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ABSTRACT

The irst event of the Black-Box Discrete Optimization Benchmark-

ing (BB-DOB) workshop series aims to establish a set of example

problems for benchmarking black-box optimization algorithms for

discrete or combinatorial domains. In this paper, we 1) discuss

important features that should be embodied by these benchmark

functions and 2) present theW-Model problem which exhibits them.

The W-Model follows a layered approach, where each layer can ei-

ther be omitted or introduce a diferent characteristic feature such

as neutrality via redundancy, ruggedness and deceptiveness, epis-

tasis, and multi-objectivity, in a tunable way. The model problem is

deined over bit string representations, which allows for extracting

some of its layers and stacking them on top of existing problems

that use this representation, such as OneMax, the Maximum Sat-

isiability or the Set Covering tasks, and the NK landscape. The

ruggedness and deceptiveness layer can be stacked on top of any

problem with integer-valued objectives. We put theW-Model into

the context of related model problems targeting ruggedness, neu-

trality, and epistasis. We then present the results of a series of

experiments to further substantiate the utility of the W-Model and

to give an idea about suitable conigurations of it that could be

included in the BB-DOB benchmark suite.
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1 INTRODUCTION

The aim of the irst Black-Box Discrete Optimization Benchmarking

Workshop (BB-DOB@GECCO) workshop is to develop a standard

methodology and problem set for the benchmarking of black-box

optimization algorithms for discrete and combinatorial domains.

With this paper, we make two contributions to this end:

(1) The goal of benchmarking is to get a complete picture of

the strengths and weaknesses of optimization methods. We

discuss a set of important problem features, which there-

fore should be represented in the set of BB-DOB benchmark

problems.

(2) We then propose the W-Model problem, which can simulate

these features in a layered, tunable way, for inclusion into

the BB-DOB benchmark set. The layers of this model can also

easily be combined with classical optimization problems.

Many real-world optimization tasks can be solved very ei-

ciently with metaheuristics like Stochastic Local Search [17] and

Evolutionary Algorithms (EAs) [44]. However, some frequently

occurring problem characteristics cause diiculties for such algo-

rithms [45, 48]. Some of the most important features that inluence

the problem hardness are ruggedness, neutrality, and deceptiveness

in the itness landscape as well as one of their causes, epistasis.

The hardness of a problem further increases with the number of

involved objective functions. In real applications, the inluence of

these features on the optimization process and their interactions

with each other are often a priori unknown and complicated to

measure.

A comprehensive set of benchmark functions for discrete optimiza-

tion should include problems which exhibit these features in diferent

strengths and in diferent combinations.

Many classical problems from operations research such as the

Traveling Salesman Problem (TSP) [6, 46] or the Maximum Satis-

iability Problem [1, 16] are not necessarily good choices for this

purpose. One reason for this is that the hardness of these problems

usually does not depend only on the łobvious” problem parameters

such as the number of cities, clauses, or decision variables. An in-

stance of the TSP, for example, is not necessarily hard just because

it has a large number of cities. Regardless how many cities it has, if

https://doi.org/10.1145/3205651.3208240
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they could be arranged in a circle or equidistant grid, we can easily

ind the optimal solution. For many classical problems, complex

statistics need to be computed in order to get an impression on

whether a problem instance will be hard before trying to solve

it [27].

The requirements that a good problem for the BB-DOB bench-

mark set should meet can be divided into non-functional aspects

that increases its usability and functional properties which allow it

to produce scientiically interesting results [11]. Let us irst deine

the non-functional requirements:

(1) The objective function(s) should

(a) have known ranges and

(b) be easy and fast to compute.

(2) The optimal solutions should be known.

(3) A standard representation from the discrete domain should

be used, such as bit strings or permutations.

(4) It should be possible to

• create both easy and hard problem instances at small scales

of the problem and

• derive a problem instance entirely and deterministically

derived from its parameters.

Having a fast-to-compute objective function with a known range

and being able to represent diferent degrees of hardness within

small-scale problems will allow to conduct many experiments in a

short time as well as storing and processing candidate solutions in

an eicient way. If the range of the objective value and the optimum

are known, we have both easy ways to determine success or failure

as well as to compare the performance on problems of diferent

scale/range, because we can normalize the objective values.

