A Genetic Algorithm for Dynamic Controller Placement in
Software Defined Networking

Workshop Paper

Samuel Champagne
Dalhousie University
Computer Science
Halifax, Nova Scotia
sam.champagne@dal.ca

Nur Zincir-Heywood
Dalhousie University
Computer Science
Halifax, Nova Scotia
zincir@cs.dal.ca

ABSTRACT

The Software Defined Networking paradigm has enabled dynamic
configuration and control of large networks. Although the division
of the control and data planes on networks has lead to dynamic
reconfigurability of large networks, finding the minimal and optimal
set of controllers that can adapt to the changes in the network has
proven to be a challenging problem. Recent research tends to favor
small solution sets with a focus on either propagation latency or
controller load distribution, and struggles to find large balanced
solution sets. In this paper, we propose a multi-objective genetic
algorithm based approach to the controller placement problem
that minimizes inter-controller latency, load distribution and the
number of controllers with fitness sharing. We demonstrate that
the proposed approach provides diverse and adaptive solutions to
real network architectures such as the United States backbone and
Japanese backbone networks. We further discuss the relevance and
application of a diversity focused genetic algorithm for a moving
target defense security model.

CCS CONCEPTS

« Networks — Network properties; Network security; Net-
work structure; Network reliability; « Computing method-
ologies — Machine learning; Unsupervised learning; Ge-
netic algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5764-7/18/07...$15.00
https://doi.org/10.1145/3205651.3208244

Tokunbo Makanju
New York Institute of Technology
Vancouver, British Colombia
madetoku@nyit.edu

Chengchao Yao
Dalhousie University
Computer Science
Halifax, Nova Scotia
ch250407 @dal.ca

Malcolm Heywood
Dalhousie University
Computer Science
Halifax, Nova Scotia
mheywood@cs.dal.ca

KEYWORDS

Routing and Layout, Genetic Algorithms, Fitness Evaluation, Mul-
tiple Solutions/Niching, Software Defined Networking, Moving
Target Defense

ACM Reference Format:

Samuel Champagne, Tokunbo Makanju, Chengchao Yao, Nur Zincir-
Heywood, and Malcolm Heywood. 2018. A Genetic Algorithm for Dynamic
Controller Placement in Software Defined Networking: Workshop Paper.
In GECCO ’18 Companion: Genetic and Evolutionary Computation Confer-
ence Companion, July 15-19, 2018, Kyoto, Japan. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3205651.3208244

1 INTRODUCTION

Software Defined Networking (SDN) is a relatively new technology
that decouples the forwarding plane and control plane on a network.
Decoupling the forwarding plane and control plane introduces a
layered model which facilitates network programmability. SDN
technology is being used for increasingly large networks [3, 4],
such as backbone networks, that demand stability, security and re-
dundancy over time in variable load requirements. Given longevity
and reliability requirements, it is important to correctly establish
the number of controllers and domain subgraph partition pairs
within a large scale SDN implementation. As introduced by Heller
et al. [4], the controller placement problem has been studied by
several researchers from different perspectives.

The controller placement problem, similar to the facility location
problem, is concerned with the discovery of an optimal number of
controllers and their placement in the topology. Ideally, the number
of controllers should be minimized for cost, while also minimiz-
ing communication latency. Reducing to a known problem, the
controller placement problem is NP hard [4]. The controller place-
ment problem is increasingly challenging in precarious networks
where fault tolerance is desired and static optimal solutions are not
sufficient.

Servicing backbone networks requires resilient network design
which is adaptable to changing demand from domain nodes. To
answer the need for security, redundancy and reliability, it is neces-
sary to develop a solution set with inherent variability that provides

https://doi.org/10.1145/3205651.3208244
https://doi.org/10.1145/3205651.3208244

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

efficient load distribution and minimal latency. In this paper, our
goal is to provide a large set of unique near optimal solutions to the
controller placement problem for network redundancy and network
flexibility. We think that these near optimal solutions could then
be used to achieve an applicable security model for moving target
defense while improving network redundancy and reliability.

Given that finding an optimal solution to the controller place-
ment problem is computationally NP-hard [4] and offers no redun-
dancy in case of link failures, the Genetic Algorithm (GA) approach
could offer reasonable solutions to this problem. In this case, the GA
approach lends itself to varying and adaptive network topologies.
Moreover, by assuming a multi-objective approach, we are able to
simultaneously minimize the number of controllers, inter-controller
latency and load distribution of domain subgraphs while improving
evolutionary population diversity. Specifically, we aim to show the
utility of such a GA by applying it to simulated backbone networks
and discussing the relevance of these results for a moving target
defense security model.

