), the opposite occurs. Based on the 

fuzzy relations, it is difficult to precisely determine the effect of 

each parameter on the safety/quality of the water without taking 

into account the effect of interactions with other water quality 

parameters [17]. Nonetheless, these fuzzy relations provide a 

means of understanding the overall effects of the water quality 

parameters on the safety, unlike other “blackbox” models that do 

not have such capabilities.  

 

 
Fig. 7. Fuzzy relations between water quality variables and the 

safety condition of water in the distribution pipes. 

 

 

The model performance indices evaluated during the training and 

testing stages are shown in table 5. The ANFIS model with the 

Gaussian membership functions achieved higher accuracy for the 

training and testing data sets, with mean absolute error values of 

0.0025 and 0.4949 respectively. The predictions of this model was 

also highly correlated with the actual values present in the data.  

 

Table 5. Performance indices of the two ANFIS models 

                             Train 

ANFIS model mse mae Correlation 

Gaussian (3 MFs) 2.604e-05 0.0025 1.0 

Triangular (3MFs) 0.0332 0.1092 0.9833 

Test 

Gaussian (3 MFs) 1.275 0.494 0.751 

Triangular (3MFs) 2.413 0.527 0.418 

Finally, we used the information from the confusion matrices 

(tables 2 and 4) to calculate the error rates for the testing stages of 

both models. The overall testing accuracy of the ANFIS model 2 

(with Gaussian MFs) was 96 %, compared to 92 % in the ANFIS 1 

model (with triangular MFs).  The error rates were calculated as 

follows. 

 

ANFIS model 1 (triangular MFs): 

 Accuracy: Overall, how often is the classifier correct? 

o (TP+TN)/total = (22+27)/53 = 0.9245 

 Misclassification Rate: Overall, how often is it wrong? 

o (FP+FN)/total = (0+4)/53 = 0.0755 

o equivalent to 1 minus Accuracy 

o also known as "Error Rate" 

 True Positive Rate: When it is actually safe, how often 

does the model predict safe? 

o TP/actual safe = 22/26 =  0.8462 

o also known as "Sensitivity" or "Recall" 

 False Positive Rate: When it is actually unsafe, how 

often does it predict safe? 

o FP/actual unsafe = 0/27 = 0 

 Specificity: When it is actually unsafe, how often does 

it predict unsafe? 

o TN/actual unsafe = 27/27 = 1 

o equivalent to 1 minus False Positive Rate 

 Precision: When it predicts safe, how often is it 

correct? 

o TP/predicted yes = 22/22 = 1 

 Prevalence: How often does the safe condition actually 

occur in our sample? 

o actual safe/total = 26/53 = 0.4905 

 

ANFIS model 2 (Gaussian MFs): 

 Accuracy: Overall, how often is the classifier correct? 

o (TP+TN)/total = (24+27)/53 = 0.9623 

 Misclassification Rate: Overall, how often is it wrong? 

o (FP+FN)/total = (0+2)/53 = 0.0377 

o equivalent to 1 minus Accuracy 

o also known as "Error Rate" 

 True Positive Rate: When it is actually safe, how often 

does it predict safe? 

o TP/actual yes = 24/26 =  0.9231 

o also known as "Sensitivity" or "Recall" 

 False Positive Rate: When it is actually unsafe, how 

often does it predict safe? 

o FP/actual unsafe = 0/27 = 0 

 Specificity: When it is actually unsafe, how often does 

it predict unsafe? 

o TN/actual unsafe = 27/27 = 1 

o equivalent to 1 minus False Positive Rate 

 Precision: When it predicts safe, how often is it 

correct? 

o TP/predicted safe = 24/24 = 1 

 Prevalence: How often does the unsafe condition 

actually occur in our sample? 

o actual safe/total = 26/53 = 0.4901 

 

IV. CONCLUSIONS 

This paper presented the development of classification models for 

predicting the safety condition of water in distribution pipes. The 

models, based on ANFIS technique, were built using water quality 

variables measured from the effluent of the water treatment plant 

in Ålesund, Norway, as well as seven different locations across the 

pipe network. Based on information from the Norwegian Guide to 

Drinking Water Regulations, the approved concentrations of the 

water quality parameters in treated water were used to initially 
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classify the data into two conditions; “safe” and “unsafe”. The 

resulting data was used to train and test the ANFIS models. 

 

The proposed ANFIS models can correctly detect between 92% and 

96% of the safety condition of the water in the pipe network, with 

approximately 1% false alarm rate during the testing stage. The 

models also achieved high rates of specificity and precision, with 

very high correlations between the predictions and actual 

conditions of the water in the pipes. Further, the ANFIS models 

explained the effects of the interactions of the various water quality 

parameters on the safety condition of the water in the pipes, with 

the effect of turbidity and bacteria counts being more distinct than 

the other parameters. Despite reducing the acceptable maximum 

threshold concentration of bacteria count in the clean water from 

100 to 80 in this study, the accuracy of the models achieved in this 

study suggests that the models can be useful in real time detection 

of the safety condition of water in the pipe networks. This can be 

achieved by integrating these models with the online sensors at 

various locations of the pipe network where water quality 

parameters are regularly measured such that the safety condition of 

water in the distribution network can be assessed from each set of 

measurements from the sensors and an alarm can be triggered when 

necessary. 
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