The last requirement aims at increasing the reproducibility of

experiments, which is currently a hot topic [18]. In the combinato-

rial domain problem instances are often speciied in form of text

iles following certain formats, requiring a researcher to both have

the paper and the problem instance iles described in it. The latter

one is not needed if our requirement is met.

Besides such features which increase the ease of use of the model,

it should have the following properties from a łfunctional” (re-

search) perspective:

(1) It should be well-motivated from the theoretical perspective

and allow establish connections to results already existing

in theoretical research or be theoretically tractable in way

that allows new theoretical results.

(2) Its itness landscape should exhibit features that are chal-

lenging for common metaheuristics, such as those discussed

at the beginning of this introduction.

(3) Ideally, it should be possible to tune these features and study

them both separately and in combination.

(4) The hardness of the problem should be determined directly

by tunable parameters.

A benchmark problem meeting these requirements would be highly

suitable for experiments, as it would allow researchers to discover

and compare the mutual strengths and weaknesses of their algo-

rithms. In this paper, we present W-Model, a tunable benchmark

model which fulills all the above functional and non-functional

requirements. This problem, proposed in its original form by Weise

et al. [47], allows for studying several characteristic itness land-

scape features in a tunable way. It can be tackled both with ixed-

length and variable-length bit string representations either in a

single- or a multi-objective variant.

A problem proposed for the BB-DOB benchmark set should

further meet the following availability criteria:

(1) It should be speciied fully and reproducibly in the submitted

paper.

(2) A reference implementation in one of the major program-

ming languages should be provided as open source software

on a publicly-available repository.

(3) Comprehensive utilities should provided to show that the

reference implementation is equivalent to the deinition in

the paper and to allow for testing whether an alternate im-

plementation fulills the problem speciication.

(4) Example experiments and results should be available.

We provide an open source reference implementation of the model

in Java at http://github.com/thomasWeise/BBDOB_W_Model, in-

cluding unit tests that allow for verifying the correctness of (pos-

sibly diferent) model implementations, an automatic experiment

parallel execution environment, and an example experiment setup

with some simple metaheuristics applied to theW-Model. We sug-

gest that a set of conigurations of this problem into the black-box

discrete optimization benchmark suite.

In the following text, we irst discuss features that can make an

optimization problem hard together with their representation in the

W-Model in Section 2. We then analyze the related work, i.e., bench-

mark problems which try to model (subsets of) similar features in

Section 3. We then conduct an experimental study showing that

theW-Model suitable to simulate arbitrary complex optimization

problems correctly in Section 4. In 5, we summarize our research

on the model.

2 DIFFICULT FEATURES AND MODEL
DEFINITION

The W-Model deined by Weise et al. [44, 47] possesses tunable

neutrality and redundancy, ruggedness and deceptiveness, epistasis,

and multi-objectivity features. It is divided in distinct layers as

sketched in Figure 1. These layers correspond to a step-by-step

transformation of a bit string x to the objective value(s).

The baseline of the model problem is to ind a bit string x⋆ =

0101010101010 . . . 01 of a predeined length n consisting of alter-

nating zeros and ones.

This setup is very similar to the OneMax problem. While the

goal of the OneMax problem is to ind a bit string x of minimal

Hamming distance h(x ,x⋆
OM
) to x⋆

OM
= (1111. . . ), the goal un-

der the W-Model is to minimize the Hamming distance h(x ,x⋆)

to x⋆ = (0101. . . ), as sketched in layer 5 of Figure 1. It can

be expected that the extensive body of research on the OneMax

problem [2, 9, 28, 40] would carry over to the baseline version of

the W-Model problem. This objective function can be computed in

O (n).

While suitable for the search space of bit strings of length n,

search spaces of variable-length bit strings can be facilitated as

follows: Overly long strings are cut of after index n and the value

http://github.com/thomasWeise/BBDOB_W_Model
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Figure 1: An example evaluation of a candidate solution for

the W-Model.

n − l(x) is added to the objective values for strings x whose length

l(x) is too short (l(x) < n).

2.1 Neutrality (layer 2)

The application of a search operator is neutral if it yields no change

in objective space [7, 37]. It is challenging for optimization algo-

rithms if the best candidate solution currently known is situated on

a plane of the itness landscape, i.e., if all adjacent solutions have

the same objective values. The optimization algorithm then cannot

ind any gradient information1 and thus there is no direction into

which to proceed in a systematic manner. From the black-box point

of view, each search operation will yield identical results.

