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ABSTRACT
This paper explains the process of integrating ACS2 algorithm with
the standardised framework for comparing reinforcement learning
tasks -OpenAI Gym. The new Python library is introduced alongside
with standard environments derived from LCS literature. Typical
use cases enabling quick evaluation of di�erent research problems
are described.
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1 INTRODUCTION
This paper describes the process of integrating Anticipatory Clas-
si�er Systems, which is a learning algorithm based on Learning
Classi�er Sytems (LCS) and psychological learning mechanism of
"Anticipatory Behavioral Control" withOpenAI Gym interface, which
is a toolkit used for comparing and evaluating reinforcement learn-
ing algorithms. Such integration makes it possible to create and
reuse previously declared environments (employing a uni�ed inter-
face) and enables conducting modern reproducible research in LCS
realm.

Section 2 describes the OpenAI project and its Gym framework.
Part 3 provides a quick recap of the ACS2 algorithm. Section 4
summarises environments in which ACS2 can operate. Two of them
(Maze and Boolean Multiplexer) were created from scratch, and
the other two (Go game and FrozenLake) are existing OpenAI Gym
implementation. Section 5 describes the process of re-implementing
ACS2 in Python language (new PyALCS open-source package), that
is later applied in following chapter 6. Some universal integration
use-cases are presented followed by experiments results in section
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7. Finally, section 8 summarises the paper and o�ers some ideas for
future work.

2 OPENAI
OpenAI1 is non-pro�t AI research company with a mission to
build safe AGI (arti�cial general intelligence). It aims to collaborate
with other institutions and researchers by making its patents and
research open to the public.

It was founded in 2015 by Elon Musk and Sam Altman with the
intention of mitigating the risk of possible "intelligence explosion",
that is believed to happen someday with advanced AI.

2.1 OpenAI Gym
OpenAI Gym is a toolkit for creating and comparing reinforcement
learning algorithms [1]. It provides an open-source interface devel-
oped in Python (more languages will be available soon) for de�ning
environments the agents (term used to describe algorithms) will be
interacting with.

There are already a vast amount of prede�ned environments
ranging from algorithmic problems, board games to 3D simulations
of games such as Doom. The literature describes them as partially
observable Markov decision processes (POMDP), which are general
enough to model real-world sequential decision processes.

Creation of own environment was also simpli�ed - each onemust
initialise speci�c properties and implement required interface meth-
ods. Most importantly it should declare the action space (agent’s
possible moves) and the observation space (agent’s perception in
given state) that can be either discrete or continuous.

The agent interacts with the environment using two primary
operations - observing current state (quanti�ed information about
perceived surroundings) and taking action. Taking action executes
given movement inside environment, returning to a user informa-
tion about new state, reward obtained, information whether the
episode was �nished, and optionally some debug data.

Algorithms operating within OpenAI Gym are trained episod-
ically, which means that their experience is broken down into a
series of episodes. In each one agent’s state is reinitialised, and
the interaction with the environment proceeds until it reaches a
terminal state. The overall goal is to maximise the expectation of
total reward per episode and to achieve a high level of performance
in as few episodes as possible.

Authors of the library paid particular attention to environment
versioning. To assure reproducibility and enable evolution or mod-
i�cation of environment a speci�c version number accompanies
each one’s name.

1https://openai.com/
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Alongside the software library, there is a website2 where users
can �nd scoreboards for each environment, showcasing results
obtained by other users and their agent implementations.

3 ACS2
In 1993 Ho�man formulated a learning mechanism with an under-
lying assumption that a decisive factor for purposive behaviour
is the anticipation of the behaviour consequences [7]. Behaviour
consequences usually depend on the situation in which the action
is executed. So it is necessary to learn in which situation S which
behaviour R (reaction) leads to which e�ects E (presented in Figure
1).

Figure 1: Anticipatory Behavioral Control. Figure adapted
from [11, p. 2].

In 1997 Stolzmann combined the idea of LCS and Ho�man’s
theory introducing a new class of systems - ALCS (Anticipatory
Learning Classi�er Systems). Its �rst implementation - ACS (Antic-
ipatory Learning Classi�er) [11] used the new part of the classi�er
structure - "e�ect" which holds anticipations for given situation.

ACS2 [2] is very similar to the original Stolzmann’s work, but
there are also several essential discrepancies:

• each classi�er explicitly represents anticipations,
• by better integrated and improved ALP and GA pressures
ACS2 can evolve a complete, accurate, andmaximally general
model [4],

• classi�ers updates are made in the whole action set (not just
on the executed classi�er).

