
Multi-objective Feature Selection for EEG Classification with
Multi-Level Parallelism on Heterogeneous CPU-GPU Clusters

Juan José Escobar∗
CITIC, University of Granada

Granada, Spain
jjescobar@ugr.es

Julio Ortega
CITIC, University of Granada

Granada, Spain
jortega@ugr.es

Antonio Francisco Díaz
CITIC, University of Granada

Granada, Spain
afdiaz@ugr.es

Jesús González
CITIC, University of Granada

Granada, Spain
jesusgonzalez@ugr.es

Miguel Damas
CITIC, University of Granada

Granada, Spain
mdamas@ugr.es

ABSTRACT
The present trend in the development of computer architectures
that offer improvements in both performance and energy efficiency
has provided clusters with interconnected nodes including multi-
ple multi-core microprocessors and accelerators. In these so-called
heterogeneous computers, the applications can take advantage of
different parallelism levels according to the characteristics of the
architectures in the platform. Thus, the applications should be
properly programmed to reach good efficiencies, not only with
respect to the achieved speedups but also taking into account the
issues related to energy consumption. In this paper we provide a
multi-objective evolutionary algorithm for feature selection in elec-
troencephalogram (EEG) classification, which can take advantage of
parallelism at multiple levels: among the CPU-GPU nodes intercon-
nected in the cluster (through message-passing), and inside these
nodes (through shared-memory thread-level parallelism in the CPU
cores, and data-level parallelism and thread-level parallelism in the
GPU). The procedure has been experimentally evaluated in perfor-
mance and energy consumption and shows statistically significant
benefits for feature selection: speedups of up to 73 requiring only a
6% of the energy consumed by the sequential code.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; • Ap-
plied computing → Bioinformatics; • Theory of computa-
tion →Massively parallel algorithms;

KEYWORDS
Parallel Programming, Heterogeneous Platform, DistributedMaster-
worker Procedure, Energy-aware Computing, Subpopulation-based
Genetic Algorithm, EEG Multi-objective Feature Selection
∗Correspondence author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208239

ACM Reference Format:
Juan José Escobar, Julio Ortega, Antonio Francisco Díaz, Jesús González,
and Miguel Damas. 2018. Multi-objective Feature Selection for EEG Classifi-
cation with Multi-Level Parallelism on Heterogeneous CPU-GPU Clusters.
In GECCO ’18 Companion: Genetic and Evolutionary Computation Confer-
ence Companion, July 15–19, 2018, Kyoto, Japan, Jennifer B. Sartor, Theo
D’Hondt, andWolfgang DeMeuter (Eds.). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3205651.3208239

1 INTRODUCTION
Evolutionary algorithms constitute useful tools to tackle many
compute-intensive problems on classification, clustering, feature
selection, and optimization. These problems are usually posed by
data mining applications [15, 16] belonging to areas of great so-
cial interest, such as bioinformatics, biomedical engineering, or
Internet of Things (IoT). In many of these applications, the embed-
ded evolutionary algorithm performs in high-dimensional spaces,
thus requiring such amount of runtime that the only way to get
solutions with enough quality in an acceptable runtime is to take ad-
vantage of the different levels of parallelism available in the present
architectures. This way, the implementation of efficient parallel evo-
lutionary algorithms constitutes an exciting and useful researching
area. Moreover, as energy-saving has become an important issue
in computer science and engineering due to economic and environ-
mental reasons, efficiency not only means good speedups but also
optimal energy consumption.

The most common computing servers available today are clus-
ters whose interconnected nodes implement Non-Uniform Memory
Access (NUMA) architectures of multi-core microprocessors and
accelerators such as Graphics Processing Units (GPUs) or Field-
Programming Gate Arrays (FPGAs). Precisely, these heterogeneous
architectures constitute the current answer of the technology to
the requirements of computational power and energy consumption
efficiency [4, 14, 17]. The GPU usually provide massive Data-Level
Parallelism (DLP) along with Thread-Level Parallelism (TLP), which
can also be used through multi-core microprocessors (or CPU) im-
plementing Instruction-Level Parallelism (ILP). Moreover, besides
offering opportunities to execute efficient parallel codes, the het-
erogeneous architectures which include CPU and GPU cores could
also constitute an efficient approach for energy-saving, and papers
such as [14] consider the efficient cooperation of CPU and GPU as
an important concern to reach exascale performances.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan José Escobar et al.

This way, the development of energy-performance efficient codes
for heterogeneous CPU-GPU systems needs to address hardware
and software issues related with the cooperation among CPU-GPU
nodes [22], along with challenges involved in CPU-GPU hetero-
geneous computing. Among those, we have the size of CPU and
GPU memories, the CPU-GPU memory bandwidth limitations, the
load balancing among the CPU and GPU cores, the overlapping of
data transfer with CPU and GPU computation, and the parallelism
profile of the application considered. This paper proposes a new
evolutionary multi-objective procedure for feature selection in EEG
classification [19]. With respect to our previously proposed parallel
procedures on this application [5, 8], that dynamically distribute the
evaluation of individuals among both CPU and GPU cores besides
taking advantage of the data parallelism available in GPUs, our con-
tribution in this paper deals with a Message Passing Interface (MPI)
extension of those parallel heterogeneous CPU-GPU procedures.
This way, using multiple CPU-GPU nodes connected in clusters
would allow higher speedups. Moreover, and as in [5], we also eval-
uate the power-performance of the proposed procedure. Despite
the relevance of energy-saving issues, apart from [9] that compares
the energy consumption of a sequential evolutionary algorithm in
different platforms, there are not many papers that analyze parallel
evolutionary algorithms according to their energy consumption.