Researchers in the late 1990s and early 2000s hoped that neu-

trality could increase the łevolvability” in an optimization process

and may hence lead to better performance [7, 39, 41]. However,

other works indicate that there may not be an advantage in ran-

dom redundancy [23, 38], so especially uniform redundancy should

1The term łgradient” is a concept from continuous domains and we adopt it in a very
loose way to discrete domains as a compact way of stating łdirection in the search
space where the objective values change (ideally improve).”

always be avoided in representation design ś but testing its impact

may show how the optimization algorithms can deal with problems

where redundancy is unavoidable.

A well-deined amount of neutrality can be generated in the W-

Model through uniform redundancy in the search space, as sketched

in layer 2 of 1. We therefore apply a trivial transformation uµ that

shortens the original bit string x by an integer factor µ ∈ 1. . .n. The

ith bit in uµ (x) is deined as 0 if and only if the majority of the µ

bits starting at locus i · µ in x is also 0, and as 1 otherwise. The

default value 1 set in draw situations has (in average) no efect on

the itness, because the target solution x⋆ is deined as a sequence

of alternating zeros and ones. If the length l(x) of the bit string x

is not a multiple of µ, the remaining l(x) mod µ bits are ignored. If

µ = 1, no neutrality as introduced. This transformation could be

plugged on top of any bit-string based optimization problem and

requires O (nµ) steps.

2.2 Epistasis (layer 3)

According to Lush [4, 26], the interaction between biological genes

is epistatic if the efect on the itness from altering one gene depends

on the allelic state of other genes. Transposed to optimization, two

decision variables (here: bits) can be said to interact epistatically,

if the contribution of one of these variables to the objective value

depends on the value of the other variable [4, 12, 31, 44].

Explicit epistasis is introduced in theW-Model as second trans-

formation after the neutrality layer [44, 48]. A bijective function eν
is deined, which translates a bit string x of length ν to a bit string

eν (x) of the same length in O
(
ν2
)
steps. Assume that we have two

bit strings x1 and x2 which only difer in one single location, i.e.,

their Hamming distance h(x1,x2) is one. eν leads to epistasis by

exhibiting the following property:

h(x1,x2) = 1⇒ h(eν (x1), eν (x2)) ≥ ν − 1 ∀x1,x2 ∈ {0, 1}
ν (1)

Themeaning of Equation 1 is that a change of one bit in a bit string x

leads to the change of at leastν−1 bits in the correspondingmapping

eν (x). This, as well as the demand for bijectivity, is provided if we

deine eν as in Equation 2, where we use both the binary and the

two’s complement natural number representation of the string x

for simplicity:

eν (x) =




eν (x)[i] =
⊗

x [j]
∀ j∈N0:0≤j<ν ,
j,(i−1) mod ν

∀ x : 0 ≤ x < 2ν−1

eν (x − 2ν−1) otherwise

(2)

In other words, for all strings c ∈ {0, 1}ν which have the most

signiicant bit (MSB) not set, the eν transformation is performed

bitwise. The ith bit in eν (x) equals the exclusive-or combination of

all but one bit in x . Hence, each bit in x inluences the value of ν − 1

bits in eν (x). For all strings x with 1 in the MSB, eν (x) is simply

set to the negated eν transformation of x with the MSB cleared

(the value of the MSB is 2ν−1). This diferentiation in e is needed in

order to ensure its bijectiveness for even ν .

Bit strings of arbitrary length can be divided into consecutive

blocks of the length ν and each of them is transformed separately

with eν . If the length l(x) of a given bit string x is no multiple of

ν , the remaining l(x) mod ν bits at the end will be transformed
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Figure 2: An example for the epistasis mapping z → e4(z).

with the function el (x ) mod ν instead of eν , as outlined in layer 3 of

Figure 1.

The tunable parameter ν for the epistasis ranges from 2 to n

leading to a complexity between O (n) and O
(
n2

)
. Ifm objective

functions are speciied (see next section), the string length grows to

n ·m and so does the valid range for ν . If ν is set to a value smaller

than 3, no additional epistasis is introduced. Figure 2 outlines the

mapping for ν = 4.

This setup means that the interacting variables are all adjacent,

which may or may not be a feature present in real-world problems.

