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ABSTRACT
Recent advances in deep neuroevolution have demonstrated that
evolutionary algorithms, such as evolution strategies (ES) and ge-
netic algorithms (GA), can scale to train deep neural networks to
solve difficult reinforcement learning (RL) problems. However, it
remains a challenge to analyze and interpret the underlying process
of neuroevolution in such high dimensions. To begin to address this
challenge, this paper presents an interactive data visualization tool
called VINE (Visual Inspector for NeuroEvolution) aimed at helping
neuroevolution researchers and end-users better understand and
explore this family of algorithms. VINE works seamlessly with a
breadth of neuroevolution algorithms, including ES and GA, and
addresses the difficulty of observing the underlying dynamics of
the learning process through an interactive visualization of the
evolving agent’s behavior characterizations over generations. As
neuroevolution scales to neural networks withmillions or more con-
nections, visualization tools like VINE that offer fresh insight into
the underlying dynamics of evolution become increasingly valuable
and important for inspiring new innovations and applications.
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1 INTRODUCTION
Recent progress in deep neuroevolution [3, 7, 9–11] has shown that
evolutionary algorithms, such as evolution strategies (ES) and ge-
netic algorithms (GA), are capable of training deep neural networks
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Figure 1: The Mujoco Humanoid Locomotion task. This
benchmark is the basis of a number of examples in this pa-
per and can be solved by both the ES and GA approaches to
neuroevolution.

[4] with millions or more parameters (weights) to solve difficult
reinforcement learning (RL) problems. Figure 1 illustrates one such
popular problem, Mujoco Humanoid Locomotion, which both ES
and GA solve effectively [3, 9].

While it is possible to probe the properties of such algorithms,
such as in recent investigations into the relationship of ES to finite-
difference gradient approximation [6] and stochastic gradient de-
scent [14], it is generally difficult to observe the underlying dy-
namics of the learning process in neuroevolution and neural net-
work optimization. To address this gap and open up the process
to observation, we introduce the Visual Inspector for NeuroEvolu-
tion (VINE), an interactive data visualization tool aimed at helping
those who are interested in neuroevolution to better understand
and explore its behavior. The source code for VINE is available
at https://www.github.com/uber-common/deep-neuroevolution/
tree/master/visual_inspector. We hope this technology will inspire
new understanding, innovations, and applications of neuroevolu-
tion in the future.

VINE can illuminate both ES- and GA-style approaches. In this
paper, we focus on visualizing the result of applying ES to the
Mujoco Humanoid Locomotion [2, 12] task from Figure 1.

2 USING VINE
In the conventional application of the version of ES popularized
by OpenAI [10], a group of neural networks called the pseudo-
offspring cloud are optimized against an objective over generations.
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The parameters of each individual neural network in the cloud are
generated by randomly perturbing the parameters of a single “par-
ent” neural network. Each pseudo-offspring neural network is then
evaluated against the objective: in the Humanoid Locomotion task,
each pseudo-offspring neural network controls the movement of a
robot, and earns a score called its fitness based on how well it walks.
The ES constructs the next parent by aggregating the parameters
of pseudo-offspring based on these fitness scores (almost like a
sophisticated form of multi-parent crossover, and also reminiscent
of stochastic finite differences). The cycle then repeats. The full
details of this technique are formalized in [10].

To take advantage of VINE, behavior characterizations (BCs)
[8] for each parent and all pseudo-offspring are recorded during
evaluation. Here, a BC can be any property of the agent’s behavior
when interacting with its environment. For example, in the Mujoco
Humanoid Locomotion task we simply use the agent’s final {x, y}
location as the BC, which indicates how far the agent has moved
away from the origin and to what location.

The visualization tool then maps parents and pseudo-offspring
onto 2D planes according to their BCs. For that purpose, it invokes
a graphical user interface (GUI), whose major components consist
of two types of interrelated plots: one or more pseudo-offspring
cloud plots (on separate 2D planes), and one fitness plot. Illustrated
in Figure 2, a pseudo-offspring cloud plot displays the BCs for
the parent and pseudo-offspring in the cloud for every generation,
while a fitness plot displays the parent’s fitness score curve as a
key indicator of progress over generations.