3.1 Knowledge representation
In ACS2 the knowledge is represented by a population of classi-
�ers. Each classi�er represents a condition-action-e�ect triple that
anticipates the model state after the execution of the given action
in the speci�ed conditions. Both condition and e�ect part consists
of the discrete values perceived by the environment and # symbol,
which works di�erently in each part. In condition part, it’s called
"don’t care" and denotes that the classi�er matches any value in
this attribute. On the other hand in e�ect part, it’s called as "pass-
through" and means that the anticipation for given value will not
change after the execution of the speci�ed action.

2https://gym.openai.com

A classi�er structure also holds other information such as mark
(information about situations where given classi�er was wrong),
quality, reward, intermediate reward, and various counters [2, p. 123].

3.2 Interaction with environment
ACS2 interacts autonomously with an environment (Figure 2).

Figure 2: Interaction between ACS and environment. Figure
adapted from [2, p. 14].

In a behavioural act at a speci�c time t , the agent perceives a
situation σ (t) = {l1, l2, . . . , lm }L , where:

• m denotes the number of possible values of each environ-
mental attribute (or feature),

• l1, l2, . . . , ln indicate the di�erent possible values for each
attribute,

• L means the string length.

Note that each attribute can only take discrete values.
The system can act upon the environment with an action α(t) =

{α1,α2, . . . ,αn }, where:

• n speci�es the number of di�erent possible actions in the
environment,

• α1,α2, . . . ,αn denote the various possible actions After the
execution of an action, the environment provides a scalar
reinforcement value ρ(t) ∈ R.

3.3 Environmental Model
By interacting with the environment, ACS2 learns about its struc-
ture. Usually, the agent starts without any prior knowledge. Initially,
new classi�ers are mainly generated by a covering mechanism in
ALP. Later the ALP creates specialised classi�ers while the GG tries
to introduce some genetic generalisation.

Figure 3 presents the interaction with greater details.

(1) After the perception of the current situation σ (t), ACS2
forms a match set [M] comprising all classi�ers in the popu-
lation [P] whose conditions are satis�ed in σ (t),

(2) ACS2 chooses an action α(t) according to selected strategy,
(3) Concerning the selected action, an action set [A] is generated

that consist of all classi�ers in [M] that specify the chosen
action α(t),

(4) After the execution of α(t) classi�er parameters are updated
by ALP and RL. New classi�ers might be added or deleted
due to the ALP and GG.



Integrating Anticipatory Classifier Systems with OpenAI Gym GECCO ’18, July 15–19, 2018, Kyoto, Japan

Figure 3: A behavioral act in ACS2with reinforcement learn-
ing and anticipatory learning process application. Figure
adapted from [2, p. 27].

3.3.1 Anticipatory Learning Process (ALP). The ALP was ini-
tially derived from the cognitive theory of anticipatory behavioural
control [7].

It compares the anticipation of each classi�er in an action set
with the real next situation σ (t + 1).

The process results in the evaluation and specialisation of the
anticipatory model in ACS2.

The execution of an action is accompanied by the formation
of the action set, which represents the anticipations of the real
next situation. Thus, ACS2 satis�es the �rst point of Ho�mann’s
theory of anticipatory behavioural control which states that any
behavioural act or response (R) is accompanied with anticipation
of its e�ects. Moreover, the comparison of the anticipation of each
classi�er in [A] can be compared to a continuous comparison of
anticipations with real next situations as stated in Ho�mann’s
second point. The third and fourth point address the consequences
of the comparison and are realized in the distinction between an
unexpected case and an expected case.

The ALP process is responsible for generating specialised o�-
spring and/or deleting inaccurate classi�ers. Classi�ers are created
during expected or unexpected case or by covering mechanism [2].

3.3.2 Genetic Generalization. While the ALP specialises classi-
�ers in a quite competent way, over-specialisations can sometimes
occur as studied in [2]. Since various circumstances can cause the
over-specialisation cases, a genetic generalisation (GG) mechanism
was applied that, interacting with the ALP, results in the evolution
of a complete, accurate, and maximally general model.

ACS2 �gures if GG should be involved. If so the process takes
place after ALP in the whole action set. Roulette wheel selection
selects two classi�ers (parents). Later on, mutation and crossover
takes place resulting in new child classi�ers, that might be inserted
back to a population under certain circumstances [2].