This property allows operations like single-point crossover to be

functional. One could increase the hardness by irst exchanging all

bits according to a ixed permutation, which should be randomly

selected before the experiment. Here we vote against this measure,

since black-box optimization algorithms should not make assump-

tions about the relationship of decision variables based on their

location in the representation anyway.

Besides the explicit epistasis introduced here, implicit epistasis

can occur through the neutrality and ruggedness (see 2.4) mappings.

To the best of our knowledge, it may not be possible to study these

three efects completely separately, but with our model, well-dosed

degrees of epistasis, neutrality, and ruggedness can separately or

jointly generated. Of course, this epistasis transformation can again

be plugged on top of any problem using binary string representa-

tions.

2.3 Multi-Objectivity (layer 4)

Many optimization problems are multi-objective, i.e., involve multi-

ple, possible conlicting criteria [10, 13, 14]. A task withm objective

functions is created in the originalW-Model by interleavingm in-

stances of the benchmark problem with each other and deining

separate objective functions for each of them.

Instead of just dividing the candidate solution x inm blocks of

length n, each standing for one objective, we scatter the objectives

as illustrated in layer 4 of Figure 1. There, the bits for the irst

objective function comprise x1 = (x [0],x [m],x [2m], . . . ), those used

by the second objective x2 = (x [1],x [m+1],x [2m+1], . . . ).

If a variable-length representation is used, superluous bits (be-

yond the index range 0. . .nm − 1) are ignored. If x is too short, the

missing bits in the phenotypes are replaced with the complement

from x⋆, i.e., if one objective misses the last bit (index n − 1), it

is padded with x⋆[n−1] which will worsen the objective by 1 on

average.

No bit in x is used in more than one objective, so the optimization

goals are orthogonal and unrelated. The objective functions of the

W-Model will begin to conlict if epistasis (ν > 2) is applied. Chang-

ing one bit in the candidate solution will then change the outcome

of at most min{ν ,m} objectives. Some of them may improve while

others may worsen.

2.4 Ruggedness and Deceptiveness (layer 6)

It is a general rule for representation design that it should exhibit

(strong) causality [34, 35]. Small search steps should lead to small

changes in the objective values. In rugged itness landscapes, this

is not the case: small changes in a candidate solution often cause

large changes in its objective values. This makes it harder for an

optimization algorithm to ind and climb a gradient in objective

space. Hand in handwith ruggedness goes deceptiveness. A region of

the itness landscape is deceptive if performing a gradient descend

does not lead towards the optimal solution but instead away from

it.

There are two (possibly interacting) sources of ruggedness and

deceptiveness in a itness landscape. The irst one is the epistasis

already modeled, since it generally violates causality. The other

concerns the objective functions themselves, it lies in the nature of

a problem. We introduce this type of ruggedness and deceptiveness

a posteriori as a permutation r of the values from 0 to n which is

applied to the objective values.

In an objective function with low total variation, the objective

values of the neighboring candidate solutions are also neighboring.

In the W-Model without epistasis (ν ≤ 2), for instance, two solu-

tions difering in one bit will also difer by one in their objective

values. We can write down the list of objective values the candidate

solutions will take on if they would bit-wise be improved from

the worst to the best possible coniguration as (n,n − 1, . . . , 2, 1, 0).

Exchanging two of the values in this list will create some artiicial

ruggedness. A measure for the ruggedness of such a permutation r

is ∆(r ) =
∑n−1
i=0 |ri − ri+1 |.

The original sequence of objective values has the minimum value

n and the maximum possible value is ∆̂ =
n(n+1)

2 . We can deine

permutations rγ ′ which are applied after the objective values are

computed and which have the following features:

(1) They are bijective (since they are permutations).

(2) They must preserve the optimal value, i.e., rγ ′[0] = 0.

(3) ∆(rγ ′) = n + γ
′.

With γ ′ ∈ 0. . . (∆̂ − n), we can ine-tune the ruggedness. For γ ′ = 0,

no ruggedness is introduced. For a given n, the permutations rγ ′

can be produced with the function permutate in Algorithm 1.

Algorithm 1 consists of two parts. permutate constructs permu-

tations with increasing ruggedness measure γ ′. As shown in [47]

and Figure 3, using this transformation alone may lead to very de-

ceptive problems at moderate levels of γ ′. Hence, the permutations

are re-arranged irst using a second function translate, which

ensures that the problem hardness smoothly increases from easy

to rugged to deceptive and create permutations rγ .

