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ABSTRACT

This paper proposes a framework for solving high-dimensional
robust multi-objective optimization problems. A decision variable
classification-based framework is developed to search for robust
Pareto-optimal solutions. The decision variables are classified as
highly and weakly robustness-related variables based on their
contributions to the robustness of candidate solutions. In the case
study, an order scheduling problem in the apparel industry is
investigated via the proposed framework. The experimental results
reveal that the performance of robust evolutionary optimization
can be greatly improved via analyzing the properties of decision
variables and then decomposing the high-dimensional robust multi-
objective optimization problem.
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1 INTRODUCTION

Over the past two decades and more, evolutionary multi-objective
optimization (EMO) and multi-objective evolutionary algorithms
(MOEAs) have attracted much attention due to their promising
performance in finding a group of Pareto-optimal solutions for
multi-objective optimization problems (MOPs) in a single run [20,
24]. While in many real-world MOPs, a broad range of uncertainties
should be taken into consideration. These uncertainties can be
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divided into four categories [13]: 1) the fitness function involves
noise; 2) the decision variables suffer from disturbances or changes;
3) the fitness function is subject to approximation errors; 4) the
fitness function varies with time. And many investigations have
been conducted along with these four directions [8, 11, 12, 21]. In
this paper, we focus on the second category and investigate robust
EMO.

It is widely known that the task of EMO is to search for a set of
Pareto-optimal solutions in terms of a decision-maker’s demand.
While in practical situations, the decision variables (i.e., Pareto-
optimal solutions) may be affected by external disturbances after
optimization. For instance, in order scheduling problems, daily
production quantities vary in real-world production due to multiple
kinds of disruptions including tool failure, machine breakdown,
and operator illness, among others [7]; therefore, under these
circumstances, it is likely that the so-called optimal solutions will
become suboptimal. In this regard, it is desirable to find the Pareto-
optimal solutions which are robust to external disturbances in real-
world MOPs, and it is also the ultimate goal of robust EMO [10].

Robust EMO has been investigated from various aspects, in-
cluding searching for robust solutions for real-world applications
[2, 7], defining robust multi-objective solutions [5], and designing
robustness measures [9]. In these studies, the dimension size of the
problems or test functions is often lower than 100, or even lower
than 10 [2, 5, 16, 17]. Nevertheless, in many practical applications,
the dimension size of the problem is much higher. For example, for
an order scheduling problem of 30 orders with the consideration
of some real-world production factors (e.g. order split, learning
effect, etc.), the scheduling turns into a high-dimensional problem
with more than 100 decision variables [7]. In addition, when the
dimension size of a robust MOP increases, the robust region of
the problem is much harder to determine. This is known as the
“curse of dimensionality” [3], which implies that the performance of
robust optimization methods becomes worse as the dimensionality
of the search space grows. Therefore, it is of paramount importance
to investigate how to solve high-dimensional robust MOPs in an
effective way.

To solve high-dimensional non-robust optimization problems,
Cooperative Coevolution (CC) is mostly utilized [18]. The idea
of CC is to decompose a high-dimensional optimization problem
into a group of subproblems that can be separately optimized by
conventional EAs. Two representative grouping mechanisms are
random grouping [22] and differential grouping [15]. Recently,
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a novel grouping mechanism is proposed based on a decision
variable analysis strategy, which investigates whether a decision
variable contributes to convergence, diversity or both. Then the
decision variables are partitioned as convergence-related variables
and diversity-related variables [23], or position variables, distance
variables and mixed variables [14]. Some promising experimental
results are reported in [14, 23]. Inspired by the variable property-
based classification, high-dimensional robust optimization problems
can be tackled by identifying whether a decision variable is related
to the robustness of candidate solutions.

Based on the above discussion, in this research, high-dimensional
robust MOPs are investigated by a dedicated decision variable
classification-based framework. To be specific, the framework is
developed to search for robust Pareto-optimal solutions. In the
framework, decision variables of the high-dimensional problem
are classified as highly robustness-related variables and weakly
robustness-related variables in terms of their contributions to the
robustness of candidate solutions; then two groups of decision
variables are optimized separately. The contributions of this
research can be summarized from two aspects: 1) to the best of
the authors’ knowledge, it is the first attempt to investigate high-
dimensional robust EMO; 2) decision variables are divided based
on their influence on the robustness of candidate solutions.