3.3.3 Reinforcement Learning. ACS2 adapts the Q-learning [15]
idea for reinforcing chosen actions, which is a step away from the
traditional bucket brigade algorithm [8]. To learn an optimal be-
havioural policy in ACS2, the reward prediction r of each classi�er
in an action set as well as the immediate reward prediction ir are
continuously updated. For the reliability of the maximal Q-value
in the progressive state, the quality of the classi�er is considered

assuming that the reward converges in common with the accuracy
of the anticipation [2].

4 ENVIRONMENTS
This section describes required steps needed to declare custom
(Maze, Boolean Multiplexer)3 and how to use already prebuilt envi-
ronments (Go, FrozenLake) 4 that ACS2 (with discrete observation
space) is capable of interacting with.

4.1 Custom Environments
Custom environments can execute any arbitrary code as requested
by the developer. The only requirement is that OpenAI Gym con-
tract needs to be met.

(1) Environment class must extend gym.Env class and should
be initialized in def __init__(self) method,

(2) Method for executing action - def _step(self, action)
must be implemented. It should evaluate given activity and
return four values - current state (perception), reward ob-
tained, information whether the episode is over and option-
ally debug information,

(3) Method for reinitialising the environment -
def _reset(self) must be implemented. This method is
called after each episode assuring that initial condition are
provided. As a result, the current state is returned.

(4) Optionally implement a method for rendering the environ-
ment state with def _render(self) method. That is useful
for inspecting actual behaviour.

(5) Environment class must be registered within the application
using register function from gym.envs.registration
package.

4.1.1 Maze. Maze environment is a well-known problem for
inspecting multi-step capabilities of learning classi�er systems. The
current implementation provides a universal environmental setting
where a maze is represented as a two-dimensional grid. Each �eld
can be occupied either by an obstacle, denoted by number "1", a
food item denoted by "9" or can be empty - "0".

In each episode, the animat is inserted into a random cell and
perceives its immediate surroundings starting with the �eld to the
north and coding clockwise. Thus the observation space can be
speci�ed as Imaze = {0, 1, 9}L , where L = 8, the eight adjacent
cells.

It can also perform eight simple actions, the movements to the
adjacent �elds. Amaze = {N,NE,E, SE, S, SW,W,NW}. When the
action is not possible (i.e. leads to a position blocked by an obstacle),
it has no e�ect.

Once the animat �nds the cell with food, a constant reward
ρ = 1000 is returned, and a current episode ends.

The implementation allows versatile maze con�gurations by
providing own Numpy arrays in distinct classes like:

from gym_maze.envs import AbstractMaze

import numpy as np

class MazeF1(AbstractMaze ):

def __init__(self):

super (). __init__(np.matrix ([

3https://github.com/ParrotPrediction/openai-maze-envs
4https://github.com/openai/gym/tree/master/gym/envs
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[1, 1, 1, 1],

[1, 0, 9, 1],

[1, 0, 1, 1],

[1, 0, 0, 1],

[1, 0, 1, 1],

[1, 1, 1, 1],

]))

Once de�ned the maze needs to be registered

from gym.envs.registration import register

register(

id='MazeF1 -v0',

entry_point='gym_maze.envs:MazeF1 ',

max_episode_steps =50,

nondeterministic=False)

Currently classical literature mazes likeMazeF1,MazeF2,MazeF3,
MazeF4 [11, p. 181], Woods1, Woods14, Maze4, Maze5 Maze6 are
implemented.

4.1.2 Boolean Multiplexer. Multiplexer is typically used to eval-
uate the generalisation capabilities of LCS. It is described by a func-
tion whose complexity increases exponentially with the number
of relevant attributes and is de�ned for lengths l = k + 2k (k ∈ N),
where the �rst k bits address one bit in the 2k remaining bits.

Because ACS2 learns from the relation of situation-action-e�ect
triples, it is necessary to add perceptual causality to the environ-
ment to make it solvable for ACS2 [2, p. 55]. In this case, the string
is augmented with extra digit determining the correctness of classi-
�cation (0 for the wrong answer, 1 for correct one).

In this case either observation space is equal to Imp = {0, 1}l+1
and action space Amp = {0, 1}.