In the paper, after this introduction, a brief presentation of the ap-
plication on multi-objective feature selection for EEG classification
on Brain Computer Interface (BCI) is given in Section 2. Follow-
ing that, Section 3 describes the here proposed parallel multi-level
subpopulation-based procedure for evolutionary multi-objective
feature selection, and Section 4 summarizes the previous related
work in the area. Finally, the analysis of the experimental work and
the conclusions are respectively provided in Sections 5 and 6.

2 MULTI-OBJECTIVE FEATURE SELECTION
This paper tackles Multi-Objective Feature Selection (MOFS) in
unsupervised classification of patterns characterized by a high
number of features. Multi-objective optimization can be applied to
data mining applications, and its benefits in both supervised and
unsupervised classification have been reported elsewhere [11]. The
most relevant features should be selected in order to get good clas-
sification performance besides decreasing the computational cost
of the classification, among others. Due to the NP-hard complexity
of this kind of applications, it is necessary to use parallel meta-
heuristics that are capable of reducing running time and energy
consumed by the algorithm. This way, here we propose the use of
heterogeneous parallel architectures to implement them.

A multi-objective evolutionary procedure, in our case the NSGA-
II algorithm, evolves one or multiple subpopulations of individuals
that codify different feature selections (details in [8]). Each individ-
ual performs a K-means algorithm to evaluate its multi-objective
fitness, which is composed by two cost functions, f1 and f2, and
defined according to two Clustering Validation Indices (CVIs) [1],
which correspond to the minimization and maximization of the
intra-cluster and the inter-cluster distances, respectively, as it is
shown in Equations (1) and (2), where |Ct (j)| is the number of
patterns in the cluster Ct (j)(j = 1, ..,W) whose centroid is Kt (j),
and ∥Pi − Kt (j)∥ is the Euclidean distance between the pattern Pi

and the centroid Kt (j). Considering the characteristics of K-means
and the evaluation of the cost functions, f1 and f2, the K-means
complexity for each individual can be summarized in Equation (3).

f1 = 1 − ©«
W∑
j=1

1
|Ct (j)|

·
©«

∑
Pi ∈C t (j)

∥Pi − K
t (j)∥

ª®¬ª®¬ (1)

f2 =
W −1∑
j=1
·
©«
∑
i>j
∥Kt (i) − Kt (j)∥

ª®¬ (2)

TK−means =W · NP ·TDist +TW +
(
NP +W

2
)
·TDist (3)

beingTDist the computation of the distance between a pattern and
a centroid, and TW the time required to obtain the new centroids,
which depends on the number of patterns, NP , and the number of
features, NF . The expression

(
NP +W

2) ·TDist estimates the cost
to compute the two objective functions, f1 and f2. The previous
equations, corresponding to the multi-objective feature selection
can be parallelized by a master-worker approach that distributes
the evaluation of individuals. In what follows, we present some
details about the implementation of this parallel model in CPU-GPU
heterogeneous clusters.

3 MULTI-LEVEL PARALLELISM FOR MOFS
The proposed parallel procedure for multi-objective feature selec-
tion (Algorithms 1 and 2) takes advantage of up to four parallelism
levels depending on the OpenCL [12] devices used to evaluate the
fitness of the individuals. The main advantage of dividing paral-
lelism into multiple levels (or layers), is that, at a given time, a
particular level can be optimized without depending on the imple-
mentation of the rest since each level is hierarchized. The following
subsections detail the characteristics of each level according to its
implementation and optimization. Figure 1 summarizes all proce-
dure steps, starting with the initial distribution of subpopulations
in the master node, and ending with the fitness evaluation of each
individual in the remaining nodes (workers).

3.1 First Level: Distribution of subpopulations
by nodes

The first parallelism level corresponds to a master-worker approach
which uses MPI, allowing dynamic distribution of the initial subpop-
ulations over the different workers used in the cluster. We employ
this approach instead of a static distribution to avoid unbalanced
work. Firstly, observing Algorithm 1, the master (MPI process with
rank number 0) reads the configuration files, obtains the centroids
from dataset DS , and initializes the individuals of the subpopula-
tions (lines 2-3). At this point, master and workers (the other MPI
processes) are synchronized and are ready to start the MPI section.

This way, the master broadcasts the centroids to all workers
(lines 4-6), which are necessary to perform the K-means algorithm.
Then, the distribution of subpopulations to be evolved and the
global migration are repeated as many times as the number of
global migrations, NGm , have been defined (lines 7-17). The master
asynchronously begins to attend the requests of each worker, dy-
namically distributing subpopulations until there is no more work
to do (lines 9-15). Now, the master proceeds to perform the global

MOFS for EEG Classification with Multi-level Parallelism on Het. Clusters GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

=
1

()

Level 4 (K-means)

Yes

SMX2

Core1 Core2 CoreP

Subpopulations?

Subpopulations scheduling

No

Individuals scheduling

Level 2

(Distribution by devices)

SMX1 SMXP

Level 3 (Distribution by SMXs/cores)

= { , , … , } = { , , … , }

… … ?…… ?