This paper is organized as follows. Section 2 provides the
background information of robust multi-objective optimization
and the motivation of this work. Section 3 introduces the details of
the decision variable classification-based framework. A case study
is carried out in Section 4. Finally, concluding remarks are given in
Section 5.

2 BACKGROUND INFORMATION AND
MOTIVATION

In this section, we first provide the background information
of robust multi-objective optimization. Then we explain the
motivation of our work.

2.1 Robust Multi-Objective Optimization

In [5], the authors introduced robustness in multi-objective op-
timization by means of optimizing the mean effective objective
functions instead of optimizing the original objective function.
Moreover, two types of multi-objective robust solutions were
defined in [5]. In the following paragraphs, we will introduce the
related definitions in detail.

Multi-Objective Robust Solution of Type I: A solution x* is called
a multi-objective robust solution of type I, if it is the global
feasible Pareto-optimal solution to the following multi-objective
minimization problem (defined with respect to a §-neighborhood
of a solution x):

minimize (f£1(x), ff5(x), ..., £ (x)), xe€Q, (1)

where fl.eff(x) is defined as follows:

eff 1
. X) =
i ® 1Bs (%) Jyessx)

fi(y)dy, (2

Bs(x) is a d-neighborhood of a solution x, |Bs(x)| is the hy-
pervolume of the neighborhood; Q is the feasible decision space,
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X = [x1,x2,...,xp]T is a decision vector, and D is the dimension
size, representing the number of the decision variables involved
in the problem; ffﬂ(x),fzeff(x), ...,fif(x) are M mean effective
objective functions for optimization.

However, the definition of robustness of type I is somewhat
impractical. The reason is that a practitioner would be interested to
know the limiting change in function values for defining robustness.
Hence, the second type of robustness is defined as:

Multi-Objective Robust Solution of Type II: A solution x* is called
a multi-objective robust solution of type II, if it is the global
feasible Pareto-optimal solution to the following multi-objective
minimization problem:

minimize f(x) = (f1(%), fo(X), oor fA1(X)),
st. I1£% (x) - £(x)| < 7, (3)
X € Q,
where feﬁ(x) = (fleﬁ(x),féeﬁ(x),..., ;ff(x)); || - |l can be any

suitable norm; 7 is a constant which controls the desired level
of robustness and the value is predefined by the practitioners.

In this research, the second type of robustness is utilized because
it is more practical. For the calculation of fieﬂ in the above definition,
a practical way is to generate a finite set of H solutions in a randomly
or structured manner, which are selected around a §-neighborhood
Bs(x) of a solution x in the decision space; then the value of the
mean effective objective function fieﬂr can be estimated by averaging
the function values of the H neighboring solutions.

2.2 Motivation of This Work

In the previous research of robust EMO, the decision variables
are treated as a whole in the optimization. However, based on
our empirical observation, in some problems, part of the decision
variables are highly related to the robustness of potential solutions;
while the rest are weakly related to the robustness of potential
solutions. To illustrate such an observation, we consider the
following bi-objective optimization problem:

minimize fi =x1,
_ 1
fz =1-x1+ 5402 (4)
s.t. x1,x2 € (0,1).

Based on Eq. (4), Figure 1 shows the changes to the robustness
by sampling one decision variable while fixing the other to 0.4
and 0.8. The robustness is represented by h = ||f€ﬁc(x) - f(x)ll1,
where L!-norm is utilized. When calculating FH(X), 50 solutions
are generated around 0.1-neighborhood of a solution x. It can be
found that the robustness is nearly unchanged when sampling x;;
while the robustness varies as x7 is sampled. Therefore, x; can
be regarded as the decision variable that is weakly related to the
robustness; x2 is the decision variable that is highly related to the
robustness. It is more beneficial to optimize x; and x, separately
when searching for the robust Pareto-optimal solutions.