Users then interact with these plots to explore the overall trend
of the pseudo-offspring cloud as well as the individual behaviors
of any parent or pseudo-offspring over the evolutionary process:
(1) users can visualize parents, top performers, and/or the entire
pseudo-offspring cloud of any given generation, and explore the
quantitative and spatial distribution on the 2D BC plane of pseudo-
offspring with different fitness scores; (2) users can compare be-
tween generations, navigate through generations to visualize how
the parent and/or the pseudo-offspring cloud is moving on the 2D
BC plane, and how such moves relate to the fitness score curve
(as illustrated in Figure 3, a full movie clip of the moving cloud
can be generated automatically); (3) clicking on any point on the
cloud plot reveals behavioral information and the fitness score of
the corresponding pseudo-offspring.

3 ADDITIONAL USE CASES
The tool also supports advanced options and customized visualiza-
tions beyond the default features. For example, instead of just a
single final {x, y} point, the BC could instead be each agent’s full
trajectory (e.g., the concatenated {x, y} for 1,000 time steps). In that
case, where the dimensionality of the BC is above two, dimension-
ality reduction techniques (such as Principal Components Analysis
(PCA) [5] or t-Distributed Stochastic Neighbor Embedding (t-SNE)
[13]) are needed to reduce the dimensionality of BC data to 2D. Our
tool automates these dimensionality-reduction procedures.

The GUI is capable of loading multiple sets of 2D BCs (perhaps
generated through different reduction techniques) and displaying
them in simultaneous and connected cloud plots, as demonstrated
in Figure 4. This capability provides a convenient way for users to
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Figure 2: Examples of a pseudo-offspring cloud plot and a
fitness plot.

explore different BC choices and dimensionality reduction methods.
Furthermore, users can also extend the basic visualization with
customized functionality. Figure 4 exhibits one such customized
cloud plot that can display certain types of domain-specific high-
dimensional BCs (in this case, an agent’s full trajectory) together
with the corresponding reduced 2D BCs. Another example of a
customized cloud plot, in Figure 5, allows the user to replay the
agent’s deterministic or stochastic behavior that results when it
interacts with an environment.

The tool is also designed to work with domains other than loco-
motion tasks. Figure 6 demonstrates a cloud plot that visualizes ES
agents trained to play Frostbite, one of the Atari 2600 games [1],
where we use the final emulator RAM state (integer-valued vectors
of length 128 that capture all the state variables in a game) as the
BC and apply PCA to map the BC onto a 2D plane.

The plot shows that as evolution progresses, the pseudo-offspring
cloud shifts towards the left and clusters there. The ability to see the
corresponding video of each of these agents playing the game lets
us infer that each cluster corresponds to semantically meaningful
and distinct end states.
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(a) Video snapshot at Generation 81

(b) Video snapshot at Generation 116

(c) Video snapshot at Generation 397

Figure 3: Frames taken from a VINE-generated video vi-
sualizing the evolution of behaviors over generations in
Humanoid Walking. The color changes in each generation.
Within a generation, the color intensity of each pseudo-
offspring is based on the percentile of its fitness score in that
generation (aggregated into five bins). The position of each
point corresponds to the endpoint of an individual walker
(which was the BC in this example).

VINE also works seamlessly with other neuroevolution algo-
rithms such as GAs, which maintain a population of offspring over
generations. In fact, the tool works independently of any specific
neuroevolution algorithm. Users only need to slightly modify their
neuroevolution code to save the BCs they pick for their specific
problems. In the code release, we provide such modifications to our
ES and GA implementations as examples.

4 CONCLUSION
Because evolutionary methods operate over a set of points, they
present an opportunity for new types of visualization. Having im-
plemented a tool that provides visualizations we found useful, we
wanted to share it with the machine learning community so all can
benefit. As neuroevolution scales to neural networks with millions
or more connections, gaining additional insight through tools like
VINE is increasingly valuable and important for further progress.
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Figure 4: Visualizations ofmultiple 2DBCs and a high-dimensional BC alongwith a fitness plot. The three cloud plots show the
same pseudo-offspring, but with their high-dimensional BCs reduced through different dimensionality reduction techniques,
giving multiple perspectives on the space as it is searched.
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(a) Right click a pseudo-offspring to invoke nine stochastic roll-outs.

(b) Right click one of the trajectories as a result of nine roll-outs.

(c) Visualize the agent’s behavior that corresponds to the trajectory in (b).

Figure 5: Users can view videos of any agent’s deterministic and stochastic behaviors through a video pop-up (at bottom).
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Figure 6: Visualizing agents learning to play Frostbite. Each point is a 2D reduction of a high-dimensional representation of
the end-state of the game for a particular psuedo-offpsring. Users can click on any point to see the rollout of the game that
leads to this endpoint, revealing the underlying semantics of the space.
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