End?

Final

recombination

Node 1

2x CPU

1x GPU

Node 2

1x CPU

1x GPU

Node 3

2x CPU

1x GPU

Master
Process 0

P
ro

ce
ss

 1

Process 2

P
ro

ce
ss 3

End?

Final

recombination

Node 1

2x CPU

1x GPU

Node 2

1x CPU

1x GPU

Node 3

2x CPU

1x GPU

Master
Process 00

P
ro

ce
ss

 1

Process 2

P
ro

ce
ss 3

WA

WA

Level 1

(Distribution by nodes)

Copy

onto device

Fitness
evaluation

Non-dominated

sorting

Replace

subpopulation

Crossover &

mutation

Dataset, DS, and

centroids

D2S_NSGA-II

Pre-processing and

data copying onto

OpenCL devices
O

p
e

n
M

P
 t

h
re

a
d

s

Local immigration every X iterations

Worker

Algorithm

Fitness evaluation

OpenCL

Work-items

N
P

p
a

tt
e

rn
s

N
F

features

Centroid assignment

= : () < () (= 1,… ,)

Centroid update

WA

Figure 1: General scheme of the evolutionary procedure, which provides a multi-level parallelism up to 4 levels depending on
the OpenCL devices used to evaluate the fitness of the individuals

migration (line 16) between all NSpop subpopulations to improve
their diversity, increasing the quality of the solutions and trying to
avoid the local optima. A global migration implies to build a new
set of subpopulations. To define a new subpopulation, the given set
of solutions in the subpopulation receives solutions from the rest of
subpopulations. More specifically, each subpopulation contributes
with half of its solutions in its present Pareto’s front at most.

Once all NSpop subpopulations have been evolved, and all NGm
global migrations have been completed, the master sends the signal
(END_SIGNAL) to the workers to notify that there are no more
subpopulations to be evolved and the MPI section has ended (line
18). Moreover, the solutions obtained by the different subpopula-
tions are recombined by the master (lines 19-20) to perform the
final subpopulation, which includes the best individuals of each
subpopulation belonging to the Pareto’s front. Finally, the solution
obtained is returned to the main function.

3.2 Second Level: Distribution of individuals or
subpopulations by OpenCL devices

While the master process schedules the distribution of subpopu-
lations, the workers (Algorithm 2) perform all steps of the evolu-
tionary procedure for each subpopulation. To do that, each worker
requests to the master as many subpopulations as ND OpenCL
devices are present in the node (line 6). However, the number of
subpopulations received, Spl , could be lower than ND if there are
not enough subpopulations available to be evolved, as it is shown

in line 7. Previously, after starting the MPI section, the OpenCL
devices must be initialized, and then copy the necessary data for
the evolutionary process, such as the centroids received from the
master, K , and the DS dataset, as can be seen in lines 2-4.

The evolutionary procedure executed by the worker represents
a slight improvement of the parallel multi-objective evolutionary
algorithm based on subpopulations, D2S_NSGAII (Dynamic Dis-
tribution of Subpopulations using NSGA-II), which was already
discussed in [5]. In the OpenMP [18] section, as many CPU threads
as subpopulations received, rcv ≤ ND , are created through the cor-
responding OpenMP pragma to parallelize the evolutionary steps
(lines 9-15), which are repeated according to the required number
of subpopulation generations. This way, each subpopulation, Spli ,
is assigned to one of these CPU threads, which manage and execute
the evolutionary operators for their corresponding subpopulation
(crossover and mutation in line 10, and replacement in lines 12-14).
However, the evaluation of individuals (evaluation function in
line 11) may be executed either on the free CPU cores or on other
accelerators, depending on whether the CPU thread associated with
Spli manages the CPU or not.

To summarize, this constitutes the second level of parallelism
because the subpopulations received by the workers are assigned
to the available OpenCL devices, either CPU itself or other devices.
However, as the workers will not require more work to the master
until their ND subpopulations have been computed, we think that
this strategy may cause load imbalance since the OpenCL devices

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan José Escobar et al.

Algorithm 1: Pseudocode of the distributed master algo-
rithm. The subpopulations are distributed by the master
among all worker nodes. Each worker requests the same
quantity of subpopulations as OpenCL devices are available
1 Function Master(Sp,NSpop ,M,DS)

Input : Initial subpopulations, Spi ;∀i = 1, ...,NSpop
Input :Number of subpopulations, NSpop , to evolve
Input :Number of individuals in the subpopulation,M
Input :Set DS : NP training patterns of NF features
Input :Number of workers, NW
Output :hv , the hypervolume metric

// W centroids randomly chosen from DS

2 K ← getCentroids(DS)

3 Sp ← initSubpopulations(Sp)

// Start MPI section

4 repeat

5 K → sendCentroids(K)

6 until K has been sent to all NW workers;
7 repeat

// Dynamic distribution of subpopulations

8 RemaininдWork ← NSpop

9 repeat

10 SR ← The worker requests SR subpopulations
11 sent ← min(RemaininдWork, SR)

12 Sp → The master sends sent subpopulations
13 RemaininдWork ← RemaininдWork − sent

14 Sp ← The master receives sent subpopulations

15 until all NSpop subpopulations are evaluated;

16 Sp ← globalMigration(Sp,NSpop ,M)

17 until all NGm global migrations are completed;