3 THE PROPOSED FRAMEWORK

The proposed framework aims to first decompose the decision
variables and then optimize them separately for high-dimensional
robust MOPs. There are three main components in the framework:
DV_CLAS, DV1_OPT and DV2_OPT. First, DV_CLAS divides the
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Figure 1: The changes to the robustness when sampling each
decision variable. (a) Only sampling x; in the range of (0, 1)
when xz = 0.4 and x; = 0.8, respectively; (b) Only sampling x;
in the range of (0, 1) when x; = 0.4 and x; = 0.8, respectively.

Algorithm 1 The Proposed Framework

1: Begin

2 /* NP: population size

3 /* POP: current population

4 /* NSe: number of selected individuals

5: /* NSa: number of sampling on each decision variable of selected individuals
6 /* DVI: highly robustness-related variables

7 /* DV2: weakly robustness-related variables

8 /* ¢1: number of cycle 1

9: /* ¢z: number of cycle 2
10:  [DV1, DV2] = DV_CLAS(POP, NSe, NSa)
11: while the maximum number of fitness evaluations is not achieved do
12: fori; =1:¢c; do
13: POP = DV1_OPT(POP, DV1)
14: end for
15: fori, =1:¢y do
16: POP = DV2_OPT(POP, DV2)
17: end for
18: end while
19: End

decision variables as two categories: highly robustness-related
variables and weakly robustness-related variables. Then DV1_OPT
and DV2_OPT optimize the two categories of variables for a
certain number of cycles alternately until the stopping criterion is
reached. In the following paragraphs, we will introduce these three
components in detail.

3.1 DV_CLAS

As introduced in Section 2.1, the second type of robustness is used
in this research, which means the robust optimization problem is
converted into a constrained optimization problem. Thus searching
for robust solutions is equivalent to searching for feasible solutions.
Based on the above analysis, the main idea of DV_CLAS lies in
sampling the decision variables, and then monitoring the changes
to the constraint violation.

The details of the operation are given in Algorithm 2. Lines
10-15 describe sampling each decision variable of a number of
individuals. First, NSe individuals are randomly selected from the
current population. Then, NSa samplings are conducted on each
decision variable of the NSe individuals, after which the variance
values of the related constraint violation are recorded in VarCV.

Lines 16-20 present the classification based on the results from
the sampling operation. First, we calculate for how many of the

Algorithm 2 DV_CLAS(POP, NSe, NSa)

1: Begin
2: /* V: dimension size of decision variables
3 /* POP: current population
4 /* NSe: number of selected individuals
5: /* NSa: number of sampling on each decision variable of selected individuals
6 /* DVI: highly robustness-related variables
7 /* DV2: weakly robustness-related variables
8: /* VarCV: size of NSe X V
9: /* TVal: size of 1 X V
10: fori=1:Vdo

11: Randomly select NSe individuals from POP
12: for j = 1: NSedo
13: Sample NSa times for the ith decision variable of the jth individual

and record the variance of constraint violation values as VarCVj;

14: end for

15: end for

16: fori=1:Vdo

17: TVal; = sum(VarCV(:, i) == 0)

18: end for

19: Find the decision variables that meet TVal; > meany (TVal) and record as
DV2

20: The rest decision variables are recorded as DV1

21: End

total NSe times for each decision variable the variance value of the
constraint violation equals to 0. The values of the times are stored
in TVal. Then the decision variables that meet TVal > meany (TVal)
are marked as weakly robustness-related variables, i.e., DVZ; the
rest decision variables are marked as highly robustness-related
variables, i.e., DV1. It is worth mentioning that we use the Lehmer
mean in the classification, which aims to select DV2 with higher
accuracy.

3.2 DV1_OPT and DV2_OPT

After grouping the decision variables into two categories, DVI_OPT
and DV2_OPT are adopted to optimize each category of deci-
sion variables respectively. In both optimization strategies, any
commonly used mutation/crossover operators (e.g., differential
evolution [6], simulated binary crossover [1] and polynomial
mutation [4]) can be utilized to generate the offspring population.