The implementation allows registering various length multi-
plexer problem (where the number of control bits is passed as an
argument).

from gym.envs.registration import register

name = "boolean -multiplexer"

max_episode_steps = 1

register(

id='{}-11bit -v0'.format(name),

entry_point='gym_multiplexer:BooleanMultiplexer ',

max_episode_steps=max_episode_steps ,

kwargs ={'control_bits ': 3})

4.2 Pre-built Environments
4.2.1 Go. OpenAI Gym uses Pachi Framework for simulating

Go gameplay (can be used with other board games such as Weiqi
or Baduk as well). The framework is undergoing active research,
implementing all suggestions leading to substantial performance
improvements.

By default is uses UCT engine that combines Monte Carlo ap-
proach with tree search (UCB1AMAF tree policy using the RAVE
method). It plays Go by Chinese rules and says to be about 7d KGS
strength on 9x9 board. On 19x19, it can hold a stable KGS 2d rank.
5

5http://repo.or.cz/pachi.git/blob_plain/HEAD:/README

4.2.2 FrozenLake. Frozen Lake is a maze-similar environment
where the agent controls the movement of a character in a grid
world. Some tiles of the grid are walkable; the others lead to the
agent falling into the water. Additionally, the movement of the
agent is not deterministic and only partially depends on chosen
action. 6

SFFF (S: starting point , safe)

FHFH (F: frozen surface , safe)

FFFH (H: hole)

HFFG (G: goal)

The agent always starts at the same location "S" and receives
reward ρ = 1, when reaching �nal goal - "G".

5 PYALCS FRAMEWORK
The original Butz ACS2 algorithm was created in 2001 in C++ [6].
Apparently, the main advantage of choosing such a language is
excellent control of all data stored in memory, thus performance
e�ciency. On the other hand research work, performing analysis
and applying modi�cations is pretty costly and cumbersome.

Therefore the code was rewritten into Python 3 language which
is now considered a top language used by data scientists. Having
a huge ecosystem of external libraries (like interactive notebooks
for reproducible analysis or various plotting libraries) consecutive
research work can be applied much faster. Similar approaches was
already taken to create educational purpose LCS systems (eLCS)
[13] or ExSTraCS [14].

PyALCS7 library provides an implementation of the ACS2 algo-
rithm (can be easily customised or extended to other LCS) with
OpenAI Gym interface. It was designed for rapid testing and evalu-
ating algorithms by exposing two main classes - ACS2 and
ACS2Configuration.

5.1 ACS2 class
The ACS2 class is responsible for declaring an agent that will be
interacting with the environment. It can be created by passing two
arguments:

(1) ACS2Configuration con�guration object,
(2) an initial list of classi�ers (optionally)

# Declare ACS2 agent

agent = ACS2(cfg)

Such an agent has three ways of interacting with an environ-
ment - explore, exploit (no ALP and GA modules are enabled, best
classi�er’s action for given situation is executed), explore/exploit
(consequently switch between explore and exploit modes in each
trial).

Each mode takes two arguments - environment to interact with
(OpenAI Gym compliant) and a number of trials. As a result, a list
of classi�er population and evaluation metrics are returned.

# Perform exploration for 10 trials

population , metrics = agent.explore(env , 10)

6https://gym.openai.com/envs/FrozenLake-v0/
7https://github.com/ParrotPrediction/pyalcs
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Table 1: OpenAI environment interaction con�guration ar-
guments.

Argument Description

perception_mapper_fcn A function for mapping percep-
tion obtained from OpenAI into
PyALCS compliant vector form.

action_mapping_dict Dictionary mapping internal
PyALCS consecutive action num-
bers into speci�c OpenAI action
representation.

Table 2: Metrics con�guration arguments.

Argument Description

environment_metrics_fcn A function involving environ-
ment for calculating metrics
based on its state (i.e. position of
tokens on a board game). Might
return a dictionary of various
metrics.

performance_fcn A function involving the envi-
ronment, actual population of
classi�ers for calculating perfor-
mance (i.e. estimating knowl-
edge learned). Might return a dic-
tionary of various metrics.

performance_fcn_params Optional parameters passed as a
dictionary to performance_fcn
argument above.

5.2 ACS2Configuration class
Con�guration object serves as a single point of truth when declar-
ing assumptions on how the algorithm will work (taking default
parameter values from literature). It also allows con�guring how ob-
servations and actions are mapped inside agents realm and collect
custom metrics.