// End MPI section

18 END_SIGNAL→ send the signal to all NW workers

// Recombination process

19 Sp ← nonDomSorting(Sp,NSpop ·M)

20 S ← Copy the firstM individuals of Sp
21 hv ← zitzlerHypervolume(S)

22 return hv

23 End

are not homogeneous, being this imbalance even greater when
their computing capabilities differ in great magnitude. Normally
some devices will finish their work before others, causing idle time
for the most powerful devices, and thus, not only an increase in
energy consumption but also a reduction in the acceleration of
the algorithm. We are aware of its importance, and therefore, in
future work, we will study possible improvements that avoid load
imbalance, such as a previous analysis of the computing capacity of
each device to assign more work to those that are more powerful,

Algorithm 2: Pseudocode of the worker algorithm. The
received subpopulations from the master are distributed
among the OpenCL devices. If only one subpopulation has
been received, its individuals are dynamically assigned to
all devices to perform the fitness evaluation
1 Function Worker(M,DS,ND)

Input :Number of individuals in the subpopulation,M
Input :Dataset DS : NP training patterns of NF features
Input :Number of OpenCL devices, ND

// Start MPI section

2 K ← receiveCentroids()

3 D ← initOpenCLDevices(ND)

4 D ← Copy DS and K to the OpenCL devices

5 repeat

// As many subpopulations as ND devices

6 ND → The worker requests ND subpopulations
7 Spl ← The worker receives rcv subpopulations

8 repeat

/* Start OpenMP section with rcv CPU
threads and ND OpenCL devices
(D2S_NSGA-II algorithm) */

9 repeat

10 Oi ← UniformCrossover(Spli)

11 Oi ← evaluation(Oi ,M,DS,K ,D,ND)

// Replacement process

12 Auxi ← Join Spi and Oi in one array
13 Auxi ← nonDomSorting(Auxi , size(Auxi))

14 Spli ← Copy the firstM individuals of Auxi
15 until the number of generations, д, is reached;

// End OpenMP section

16 Spl ← localMigration(Spl , rcv,M)

17 until all NLm local migrations are completed;

18 Spl → The worker returns rcv subpopulations

19 until the END_SIGNAL is received;

20 End

or modify the clock frequency of the cores to match the running
time of the devices, allowing better performance and energy-saving
by eliminating the idle time.

On the other hand, if the worker receives only one subpopu-
lation, rcv = 1, and one OpenMP thread is created, the second
parallelism level is preserved because the evaluation function
detects this situation and dynamically distributes individuals of
that subpopulation among all OpenCL devices. Thus, two dynamic
scheduling alternatives for evaluation of individuals are present.
Figure 1 illustrates more clearly this situation. The local migration
is carried out in the same way the master performs the global mi-
gration, but among subpopulations that belong to the same worker

MOFS for EEG Classification with Multi-level Parallelism on Het. Clusters GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

(line 16). The D2S_NSGAII algorithm and the local migration are re-
peated as many times as the number of local migrations, NLm , have
been established. Once the whole process is finished, the worker
proceeds to return to the master the Spl subpopulations already
evolved (line 18) and waits for the assignment of more work (sub-
populations), or the END_SIGNAL signal (line 19), implying that
all NGm global migrations have been carried out by the master, and
thus, the workers can return.

3.3 Third and Fourth Level: Distribution of
individuals by SMXs or CPU cores and GPU
Data Parallelism

The third and fourth parallelism levels occurwithin the evaluation
function (line 11 of Algorithm 2). Regardless of whether one or mul-
tiple subpopulations have to be evaluated, the third level works with
individuals by launching OpenCL kernels to perform the fitness
evaluation, as was proposed in [6], and optimized and analyzed in
[7, 8]. Each device distributes individuals on their computing units,
which can be CPU cores or Streaming Multiprocessors (SMXs), in
case of GPUs. In both alternatives, just before calling the kernel,
the individuals to be evaluated must be transferred to the devices.

As has been said in Section 2, the fitness evaluation is carried
out by applying a K-means algorithm over each individual. In CPU,
since each individual is assigned to one core, K-means is sequen-
tially executed within of that core. On the contrary, in GPU, due
to each SMX is composed by multiple CUDA cores (work-items
in the OpenCL nomenclature), the data parallelism available in
K-means allows the parallelization of the assignment and updating
of centroids (see Figure 1), which constitutes the fourth (and last)
parallelism level. We are aware that data parallelism is also possible
in the CPU cores taking into account the usually available vector-
ization instructions. It would allow efficient use of the architecture
although, for simplicity, this remains as future work.

4 RELATEDWORK
A relatively high number of contributions on parallel implementa-
tions of evolutionary algorithms considering CPU-GPU platforms
can be found in the literature. Nevertheless, most of them do not
completely exploit the CPU-GPU computing power as they usually
tend to take advantage of thread and data parallelism available in
GPU and only use one CPU thread to control the GPU activity [22].