To illustrate this, all ruggedness permutations rγ for an objec-

tive function deined over bit strings of length ive (i.e., which can

range from 0 to n = 5) are shown in Figure 3. As can be seen,

the permutations scramble the objective function more and more

with rising γ and reduce its gradient information, before produc-

ing gradients which actually point away from the optimum. The

ruggedness transformation is sketched in layer 6 of Figure 1.
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Figure 3: An example of the rγ permutations produced by Algorithm 1 for γ = 0..10 and q = 5.

3 RELATED WORK

We now discuss problems based on ixed-length bit string repre-

sentations which were deined in order to investigate problematic

features such those discussed in the previous section.

In the late 1980s, Kaufman [20] deined the maybe most promi-

nent member of this problem class, the NK landscape [20ś22], a

family of objective functions with tunable epistasis. We exemplar-

ily describe it with slightly more details to give an impression

of the general concept according to which such problems can be

constructed. Each of the N bits xi in a candidate solution of the

NK landscape contributes one real value fNK,i : {0, 1}
K+1 7→ [0, 1]

to the objective function fNK . fNK,i is determined the value of xi
and the values of K other bits xi1 ,xi2 , . . . ,xiK called the neighbors

of xi , i.e., we get

fNK (x) =
1

N

N∑

i=1

fNK,i
(
xi ,xi1 ,xi2 , . . . ,xiK

)
(3)

Whenever the value of a bit changes, all the contributions of the

bits to whose neighbor set it belongs will change too ś to values

uncorrelated to their previous state. While N describes the basic

problem complexity, the intensity of this epistatic efect can be

controlled with the parameter K : If K = 0, there is no epistasis

at all. For K = N − 1 the epistasis is maximized and the itness

contribution of each gene depends on all other genes.

Weise [44] discusses a variety on research work analyzing the

NK landscape, which did not allow modeling features such as neu-

trality or multi-objectivity ś capabilities provided by the W-Model.

Meanwhile, multi-objectivity is introduced in theMNK landscapes [3,

42]. It should be noted that the W-Model would allow using an

(M)NK landscape on top of its neutrality transformation or in con-

junction with the multi-objectivity mapping as a replacement of its

epistasis and ruggedness transformations. The problems devised

by Barnett [7], Geard et al. [15], Newman and Engelhardt [32] and

Lobo et al. [24] can similarly be integrated into the W-Model. They

extend theNK landscapeswith neutrality features, which then could

be studied together in the context of multi-objective optimization.

The same holds for the p-spin model developed by Amitrano et al.

[5], which can be considered as an alternative to the NK itness

landscape for tunable ruggedness [43].

The Royal Road functions developed by Mitchell et al. [29] are a

set of special itness landscapes for GAs. Platel et al. [36] combined

them with Kaufman’s NK landscapes and introduced the Epistatic

Road. This landscape is signiicantly harder to construct and to tune

thanW-Model and ś like the other related works ś also has fewer

capabilities.

TheND family of itness landscapes has been developed by Beau-

doin et al. [8] in order to provide a model problem with tunable

neutrality. It also features deceptiveness via the internal use of trap

functions. Yet, it cannot model multi-objectivity, ruggedness, or

epistasis.

In [25], Lochtefeld and Ciarallo present an extension of the orig-

inal version of the W-Model. Their TOP model aims to provide a

more ine-grained objective convolution mechanism and it also ap-

plies two levels of ruggedness transformations. This extension has

successfully been used to explore the relationship of problematic

landscape features are related to the performance of multiobjec-

tivization via helper objectives.

4 EXPERIMENTAL RESULTS

In order to verify whether this model suitably represents the fea-

tures discussed, we have performed a comprehensive set of exper-

iments [33] from which we will list the most signiicant results.

These experiments were done in the framework of a Bachelor’s

thesis and are partially unpublished. They are based on an older

implementation of the model and the variable-length representa-

tion (which we do not recommend for usage in BB-DOB), but can

serve here to illustrate the features of our model problem.

In these experiments, we applied a standard multi-objective ge-

netic algorithm with population size 1000, single-point crossover,

single-bit mutation, and a variable-length bit string genome with

a maximum string length of 8000 bits. In each test, we applied a

non-functional objective minimizing the length of the strings. We

suggest using these settings as default setup for all experiments

involving our model in order to keep the results comparable. Fur-

thermore, we have used tournament selection with tournament size

5 and Pareto ranking for itness assignment. For each setting, at

least 50 runs have been performed.