# Declare common ACS2 configuration object

cfg = ACS2Configuration(

classifier_length =8, # required

number_of_possible_actions =8, # required

epsilon =0.7, # overriding default

do_ga=True # overriding default

)

The obligatory arguments are classifier_length specifying
the length of perceptual string used in the representation of condi-
tion and e�ect string, and number_of_possible_actions specify-
ing how many actions are possible for the agent to execute.

There is also a set of optional parameters related to interaction
with environment described in Table 1 and for collecting custom
metrics in Table 2.

6 INTEGRATION
This section shows how PyALCS framework can be integrated with
any environment with discrete observation space. It will demon-
strate a work�ow when performing various integrations.

6.1 Explore/Exploit work�ow
A typical example is to train the ACS2 agent for some set of trials,
and later reuse created set of classi�ers for exploitation.

Here the assumption is that the environment:

• returns a vector of strings representing current perception,
• all actions are expressed as consecutive numbers.

# Load desired environment

env = ...

# Prepare common configuration

cfg = ACS2Configuration (...)

# Explore the environment

agent = ACS2(cfg)

population , explore_metrics = agent.explore(env , 50)

# Exploit the environment

agent = ACS2(cfg , population)

population , exploit_metric = agent.exploit(env , 10)

Listing 1: Explore/Exploit work�ow.

6.2 Standardising perception
Some environments might return state representation in a format
not suitable for PyALCS (2Dmatrix, a vector of numbers, etc.). In this
case, a special mapper function passed as perception_mapper_fcn
con�guration argument needs to be used parsing it into a vector.

# Load desired environment

env = ...

# Define a function taking as an argument

# current state obtained from environment.

# Process it returning a list of strings

def process_state(raw_state ):

pass

# Prepare configuration

cfg = ACS2Configuration(

...

perception_mapper_fcn=process_state ,

...)

# Explore the environment for 50 trials

agent = ACS2(cfg)

population , metrics = agent.explore(env , 50)

Listing 2: Standardising perception.

6.3 Standardising available actions
Often actions representations are not uniformed and can be as-
signed various values such as "Down" or "0x22".

Some pre-processing by mapping all possible moves into a dic-
tionary passed by action_mapping_dict argument needs to be
made beforehand.
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# Load desired environment

env = ...

# Prepare a dictionary mapping

# all possible actions.

moves = {

0: '0x11',

1: '0x24',

...

}

# Prepare configuration

cfg = ACS2Configuration(

...

action_mapping_dict=moves ,

...)

# Explore the environment

agent = ACS2(cfg)

population , metrics = agent.explore(env , 50)

Listing 3: Standardising available actions.

7 RESULTS
This section described the performance of PyALCS evaluation on
previously described environments. All results are available as fully
reproducible available as Jupyter notebooks or Python scripts8.

All experiments were performed with default parameters (unless
stated di�erently): β = 0.05, γ = 0.95, θi = 0.1, θr = 0.9, ϵ = 0.5,
umax = 100000, θexp = 20, θдa = 100, θas = 20, µ = 0.3, χ = 0.8,
subsumption enabled and genetic generalization disabled.

7.1 Custom Environments
7.1.1 Maze. Plots 5, 6 describe the performance of the algo-

rithm on the Maze5 (3000 explore trials, and 400 exploit trails) and
Woods14 (1000 explore trials and 200 exploit trails) environments
(visualised in Figure 4).

In both cases:

• learned policy showing best action in given situation (higher
colour saturation means greater classi�er’s �tness value),

• "achieved knowledge" - dissecting every possible position on
board and sees if there is a reliable classi�er capturing the
transition into neighbour states,

• number of overall classi�ers (numerosity) and reliable ones
during all trials,

• number of steps needed to �nd the reward.

Results show that the algorithm can thoroughly learn given both
environments.

7.1.2 Multiplexer. The experiments were performed on 6bit,
11bit, 20bit and 37bit BooleanMultiplexer run during 1 000 000 trials
in "explore-exploit" fashion. All parameters were left as default, with
the exception that genetic generalisation mechanism was turned
on. Figure 7 shows that the number of reliable classi�ers converges
to near optimal solution (which can be �ne-tuned by adjusting the
con�guration parameters). Better results might be obtained trying
to represent the condition and e�ect part with state-machine based
encoding scheme [9], but this was performed on XCS so far, and
further research for anticipatory classi�ers is needed.

8https://github.com/ParrotPrediction/pyalcs/tree/master/notebooks

Figure 4: Evaluated multi-step, deterministic maze environ-
ments. Figure adapted from [3, p. 187].