Different approaches for GPU-based implementations of evolu-
tionary algorithms are analysed in [13]. Some of them propose to
implement all or the most of the steps of the evolutionary algorithm
in GPU to decrease the cost of transferring information between
CPU and GPU. In general, for an evolutionary algorithm, as the
evaluation of fitness can be independently done for each individ-
ual in the population, this step is usually implemented in parallel.
Nevertheless, other steps, such as the application of evolutionary
operators, require interaction among individuals, thus involving
some kind of synchronization among the computing elements. This
way, two main researching lines can be distinguished among the
proposals on a GPU implementation of evolutionary algorithms, i.e.
a parallel implementation that shows the same behaviour than the
sequential one, and the implementation of an evolutionary parallel
algorithm tuned to the features of the GPU architecture. However,

its characteristics could be different from those of the correspond-
ing sequential algorithm. In this last alternative, an analysis of the
suitability of the attained solutions should be done.

Paper [20] describes a CUDA implementation of a parallel genetic
algorithm based on an island model. This paper is an example of the
approaches that modify the evolutionary algorithm to reach a more
suitable version for the available GPU architecture and resources.
An alternative GPU implementation of the non-dominance rank
used in NSGA-II, the Archived-based Stochastic Ranking Evolution-
ary Algorithm (ASREA), is provided in [21]. Paper [23] provides
a parallel GPU implementation of a multi-objective evolutionary
algorithm for a data mining application on marketing that predicts
potential prospects from records of customers. This approach ex-
ecutes all steps of an NSGA-II algorithm in GPU except for the
non-dominated selection, for which a fast procedure is proposed,
and the non-dominated sort.

There are not many approaches using the CPU and GPU cores as
resources that can be equally considered to distribute the workload
of the optimization procedure. Paper [22] proposes a methodology
to solve optimization problems in heterogeneous CPU-GPU archi-
tectures that benefit from both CPU and GPU cores, and points
out the usefulness of further researching on this approach. Our
procedure includes an evolutionary multi-objective optimization
and a clustering algorithm applied to a set of high-dimensional
patterns. Although the use of heterogeneous architectures includ-
ing parallel data architectures such as GPUs has been proposed in
previous papers, the parallelization on a heterogeneous platform
of a whole data mining application with the characteristics of our
target application is less frequent. Paper [10] analyses the effect
of factors such as the communication patterns and the data par-
tition on the performance of data mining applications, and in [3]
a parallel multi-objective evolutionary procedure using MPI on
only one platform is described. Our approach takes advantage of
heterogeneous clusters including multiple CPU-GPU nodes and
distributes the workload among both CPU and GPU cores of the
nodes to speed up the application thus also allowing energy-saving.

5 EXPERIMENTAL RESULTS
In this section, we analyse the performance of our C++ codes,
compiled with mpic++ (GCC 4.8.5), running on Linux CentOS 7.4
operating system, in a cluster which contains four NUMA nodes
connected by Gigabit Ethernet, each of them with 32 GB of DDR3
memory. One node (the front-end node), is dedicated to the master
process, which is running on one CPU core, and also runs the
sequential code. The characteristics of the OpenCL devices used
in the other three nodes are as follows: Node 1 has two Intel Xeon
E5-2620 v2 processors at 2.1 GHz (12/24 cores/threads) and a GPU
Nvidia Tesla K20c with 5 GB of global memory, and 2,496 CUDA
cores distributed into 13 SMXs. Nodes 2 and 3 are comprised of
one GPU Nvidia Tesla K40m with 12 GB of global memory, and
2,880 CUDA cores distributed into 15 SMXs. On the other hand,
nodes 2 and 3 contain, respectively, one and two Intel Xeon E5-
2620 v4 processors at 2.1 GHz, thus comprising 8/16, and 16/32
cores/threads. Also, to perform the data parallelism of K-means
algorithm in GPU, each SMX schedules 1024 work-items. In our
experiments, we have used three datasets from the BCI Laboratory

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan José Escobar et al.

1−S 1−P 2−S 2−P 4−S 4−P 6−S 6−P 12−S 12−P 16−S 16−P 32−S 32−P
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Number of subpopulations − Execution mode

H
y
p

e
rv

o
lu

m
e

Figure 2: (a) Hypervolume results of the (S)equential and
(P)arallel execution modes

at the University of Essex and described in [2]. They correspond
to subjects coded as 104, 107 and 110, and each include 178 EEG
patterns with 3,600 features per pattern. However, we only show
the results for dataset 110 due to their similar results.

The implemented NSGA-II algorithm uses a uniform crossover
with a probability of 0.75, mutation by inversion of the selected
bit with a probability of 0.025, and selection by a binary tourna-
ment. The maximum value of the cost functions f1 = f2 = 1.0, and
the hypervolume metric is calculated according to the Zitzler algo-
rithm [24, 25], which uses (0,0) as the reference point, and thus, the
maximum value is hv = 1.0. We have evaluated 3,840 individuals
distributed into 1, 2, 4, 6, 12, 16, and 32 subpopulations, along 150
generations, including one local migration every 10 generations,
and one global migration every 30 generations, and thus, a total of
5 global migrations and 15 local migrations.

The instantaneous power and energy consumption of the four
nodes of our cluster have been measured by a watt-meter we have
developed based on Arduino Mega. It provides, in real time, four
measures per second for each node of our platform corresponding
to the instantaneous power (in Watts) and the cumulated consumed
energy (inW · h) of the whole node. We do not measure the instan-
taneous power and energy consumed by the switch (in a future
version of our watt-meter we will introduce a new sensor for this
purpose) but we have checked that the instantaneous power is
below 5 W. This way, it supposes a relatively low percentage of the
instantaneous power and energy consumption in the nodes, and
does not affect our conclusions.