Moving target defense is more easily implemented with SDNs
because of their large search space and the large search space of
SDNs makes them a great candidate for Evolutionary Computation
[9]. Our GA provides better diversity for better placement choices
which can be used in the moving target defense model to avoid
easy surveillance from adversaries. Given these advantages, we later
propose a moving target defense model which utilizes a diversity
focused GA.

We first provide a summary of related research in this field in
Section 2. We then describe the GA model, required data structures
and algorithm process in Section 3. Finally, we test the proposed
multi-objective GA against a small test network, the United States
backbone and Japan backbone and analyze the results in Section
4. We later propose the relevance of this work to a moving target
defense model in Section 5. Section 6 concludes the paper and
discusses future works.

2 RELATED WORK

The controller placement problem has been shown to be NP-hard
[4], and there is a large amount of ongoing research on the subject.
There has been recent work on the application of machine learning
and specifically evolutionary computation to the problem which
warrants a closer look.

Wang et al. introduce an approximate algorithm, the Greedy
Sub-Graph Cover Problem (GSGCP) algorithm, to find the smallest
subset of nodes from a graph such that the subsets cover all nodes
in the graph [12]. In doing so, they provide a flexible approximate
solution that finds the least number of controllers required for a
given graph. However, the algorithm does not consider communi-
cation latency and is not appropriate for dynamic networks. We
plan to improve on the GSGCP algorithm by implementing a GA
which initializes a population using a modified GSGCP algorithm
and then improves diversity and fitness over time.

Bo et al. use a two stage algorithm to find an optimal number
of controllers for a given topology [3]. In the first stage, a multi-
objective GA is used to find a connection relationship of controllers
and switches that share load equally across domains. The fitness
check is defined as load diversity and is used for load balancing.

S. Champagpne et al.

In the second stage, they use a minimal delay algorithm to find an
optimal location that minimizes latency between clusters found in
the first stage. Their limited use of mutation makes it less flexible
to large networks and dynamic changes in network weights.

Sanner et al. provide a framework to solve the cluster config-
uration of nodes using linear programming and a GA [11]. They
implement two fitness checks to maximizing the sum of the aver-
age edge connectivity of clusters and minimizing the imbalance
between clusters. Their mutation factor exchanges nodes between
clusters efficiently, but did not support reproduction as a variation
operator. On the other hand, we suggest a GA with a multi-objective
fitness function that utilizes reproduction.

Sabeeh et al. use heuristic optimization paired with neuro-
evolution to minimize the load on SDN switches by making them
change adaptively [10]. Inputs are defined as flows of flow tables
and objectives are defined in terms of throughput and delay. They
apply Particle Swarm Optimization (PSO) and a GA to a Neural
Network (NN) for optimal performance output.

Makanju et al. suggest a Moving Target Defense (MTD) paradigm,
i.e. a continuous adaptation of a network environment to evade at-
tacks, would be best implemented using Evolutionary Computation
techniques in Software Defined Networking [9]. Our implementa-
tion is well suited for MTD because the multi-objective GA provides
a large solution space which can be referenced for network config-
uration alternatives without needing reiteration overhead.

We believe that there is room for improvement in addressing the
controller placement problem using GA techniques to find a larger
set of solution vectors. To the best of our knowledge, previous
research has not specifically focused on diversity of solutions and
we believe that our research provides evidence of usefulness. Given
a large solution set, a large network could improve its reliability
by enabling quick link changes without computational overhead
thanks to the larger solution space provided by a multi-objective
GA focusing on diversity.

3 GENETIC ALGORITHM FRAMEWORK

The multi-objective GA that is employed in this work uses three fit-
ness functions with variable reproduction and mutation operations.
The following introduces the framework in detail.

3.1 Formal Definitions

The controller placement problem aims to find a minimum set of
controllers and their respective locations. Such a set cover problem
focuses on finding the minimum sub-collection of sets required to
represent a given universe. In our implementation, we state that the
universe of a network is the set of all nodes and all links. Grouping
domains and links into subgraphs or sub-collections, the minimum
set cover of a network is the set of subgraphs which cover the net-
work while retaining fast connectivity and a minimized number of
links. These subgraphs can be associated to controllers and used to
then find a minimum set of controllers and their location respective
to the subgraphs they control. After generating domain subgraphs
and finding a minimum set cover, the multi-objective GA aims to
solve the controller placement problem by minimizing the num-
ber of controllers needed and swapping or generating subgraphs
according to special reproduction and mutation operations.

A Genetic Algorithm for Dynamic Controller Placement in SDN

3.2 System description

In the proposed model, we assume a multi-domain network and
implement variable set covers for the network, defined as subgraphs
of the network, in a usable SDN configuration. To simulate real
networks, we define that given X controllers and Y domains, links
may exist between domains, but not for every possible pair of
domains. For simplicity of SDN implementation, we further state
that links exist between every two controllers. Based on these
assumptions, we establish flexible relationships between controllers
and domains. One domain can be managed by multiple controllers,
but a subgraph can not be managed by more than one controller.