In the experiments, we distinguished between success and per-

fection. Success means inding individuals x of optimal functional

itness, i.e., f (x) = 0. Multiple such successful strings may exist,

since superluous bits at the end of genotypes do not inluence

their functional objective. The perfect string x⋆ has no such useless

bits, it is the shortest possible solution with f = 0 and, hence, also

optimal in the non-functional length criterion. We refer to the num-

ber of generations needed to ind a successful individual as success

generations s and to those needed to ind the perfect solution as

perfection generations p.
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Figure 4: Experimental Results

4.1 The Basic Problem

In Figure 4a, we illustrate the basic problem complexity. The mini-

mum, average, and maximum success generations š , s , and ŝ mea-

sured rise almost linearly after the basic problem parameter n has

exceeded 300 bits. The average perfection generations p are much

higher and rise faster, indicating that trimming down a solution to

the minimum length is a complicated process.

4.2 Ruggedness

As outlined in Section 2.4, the number of ruggedness permutations

r depends on the maximum objective values. Hence, it changes with

the basic problem complexity. Furthermore, with the r permutation

algorithms, also deceptive itness landscapes will be created [47].

For visualization purposes, a scale from 0 to 10 for ruggedness and

for deceptiveness were used in [33], separating and ordering the

two characteristics.

In Figure 4b, the average generations needed for inding a suc-

cessful individual have been plotted against the basic problem com-

plexity n and the ruggedness according to this scale. Apart from

a few peaks in the diagram occurring for n > 70, the problem

hardness, as expected, increases very fast with the ruggedness.

4.3 Neutrality

The redundancy-based neutrality in our model exhibits a rather

interesting behavior illustrated in 4c. Until a degree of µ ≈ 10, the

problems rapidly gets harder. From there on, a further increase of

µ only leads to a very slow increase in hardness. The reason for

this behavior is rooted in the crossover operations. If crossover is

present, it seemingly plays no role whether 10, 20, or even more

bits of the genotype determine the single phenotypic bits. To prove

this, the experiments were repeated with lower crossover rates.

Then, s increases much faster and also becomes unsolvable (in

1000 generations) very early. For the BB-DOB benchmark suite, we

suggest using values µ ∈ 1. . .4.

4.4 Epistasis

The behavior of the epistasis model component is as interesting

as that of the neutrality layer. Figure 4d shows that the problem

complexity steeply increases with rising values of ν . This becomes

even more obvious when comparing with Figure 4e, where the

number of experimental runs (out of 100) are plotted that were not

able to ind a successful individual up to the 1000-generation limit.

Both graphs, however, have also deep incisions at locations where

ν takes on values of the form 2+ 4v : v ∈ N. Such epistasis settings

lead to signiicantly easier problems, which can be explained by

the nature of the epistatic mapping eν ś it decreases the Hamming

distance of elements x1,x2 which have originallyh(x1,x2) = ν/2 for

such values [33]. For inclusion in the BB-DOB benchmark suite, we

therefore suggest to only use ν values that are not such multiples.

4.5 Epistasis and Neutrality

The usefulness of ourmodel problem stands and falls with the ability

to combine the diferent features introduced in Section 2. Therefore,

we ran multiple test experiments with a ixed problem size n = 80.

One of them was to check how the epistasis and neutrality interact

in the model. Therefore, we have simply added up the previous two

experiments (sketched in Figure 4f) and compared these łexpected

s” with results from real experiments with the same parameter

settings. The results, depicted in Figure 4g, meet the expectations

almost exactly in terms of the problem structure, while exhibiting

an almost constant quantitative ofset of about 100 generations.

4.6 Epistasis and Ruggedness

In Figure 4h, we have plotted an experiment series which combines

ruggedness and epistasis. The outcomes of these experiments are

very similar to the expected results when adding up Figure 4b and

Figure 4d forn = 80. A rising ruggedness component leads, however,

to over-proportional increases in s . This may be due to epistasis

making optimization complicated because it leads to ruggedness

in the itness landscape. By introducing additional ruggedness in

the objective functions (which is what we are doing in this series),

resonance like ish tailing seems to result.
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5 CONCLUSIONS AND FUTUREWORK

In this paper, we have discussed requirements that a good bench-

mark problem for the BB-DOB suite should exhibit. On the func-

tional side, the benchmark problem should allow investigating

diferent itness landscape features separately and in combination.