Figure 2 provides the hypervolume obtained by the sequential
and parallel modes for different subpopulations. It can be seen
that the sequential and parallel modes provide hypervolumes quite
near to the maximum value, 1.0, without significant differences
among subpopulations and sequential/parallel modes. Moreover,
it does not seem to be a trend in the variation of the means of the
hypervolumes when the number of subpopulations changes. The
values for 1 and 32 subpopulations in the parallel mode seem to be
lower but the differences are not significant.

The improvement provided by the parallel mode with respect to
runtime is shown in Figure 3. Figures 3.a and 3.b show the boxplots
of runtimes for the sequential and parallel modes, respectively. In
the sequential mode (Figure 3.a), although the changes can not be
considered very significant, the runtime decreases when the number
of subpopulations up to 4 and grows from 4 to 32 subpopulations.

It has to be taking into account that in the sequential mode, one
thread executes all code. As a subpopulation has fewer individuals
is faster to compute a generation of the subpopulation, but there
are more subpopulations (given a population with a fixed number
of individuals), and the cooperation among these subpopulations
also has to be processed. It seems that there is a trade-off among
these two opposed trends for 4 subpopulations. In the parallel mode
(Figure 3.b), except for 2 subpopulations, it is observed a decrease
in runtime as more subpopulations are used. The differences are
significant in all cases although between 1 and 4, 6 and 12 and 16 and
32 subpopulations are less important. The apparently anomalous
behaviour observed for 2 subpopulations is related with the way
that the subpopulations are assigned to the different nodes: as there
are two OpenCL devices per node (see Figure 1), and the workload is
distributed regarding subpopulations, only one of the nodes works
when we have 2 subpopulations. The high decrease of runtime
shown for more than 6 subpopulations can be explained by taking
into account that from this number of subpopulations the three
nodes of the platform are used (plus one CPU core of the front-
end), giving a total of 37 CPU cores and 43 SMXs. In case of 4
subpopulations, only two nodes (besides the core of the front-end)
work in the parallel code.

Figure 3.c shows the mean speedup achieved by the parallel alter-
native with respect to the corresponding sequential implementation.
The speedup grows as more subpopulations are used except in case
of 2 subpopulations whose behaviour can be understood from the
runtime of Figures 3.a and 3.b. The maximum speedup is obtained
for 32 subpopulations and is higher than 70 thanks to the benefit
obtained from the achieved thread and data parallelism. Figures 4
and 5 correspond to energy consumption and instantaneous power
of our sequential and parallel codes. Figures 4.a and 4.b give the
energy consumed by, respectively, sequential and parallel codes.
The shape of the boxplots shown in Figures 4.a and 4.b are similar
to, respectively, those of Figures 3.a and 3.b (it has to take into
account that the energy consumption depends on the product of
power and execution time). The differences in energy consumption
across subpopulations are quite similar to the sequential codes al-
though a not quite significant reduction in energy consumption
is shown for moderate numbers of subpopulations. The shape of
energy consumption of parallel codes in Figure 4.b is also similar
to the corresponding parallel runtimes shown in Figure 3.b.

Figure 4.c shows the rate of the mean energy consumed by the
parallel code with respect to the corresponding sequential code. As
can be seen, even in the worst case (2 subpopulations), the parallel
code consumes only a 12% of the energy required by the sequential
code, and thus, allows important energy-savings. We have obtained
the best energy consumption in case of 32 subpopulations (less than
6% of the mean energy consumed by the sequential codes). From
Figures 3.c and 4.c it is clear that parallel processing constitutes a
valuable alternative not only to reduce runtime but also to decrease
energy consumption, and thus opens interesting opportunities to
improve the performance of evolutionary computation.

Figure 5 gives information about the evolution of the instanta-
neous power. Figure 5.a corresponds to the power consumption
of the different nodes in the platform for the parallel code using
32 subpopulations. It is clear that the platform is heterogeneous
because the maxima values of the curves change with the node.

MOFS for EEG Classification with Multi-level Parallelism on Het. Clusters GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

1 2 4 6 12 16 32
1.55

1.575

1.6

1.625

1.65

1.675

1.7
x 10

4

Number of subpopulations

T
im

e
 (

s
)

(a)

1 2 4 6 12 16 32

250

300

350

400

450

500

Number of subpopulations
T

im
e

 (
s
)

(b)

1 2 4 6 12 16 32
0

10

20

30

40

50

60

70

80

Number of subpopulations

S
p

e
e

d
u

p

(c)

Figure 3: Performance evaluation when increasing the number of subpopulations: (a) and (b) Running time of sequential and
parallel modes, respectively; (c) Speedup achieved with respect to the sequential mode

1 2 4 6 12 16 32

720

730

740

750

760

770

780

790

800

810

Number of subpopulations

E
n

e
rg

y
 (

W
 ·

 h
)

(a)

1 2 4 6 12 16 32

45

50

55

60

65

70

75

80

85

Number of subpopulations

E
n

e
rg

y
 (

W
 ·

 h
)

(b)

1 2 4 6 12 16 32
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of subpopulations

(P
a

ra
lle

l
e

n
e

rg
y
)

/
(S

e
q

u
e

n
ti
a

l
e

n
e

rg
y
)

(c)

Figure 4: Energy evaluation when increasing the number of subpopulations; (a) and (b) Energy consumed by sequential and
parallel modes, respectively; (c) Energy rate required by the parallel mode with respect to the corresponding sequential mode

Moreover, the changes in the power for different phases of the evo-
lutionary algorithm are also apparent. For example, the falls in the
instantaneous power of the 5 communications done among nodes.
Figure 5.b provides the evolution of the instantaneous power of all
nodes in the platform using 4, 16 and 32 subpopulations. From these
curves is also apparent the fall in the instantaneous power due to
the reduction in the activity of the cores in case of communication.