The difference between DV1_OPT and DV2_OPT lies in the
selection operation. For DV, they are highly related to robustness.
We hope to obtain the solutions with high robustness by optimizing
DV1. Therefore, robustness is used as the selection criterion
for optimizing DV1, and individuals with higher robustness are
preferred to survive in the next generation. While for DV2, they are
weakly related to robustness. We aim to improve the convergence
and diversity performance of the population by optimizing DV2.
Hence nondomination rank is utilized as the first selection criterion,
and crowding distance is set as the second selection criterion.
Individuals with higher nondomination rank and larger crowding
distance will be chosen as the parents of the next generation.

In the optimization process, DV1 and DV2 are alternately
optimized for ¢; and cz cycles respectively until the maximum
number of fitness evaluations is reached.

4 CASE STUDY

4.1 Case Information

In this section, an order scheduling problem in the apparel industry
is used as a case to examine the effectiveness of the proposed
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framework. In the apparel industry, the task of order scheduling is to
appropriately assign n production orders to m lines for production.
An illustration is provided in Figure 2.
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Figure 2: An illustration of order scheduling in the apparel
industry. The order bar represents the duration of process-
ing the related order.

An appropriate schedule implies that both earliness and tardiness
of each order are discouraged. The reason is that the storage costs
will increase (i.e., higher earliness penalty costs) when an order is
completed before its due date, and the customer satisfaction will
reduce (i.e., higher tardiness penalty costs) when an order is finished
after its due date. As a result, the two optimization objectives of
an order scheduling problem can be set as: 1) minimizing the total
earliness of all the orders; 2) minimizing the total tardiness of all
the orders.

In detail, the first objective is expressed as follows:

n
fi=) g1(FD; - DDy), )
i=1
where FD; and DD; are the finishing date and the due date of order
i (1 £ i < n)in the schedule, respectively; and g; (-) is:

g1(w) = { (}u, i)ft}liefv&?i,se. ©)
The second objective is described as follows:
fa= Zn:gz(FDi - DD;), ™)
i=1
where gy (-) is: l
w = v RS ®

These two objectives are usually conflicting, which implies a
solution that results in a smaller f; (less total earliness) will lead to
alarger f> (more total tardiness).

In addition, during the production, orders can be split for flexible
production [7]. Furthermore, the production lines belong to product-
specific lines, which implies the production efficiency on a line can
reach the highest only for certain type of product. Learning effect
is also taken into account in the problem. The uncertainty of this
problem comes from the uncertain daily production quantities,
which affects FD; of each order. As a result, we hope to obtain
the schedules that are robust to the variations of daily production
quantities.

In the encoding scheme used for this problem, there are three
parts: the assignment of each order to the production line, the split
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percentage of each order, and the sequence of the orders on the
same production line. Each order can be divided into at most two
sub-orders; the split percentage is selected from [0.2, 0.4, 0.6, 0.8].
Therefore, the length of a potential solution is four times the number
of the orders: D = 4n. Figure 3 illustrates the encoding scheme.
When the number of the orders is more than 25, the problem
becomes high-dimensional based on the encoding scheme.

Bk

< Part A >

‘ Bni ‘ P

PartB—+—PartC—>‘

Figure 3: An illustration of the encoding scheme.

4.2 Experimental Setup

In the experiment, we consider 30 orders and 6 production lines.
Hence the dimension size of the problem is D = 120. The maximum
number of fitness evaluations (MAX_FES) is set as D - 10000. The
population size is NP = 100. We use a classical differential evolution
(i.e., DE/rand/1/bin) [19] in the optimization. The scaling factor and
the crossover probability of the DE algorithm are set as F= 0.5 and
CR = 0.9, respectively. In the experiments, the uncertainty factor
of daily production quantities is f = 0.3. We set the number of
the neighbouring points for each potential solution as H = 5. The
desired level of robustness for this problem is predefined as n = 5.

In the proposed framework, we need to determine the values of
NSa, NSe, c1 and cy. There are three parts in the encoding scheme
of the problem. Therefore, according to the value range of each
part, the settings are NSa = 6 for Part A, NSa = 4 for Part B,
and NSa = 30 for Part C. The settings for the rest parameters are
NSe =20,c1 =40 and cp = 8.