Then, researchers can explore the mutual advantages and disad-

vantages of their algorithms. Non-functional requirements such

as low complexity, ease of understanding, and easy replication of

experiments should increase the usability of the problem.

We showed that the W-Model meets all of these requirements.

We provide a Java implementation of this model problem at http:

//github.com/thomasWeise/BBDOB_W_Model along with unit test

for verifying other implementations, an automated parallel experi-

mentation environment, and example experiments.

We then presented some results from experiments with theW-

Model problem [33, 47]. We have shown that our model is not only

simple and easily tangible from a theoretical point of view, but also

exhibits a behavior which meets our expectations in experiments.

We suggest to apply a set of speciic single-objective, ixed-length

representation settings of the model problem in the framework of

the BB-DOB benchmark suite. While we are still researching good

settings for the model parameters, we, for now, propose using

(1) a selection of values of n ranging from 10 to 64,

(2) all values of µ ∈ 1. . .3,

(3) values of ν which are not of the form 2 + 4v and are close to

2 + ((n − 2) · i/10) for i ∈ 0. . .10 together with powers of 2

and 10, and

(4) values of γ which are in n(n − 1) · i/20 for all i ∈ 0. . .10

together with powers of 2 and 10.

These settings should lead to a set of well-reproducible problems

that cover a wide range of diiculties, from very easy (i.e., OneMax)

to highly epistatic and rugged landscapes with neutral plateaus.

We believe that establishing the W-Model as component of the

BB-DOB benchmark can help researchers to evaluate optimization

algorithms in diferent situations in an unbiased manner.

We thank the reviewers for pointing out that classical hardness

measures on whichW-Model is conceptually built are known to not

be perfect and potentially misleading [19, 30]. Hence, more research

is necessary and one part of our future work is to learn more about

the impact of the model settings on the optimization process. By

conducting further experiments, we will attempt to collect more

empiric data on how the features of the itness landscape inluence

the success probability of optimization.
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Algorithm 1: rγ ←− build_permutation(γ ,n)

This algorithm is a corrected version compared to [44, 47].

Input: n: the maximum objective value

Input: γ : the γ value for tuning the ruggedness, with

γ ∈ 0. . . 12n(n − 1) value

Data: i, j,k : counter variables

Data: start ,max ,upper : computed values

Data: γ ′: the translated version of γ

Output: rγ : the permutation rγ for re-arranging objective

values

1 begin

2 return permutate(translate(γ ),n)

3 sub-algorithm r ←− permutate(γ ′,n)

4 r ←− allocate integer array of length n + 1

5 max ←−
⌊
1
2n(n − 1)

⌋

6 if γ ′ ≤ 0 then start ←− 0

7 else start ←− n − 1 −

⌊
1
2 +

√
1
4 + 2(max − γ ′)

⌋

8 k ←− 0

9 for j ←− 1 up to start − 1 do

10 if j is odd then r [j]←− n − k

11 else

12 k ←− k + 1

13 r [j]←− k

14 for j ←− start up to n do

15 k ←− k + 1

16 if start is odd then r [j]←− n − k

17 else r [j]←− k

18 upper ←− (γ ′ −max) + 1
2 (n − start − 1)(n − start)

19 j ←− start

20 for i ←− 1 up to upper do

21 j ←− j − 1

22 swap r [j] and r [n]

23 return r

24 sub-algorithm γ ′ ←− translate(γ ,n)

25 if γ ≤ 0 then return 0

26 l ←−
n(n−1)

2

27 i ←−
⌊
n
2

⌋
·
⌊
n+1
2

⌋

28 if γ ≤ i then

29 j ←−

⌊
n+2
2 −

√
n2

4 + 1 − γ

⌋

30 k ←− γ − j (n + 2) + j2 + n

31 return k + 2
(
j (n + 2) − j2 − n

)
− j

32 else

33 j ←−

⌊
(n mod 2)+1

2 +

√
1−(n mod 2)

4 + γ − 1 − i

⌋

34 k ←− γ − (j − (n mod 2)) (j − 1) − 1 − i

35 return l − k − 2j2 + j − (n mod 2) (−2j + 1)
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