6 CONCLUSIONS
A procedure for multi-objective feature selection in EEG classifi-
cation for BCI task has been parallelized to take advantage of het-
erogeneous clusters whose nodes include CPU and GPU cores. The
corresponding code uses the MPI, OpenMP and OpenCL libraries to
implement message-passing and shared-memory communication
and benefit from thread-level and data-level parallelism across the
cluster nodes, and their CPU and GPU cores.

The experimental results show that the proposed parallel ap-
proach for evolutionary multi-objective optimization is able not
only to accelerate the execution runtime but also energy-saving
with respect to a sequential implementation. Thus, speedups of
more than 70 have been achieved requiring only about a 6% of
energy consumed by the corresponding sequential code.

New studies could be useful to complete the experimental analy-
sis of new alternatives and experimental situations. Although the
instantaneous peak power for the switch is below 10% of the in-
stantaneous power measured in the nodes, a detailed analysis of
the energy consumption devoted to communications is also inter-
esting. This way, an analysis about the possible trade-off of energy
consumption and speedup according to the workload distribution
among nodes and their cores could be done. Moreover, a more
detailed study of the effect of the different steps of the parallel
evolutionary algorithm in the instantaneous power would also be
interesting to devise strategies for energy-efficient programming.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Juan José Escobar et al.

0 40 80 120 160 200 240
60

80

100

120

140

160

180

200

220

240

260

Time (s)

In
s
ta

n
ta

n
e
o
u
s
 p

o
w

e
r

(W
)

Front−end

Node 0

Node 1

Node 2

(a)

0 50 100 150 200 250 300 350 400 450
300

400

500

600

700

800

Time (s)

In
s
ta

n
ta

n
e
o
u
s
 p

o
w

e
r

(W
)

4 subpopulations

16 subpopulations

32 subpopulations

(b)

Figure 5: Temporal evolution of the instantaneous power: (a) All nodes per separate, 32 subpopulations; (b) Total instantaneous
power of all nodes, using a different number of subpopulations

ACKNOWLEDGMENTS
Work funded by project TIN2015-67020-P (Spanish “Ministerio de
Economía y Competitividad” and ERDF funds). We would like to
thank the BCI laboratory of the University of Essex, especially prof.
John Q. Gan, for allowing us to use their databases.

REFERENCES
[1] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J.M. Pérez, and I. Perona. 2013. An

Extensive Comparative Study of Cluster Validity Indices. Pattern Recognition 46,
1 (2013), 243–256. https://doi.org/10.1016/j.patcog.2012.07.021

[2] J. Asensio-Cubero, J.Q. Gan, and R. Palaniappan. 2013. Multiresolution Analysis
over Simple Graphs for Brain Computer Interfaces. Journal of Neural Engineering
10, 4 (2013), 21–26. https://doi.org/10.1088/1741-2560/10/4/046014

[3] C.A. Coello Coello and M. Sierra. 2004. A Study of the Parallelization of a
Coevolutionary Multi-objective Evolutionary Algorithm. In Proceedings of the 3rd
Mexican International Conference on Artificial Intelligence (MICAI’2004). Springer,
Mexico City, Mexico, 688–697. https://doi.org/10.1007/978-3-540-24694-7_71

[4] P. Collet. 2013. Why GPGPUs for Evolutionary Computation? In Massively
Parallel Evolutionary Computation on GPGPUs, S. Tsutsui and P. Collet (Eds.).
Springer, 3–14. https://doi.org/10.1007/978-3-642-37959-8_1

[5] J.J. Escobar, J. Ortega, A.F. Díaz, J. González, and M. Damas. 2017. Power-
Performance Evaluation of Parallel Multi-objective EEG Feature Selection on
CPU-GPU Platforms. In Proceedings of the 17th International Conference on Algo-
rithms and Architectures for Parallel Processing (ICA3PP’2017). Springer, Helsinki,
Finland, 580–590. https://doi.org/10.1007/978-3-319-65482-9_43

[6] J.J. Escobar, J. Ortega, J. González, and M. Damas. 2016. Assessing Parallel Het-
erogeneous Computer Architectures for Multiobjective Feature Selection on EEG
Classification. In Proceedings of the 4th International Conference on Bioinformatics
and Biomedical Engineering (IWBBIO’2016), F. Ortuño and I. Rojas (Eds.). Springer,
Granada, Spain, 277–289. https://doi.org/10.1007/978-3-319-31744-1_25

[7] J.J. Escobar, J. Ortega, J. González, and M. Damas. 2016. Improving Memory
Accesses for Heterogeneous Parallel Multi-objective Feature Selection on EEG
Classification. In Proceedings of the 4th International Workshop on Parallelism in
Bioinformatics (PBIO’2016). Springer, Grenoble, France, 372–383. https://doi.org/
10.1007/978-3-319-58943-5_30