7.2 Prebuild environments
Some e�ort was undertaken to obtain sensible results when evalu-
ating the performance in pre-built OpenAI Gym environments.

7.2.1 Go. It’s relatively easy to adjust ACS2 into the Go board
realm. In all attempts, the more accessible version of the game
played on 9x9 board was chosen. Agent’s e�ect and condition part
were represented by vectors holding a complete representation of
the board, where each cell was described using three di�erent states
- black, white, empty. Both players could also execute 81 possible
actions.

In this case, a simple evaluation metric, calculating the ratio be-
tween white and black tokens was measured. It’s rising value in the
long term could potentially mean that the algorithm understands
the rules of the game trying to capture the majority of the board.

There were couple di�culties with this approach:

• putting the token onto a previously taken position on board
results in an illegal action and immediately aborts the game,

• an agent was not possible to ever obtain a reward for winning
a match (related to the previous point),

• a population of classi�ers increased very fast which makes
consecutive trials signi�cantly slower (time needed to oper-
ate on all classi�ers in match and action sets during learning
phases was getting longer).

An attempt similar to one described in [10] increasing the speed
of learning by incorporating two competing ACS2 agents (sharing a
collective population of classi�ers) was also examined but without
luck.

7.2.2 FrozenLake. The original version of the FrozenLake en-
vironment was not suited for the basic version of ACS2 due to its
stochastic nature. The agent was unable to capture the states chang-
ing in an indeterministic way, although implementing extensions
described in the literature as PEEs [5] might help.

However, it’s possible to recon�gure environment always to
execute the desired action (is_slippery modi�er). After this mod-
i�cation, it behaves like a typical maze environment and is solvable
by the algorithm. Figure 8 depicts the number of macroclassi�ers
in both cases. In basic version ACS2, it is not able to converge.
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Figure 5: Performance obtained in Maze5 environment. By performing 3000 explore trials and 500 exploit trials agent was able
to perfectly learn the maze. As visualized in policy each state was visited enough times to build strong con�dence (greater
saturation). The algorithm starts to reach nearly 100% knowledge near 1500 trial slowly stabilising the number of classi�ers
needed to represent it.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
x

0

1

2

3

4

5

6

y

# # # # # # # # # # # # # #

# # ↙ ← ← # # # # ↙ # # ↓ #

# ↓ # # # ↖ # # ↙ # ↖ # ↙ #

# ↓ # # # ↑ # ↘ # # # ↖ # #

# R # # # ↑ # # ↙ # # # # #

# # # # # # ↖ ← # # # # # #

# # # # # # # # # # # # # #

Policy

0 200 400 600 800 1000 1200
Trial

0

20

40

60

80

100

Kn
ow

led
ge

 [%
]

Achieved knowledge

0 200 400 600 800 1000 1200
Trial

0

20

40

60

80

100

120

140

Cla
ss

ifie
rs

Classifiers

numerosity
reliable

0 200 400 600 800 1000 1200
Trial

0

10

20

30

40

50

St
ep

s

Steps

ACS2 Performance in Woods14 environment

Figure 6: Performance obtained in Woods14 environment. The algorithm performed 1000 explore and 200 exploit trials. In
contrast to �gure 5 we see that further states are not so con�dent as those closer to the reward (need more trials). Although
also perfect knowledge is obtained.
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Figure 8: Number of macro-classi�ers in both original (non-
deterministic) and modi�ed (deterministic) version of the
FrozenLake environment.

8 CONCLUSIONS AND FUTUREWORK
This paper demonstrates full synthesis between ACS2 and OpenAI
Gym interface. Such integration enables access to a vast majority
of environments (at the moment of writing there are dozens to
choose from) used in latest reinforcement learning approaches and
encourages scientists to perform fully reproducible researches.

By switching to Python language code is much more concise. Un-
derstanding it and extending takes signi�cantly less time. But the
biggest bene�t is the access to huge eco-system of tools facilitating
modern data processing. Things like aggregating results, visual-
izing them in form of interactive reports (like Jupyter Notebook
or Zeppelin), recon�guring experiments are now a breeze. These
aspects encourage researchers to investigate deeper the approach
or might even contribute to bug�xes or own improvements.

The major drawback, however, is that ACS2 at this point is only
capable of interacting with environments with discrete observation

space. Work regarding creating an extension enabling communi-
cating with continuous observation space [12] or dealing with
situations where not all e�ects are predictable (non-determinism)
will allow new opportunities.
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