We run each algorithm 15 times. Inverted generational distance
(IGD) is used as the performance metric. To calculate IGD, a set
of reference points need to be given beforehand. In this paper, the
nondominated solutions obtained from the combined solutions of
the algorithms in comparison are set as the reference points.

4.3 Effectiveness of the Proposed Framework

The main contribution of this research is to propose a framework to
solve high-dimensional robust MOPs in a more efficient way. The
core of the proposed framework is to decompose high-dimensional
decision variables in terms of their influence on the robustness of
candidate solutions. Therefore, here we examine the effectiveness
of DV_CLAS. The algorithm with or without the classification
operation is entitled FR or FR/noDVC respectively.

The nondominated solutions of the combined solutions obtained
by FR/noDVC and FR after 15 runs are selected as the reference
points. Then the IGD values of FR/noDVC and FR are calculated.
For FR/noDVC, the mean and the standard deviation of the IGD is
35.74+3.44; while for FR, the value is 5.04+2.20. The Pareto fronts
(PFs), i.e., robust order schedules, obtained from FR/noDVC and FR
after 15 runs are also provided in Figure 4. It can be observed that
FR greatly enhances the performance of FR/noDVC when handling
the high-dimensional robust order scheduling problem.
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Figure 4: Comparison of the PFs (i.e., robust order schedules)
obtained by FR/noDVC and FR after 15 runs.
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In the proposed framework, the total 120 decision variables are
classified as DV (i.e., highly robustness-related variables) and DV2
(i.e., weakly robustness-related variables). In Figure 5, we show the
frequency of the decision variables that are labeled as DV1 after 15
runs. It can be observed from Figure 5 that the decision variables
from No. 61 to No. 90 are seldom identified as DV1. The reason
can be inferred as follows: the 61st to the 90th decision variable
represents the split percentage of each order. Compared to other
decision variables, varying these 30 decision variables will only
affect the sub-order size instead of the order sequence on each
production line. Keeping the arrangement of the orders unchanged
in a schedule (the sub-order size might be changed) indicates that
the constraint violation keeps largely unchanged. Therefore, these
30 decision variables are most likely to be grouped into DV2 instead
of DV1.

15

Frequency
=

(6]

0 | |
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Decision Variable No.

Figure 5: The frequency of the decision variables which are
classified as DV1 in the proposed framework after 15 runs.

4.4 Comparison with NSGA-II

To show the superiority of the proposed framework, we compare
it with a popular MOEA: NSGA-II [5], which has been utilized for
solving robust MOPs.

The nondominated solutions from the combined solutions
obtained by FR and NSGA-II after 15 runs are used as the reference
points. Then the IGD values of FR and NSGA-II are calculated. For
FR, the mean and the standard deviation of the IGD is 5.04+2.19;

while for NSGA-II, the value is 45.82+8.95. The PFs obtained from FR
and NSGA-II after 15 runs are given in Figure 6. It can be observed
that although the search engine of FR is merely a simple original
DE when compared with that of NSGA-II, FR performs much better
than NSGA-IL. This is because the DV_CLAS operation decomposes
the high-dimensional robust MOP, which reduces the complexity
of the problem.

100
a 0 NSGA-Il
B OFR
< 50
g g
R Qo M o
Jmo
0 100 200

S

Figure 6: Comparison of the PFs (i.e., robust order schedules)
obtained by FR and NSGA-II after 15 runs.

From the experimental results of the case study, it can be
noticed that the proposed framework solves the high-dimensional
robust MOPs effectively by classifying the decision variables and
optimizing them separately.

5 CONCLUSION

In this paper, a novel framework is developed to solve high-
dimensional robust MOPs. In the framework, high-dimensional de-
cision variables are first classified as highly and weakly robustness-
related variables based on their contributions to the robustness of
candidate solutions; then the two categories of decision variables
are optimized separately. In the case study, an order scheduling
problem in the apparel industry is investigated by the presented
framework. The experimental results reveal that the performance of
robust EMO can be largely enhanced by the proposed framework.

In the future work, we hope to design a set of test functions
for high-dimensional robust multi-objective optimization. In addi-
tion, we will focus on equipping the framework with parameter
adaptation strategies.
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