[8] J.J. Escobar, J. Ortega, J. González, M. Damas, and A.F. Díaz. 2017. Parallel high-
dimensional multi-objective feature selection for EEG classification with dynamic
workload balancing on CPU-GPU. Cluster Computing 20, 3 (2017), 1881–1897.
https://doi.org/10.1007/s10586-017-0980-7

[9] F. Fernández-de-Vega, F. Chávez, J. Díaz, J.A. García, P.A. Castillo, J.J. Merelo,
and C. Cotta. 2016. A Cross-Platform Assessment of Energy Consumption in
Evolutionary Algorithms. In Proceedings of the 14th International Conference
on Parallel Problem Solving from Nature (PPSN’2016). Springer, Edinburgh, UK,
548–557. https://doi.org/10.1007/978-3-319-45823-6_51

[10] A. Gainaru, E. Slusanschi, and S. Trausan-Matu. 2011. Mapping Data Mining Al-
gorithms on a GPU Architecture: A Study. In Proceedings of the 19th International
Symposium. Foundations of Intelligent Systems (ISMIS’2011), M. Kryszkiewicz,
H. Rybinski, A. Skowron, and Z-W. Raś (Eds.). Springer, Warsaw, Poland, 102–112.
https://doi.org/10.1007/978-3-642-21916-0_12

[11] J. Handl and J. Knowles. 2006. Feature Subset Selection in Unsupervised Learn-
ing via Multiobjective Optimization. International Journal of Computational
Intelligence Research 2, 3 (2006), 217–238.

[12] Khronos Group. 2015. Khronos OpenCL Registry. https://www.khronos.org/
registry/cl/. (2015). Accessed: 2015-11-30.

[13] T.V. Luong, N. Melab, and E-G. Talbi. 2010. GPU-based Island Model for Evolu-
tionary Algorithms. In Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO’2010). ACM, Portland, OR, USA, 1089–1096.
https://doi.org/10.1145/1830483.1830685

[14] S. Mittal and J.S Vetter. 2015. A Survey of CPU-GPU Heterogeneous Computing
Techniques. Comput. Surveys 47, 4 (2015), 69:1–69:35. https://doi.org/10.1145/
2788396

[15] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C.A. Coello Coello. 2014. A
Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I. IEEE
Transactions on Evolutionary Computation 18, 1 (2014), 4–19. https://doi.org/10.
1109/TEVC.2013.2290086

[16] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C.A. Coello Coello. 2014.
A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part II.
IEEE Transactions on Evolutionary Computation 18, 1 (2014), 20–35. https://doi.
org/10.1109/TEVC.2013.2290082

[17] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou. 2017. A Survey of
Power and Energy Predictive Models in HPC Systems and Applications. Comput.
Surveys 50, 3 (2017), 37:1–37:38. https://doi.org/10.1145/3078811

[18] OpenMP Community. Accessed: 2016-11-21. OpenMP specifications. http://
www.openmp.org/specifications/. (Accessed: 2016-11-21).

[19] J. Ortega, J. Asensio-Cubero, J.Q. Gan, and A. Ortiz. 2016. Classification of motor
imagery tasks for BCI with multiresolution analysis and multiobjective feature
selection. BioMedical Engineering OnLine 15, 1 (2016), 73. https://doi.org/10.1186/
s12938-016-0178-x

[20] P. Pospichal, J. Jaros, and J. Schwarz. 2010. Parallel Genetic Algorithm on the
CUDAArchitecture. In Proceedings of the 13th European Conference on the Applica-
tions of Evolutionary Computation (EvoApplications’2010), C. Di Chio, S. Cagnoni,
C. Cotta, M. Ebner, A. Ekárt, A.I. Esparcia-Alcazar, C-K. Goh, J.J. Merelo, F. Neri,
M. PreuSS, J. Togelius, and G.N. Yannakakis (Eds.). Springer, Istambul, Turkey,
442–451. https://doi.org/10.1007/978-3-642-12239-2_46

[21] D. Sharma and P. Collet. 2013. Implementation Techniques for Massively Parallel
Multi-objective Optimization. In Massively Parallel Evolutionary Computation
on GPGPUs, S. Tsutsui and P. Collet (Eds.). Springer, 267–286. https://doi.org/10.
1007/978-3-642-37959-8_13

[22] P. Vidal, E. Alba, and F. Luna. 2017. Solving Optimization Problems Using a
Hybrid Systolic Search on GPU Plus CPU. Soft Computing 21, 12 (2017), 3227–
3245. https://doi.org/10.1007/s00500-015-2005-x

[23] M.L. Wong and G. Cui. 2013. Data Mining Using Parallel Multi-objective Evolu-
tionary Algorithms on Graphics Processing Units. InMassively Parallel Evolution-
ary Computation on GPGPUs, S. Tsutsui and P. Collet (Eds.). Springer, 287–307.
https://doi.org/10.1007/978-3-642-37959-8_14

[24] E. Zitzler. 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. Shaker Verlag Germany.

[25] E. Zitzler and L. Thiele. 1998. Multiobjective Optimization Using Evolutionary
Algorithms - A Comparative Case Study. In Proceedings of the 5th International
Conference on Parallel Problem Solving fromNature (PPSNV). Springer, Amsterdam,
The Netherlands, 292–301. https://doi.org/10.1007/BFb0056872

