Guide

1 About the program

This program provides a subpopulation-based evolutionary algorithm with multi-level parallelism to take advantage of
parallel architectures involving multicore CPUs and multiple GPUs for accelerating an electroencephalogram (EEG)
feature selection problem. The procedure has been mainly developed with MPI to distribute subpopulations among the
nodes of the cluster. In each node, two scheduling alternatives for evaluation of individuals according to the number of
received subpopulations (one or more), have been implemented. Moreover, inside of each node, OpenMP is used to
distribute dynamically either subpopulations or individuals among devices and OpenCL to evaluate the individuals
taking into account the devices characteristics, providing three parallelism levels in CPU and up to four levels in GPU.

2 Program compilation and use of parameters

There is a Makefile file to build the project. Running the following order in a Unix shell the program will compile:

make -j N_FEATURES=NF COMP=COMPILER

Where NF is the number of features to use (columns) of the database, which must be between 4 and the total number of
features of the database. Variable COMP set the MPI compiler (mpic++ by default). The executable file, named
hpmoon will be generated in the “bin” folder. For running it, in the shell the next order must be executed:

mpirun --host nodel,node2 —map by node ./bin/hpmoon —conf config.xml

Where config.xml is the necessary configuration file for the correct performance of the program, specified by the —conf
option and located in the root folder of the project.

In addition, the user can indicate separately through line arguments the most of setting of the XML file. Table 1
summarizes the list of parameters and their possible values, and how to use them in the line of arguments. In any case,
the special option -h displays the available options and examples of use.

The option “—map by node” is mandatory because is necessary to guarantee that the MPI processes and the nodes are
mapped. In the XML configuration file, the information of the OpenCL devices for each node is ordered according to
the MPI process id.

On the other hand, the Makefile file contains a rule to generate Doxygen documentation in the "doc/html" folder. This
can be done by running the following command:

make documentation

Finally, the files and documents generated when compiling the project can be deleted. There are two types of cleaning
depending on the content to be deleted. The command:

make clean
Deletes the following contents:

e Binary files.
o .ofiles.
o ~files.

For a complete cleaning, run the following command:

make eraseAll

Which will remove the same content as the previous command and also the following content:

e gnuplot files.
e Documentation files generated by Doxygen.

gnuplot files contain the fitness of the individuals in the first Pareto front and the necessary source code for the gnuplot
program. If the user would generate a graph using gnuplot and the source code generated by the program, it will also be
deleted when using this command.

3 The XML configuration file

The XML configuration file is required to run the program. The parameters of the XML file are read and used at
runtime while the parameter used in the make command is read and used at compile time to avoid dynamic memory.
The parameters are:

NSubpopulations is the total number of subpopulations (only for islands-based model).

SubpopulationSize is the number of individuals of the subpopulation.

NInstances is the number of instances to use (rows) of the database.

DataBaseFileName is the name of the file containing the database.

NGlobalMigrations is the number of migrations of individuals between subpopulations of different nodes.

NLocalMigrations is the number of migrations of individuals between subpopulations of the same node.

NGenerations is the number of evolves of a subpopulation (generations of individuals).

MaxFeatures is the maximum number of features initially set to "1".

DataFileName is the name of the file which will contain the fitness of the individuals in the first Pareto’s

front.

e PlotFileName is the name of the file which will contain the gnuplot code for data display.

e ImageFileName is the name of the file which will contain the image data (graphic) after using the gnuplot
command to generate it.

e TournamentSize is the number of individuals competing in the tournament.

e NDevices is the number of OpenCL devices that will run the program in a specific node. Set to "0" to run in
sequential mode.

o Devices specify the names of the OpenCL devices that will run the program in a specific node. The values
must be separated by commas.

e ComputeUnits specify the compute units for each previous OpenCL device that will run the program. The
values must be separated by commas too and in the same order than their corresponding devices.

o WilLocal specify the number of work-items (threads) per compute unit for each previous OpenCL device
that will run the program. The values must be separated by commas too and in the same order than their
corresponding devices.

o KernelsFileName is the name of the file containing the kernels with the OpenCL code.

The following table summarizes the restrictions of input parameters. The parameters passed to the make command are
shown in uppercase. In lowercase, the parameters found in the XML configuration file.

PARAMETER RANGE OPTION
N_FEATURES 4 <= NF <= Number of features of the DB -
NSubpopulations 1<=NP -ns
SubpopulationSize 4<=PS -SS
NInstances 4 <= NI <= Number of instances of the DB -ni
DataBaseFileName - -db
NGlobalMigrations 1<=NM -ngm
NLocalMigrations 1<=NM -nlm
NGenerations 0<=NG -8

MaxFeatures 1 <= MaxF -maxf

DataFileName - -plotdata
PlotFileName - -plotsrc
ImageFileName - -plotimg
TournamentSize 2<=TS -ts
NDevices 0<=ND -nd
KernelsFileName - -ke
Display usage - -h

List OpenCL devices - |

4 Open

The followi

1)

2)

3)

4)

5)

Table 1. It shows the range of values of the input parameters and how to use them from the arguments line.
CL optimization and limitations. MPI and OpenMP use

ng points should be considered to obtain good performance when running the program:

The evaluation function for each individual has been parallelized with OpenCL. A compute unit is formed
by WiLocal work-items and evaluates only one individual. Therefore, in GPUs, WilLocal should be a
multiple of 32 or 64 according to the device for improve the performance. The user can approximate the
optimal value of WiLocal and ComputeUnits. The value is calculated as the number of stream processor or
CUDA cores divided by the number of compute units. For example, the Nvidia GeForce GTX 770 has 1536
CUDA cores and 8 compute units, so 1536/8 = 192 local work-items, but sometimes it is better to increase
this value, for example, 256, 512 or 1024 according to special cases. In the case of 256 work-items, WiLocal
= 256 and ComputeUnits = 8, comprising in total of 256 * 8 = 2048 work-items. The best combination is
determined by the characteristics of the problem.

In CPUs, ComputeUnits should have a value equal to the number of compute units (logical cores) and
WilLocal must be set to “1”. If another value is specified, it will be ignored.

The sort function according to the Pareto’s front, nonDominationSort contains one loop of quadratic order
and is related to the number of individuals. For good quality results it is not necessary to increase the
number of individuals too. It’s better to increase the number of iterations of the program (number of
generations), or the number of subpopulations.

On GPU, the program gets better performance with values of N_FEATURES and Ninstances higher than the
number of local work-items. However, the database is stored in local memory and their capacity is very
limited (approximately 49 KB depending on the device). So the program will abort if the database is too big.
If multiple devices are specified, and only one subpopulation is present in the node, the evaluation of the
individuals is distributed dynamically among the OpenCL devices using OpenMP. Each OpenMP thread
handles one device. This way, each device is independent and compute chunks of individuals equals to its
number of compute units until all individuals are evaluated.

To run the executable, at least two MPI processes are necessary. One for the master thread (MPI process 0),
which distributes the subpopulations among the available workers (nodes) and the rest of processes for the
workers (MPI processes 1, 2, ...).