We define a Chromosome, or an individual, as a set of controllers
such that every controller is a Gene and every subgraph is an Allele.
We have established three fitness metrics to evaluate individuals
based on the three goals of improving connectivity between con-
trollers, improving load balancing across controllers and reducing
the number of controllers.

o Inter-Controller Latency. Increasing connectivity is ex-
pected to improve the reliability of a given implementation.

e Load Distribution. Improving load distribution will have
the expected result of balancing the total number of sub-
graphs evenly across all controllers. This should have the
further effect of reducing latency across controllers.

e Number of Controllers. Reducing the total number of
controllers will reduce implementation overhead and cost.
We are not necessarily interested in finding a dissimilar-
ity threshold and are fine with having increased individual-
ity within a given optima. As such, we implement niching
through fitness sharing to retain diversity within an optima.

3.3 Model Description

The GA begins by initializing the population with domain sub-
graphs, set covers, from the network graph using the GSGCP algo-
rithm [12]. The resulting subgraphs are each assigned to a random
controller and then evaluated based on three fitness functions.

1) Fitness evaluation: The most suitable individuals are selected
based on the ability to minimize the value of all three fitness func-
tions: inter-controller latency (1), load distribution (2) or (3) and
number of controllers (4) or (5). Both the latency and load dis-
tribution metric involve a summation term. An additional fitness
sharing niche term will be introduced (6) and hereafter referred to
as ‘niching’.

For the first fitness function, inter-controller latency, we let L; ;
be the inter-controller latency between two controllers i, j used in
chromosome 7. such that the we can define its fitness, in relation
to inter-controller latency. The total overall latency of chromosome
k is given by Eq. (1):

Vijel: L=yt 1)
i,j

For the second fitness function, load distribution, we first define
Dy as the total number of domains in chromosome k, Cy. as the total
number controllers in chromosome k and D; as the total number
of domains controlled by controller j in chromosome k. Then, for
chromosome k, we define its fitness, in relation to load distribution,
using either Eq. (2) or Eq. (3). Our implementation in section 4 uses

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Eq. (3) as it normalizes the fitness in relation to Dg.
C

Dy
>Ipi- o @)
j=1

D
fﬂm_ﬁf 3)
=2 Dk

For the number of controllers, we first define C as the total num-
ber of controllers in a chromosome and ¢ as the number of active
controllers in a chromosome. We then define Cyyj, as the minimum
number of controllers used in any chromosome and Cpax as the
maximum number of controllers used in any chromosome. We can
then define fitness of a chromosome, in relation to the number of
controllers utilized, using either Eq. (4) or Eq. (5). We use Eq. (5)
in section 4 because it provides a chromosome specific evaluation
whereas Eq. (4) provides a fitness evaluation that correlates with
the maximum and minimum number of controllers used in any
chromosome within the population.

1— ¢ = Cpin)
Cmax_cmin
c—1
- 5
c1 (5)

From the above fitness functions, we observe that the number of
controllers is the first to be minimized as it is the easiest conformity
adjustment for any individual. Given the tendency of the genetic
algorithm to drift into an optimum with a single active controller,
even with Pareto ranking, we decided to implement niching in the
form of fitness sharing. Given m(k) as the niche count equaling the
index of chromosome k in a specific fitness layer, F as the set of
all fitness values in chromosome 7, then fitness sharing can be
implemented as Eq. (6) to scale the fitness of chromosome k based
on its niche count.

Vf eF. f=fxm(ky (6)

In summary, the three objectives will be minimized using Pareto

ranking in which the non-dominated cases are rewarded for increas-

ing the number of solutions they dominate. Niching is applied in

combination with Pareto ranking as defined by Kumar and Rockett

[7] by ranking the fitness summation of the population. We focus
on fitness sharing to improve diversity over time.

Paent [s[1]0]0[3]2]0]
Sgt

6 Controllers
Cover

0ﬁspriﬂg|s|1|2|3|0|0|0| \s|1|2|0\3|o|o|...|s|0|0\0|3|2|1\
L1] L I L1]

| |] I
Set 6 Controllers ~ Set 6 Controllers Set
Cover Cover Cover

I
G Controllers

Figure 1: Reproduction A

2) Reproduction operation: The reproduction operation selects
a random number of individuals in the population, 2 to 4 in our
implementation, and performs a reproduction operation to generate
children to be added into the population. Asexual reproduction is
used to prevent the production of nonviable offspring that would

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Farent [s]1]0[0[3]2]0]

Set 6 Controllers
Caver

orspans [S[A[a[0[3]2])
S!t

6 Controllers
Cover

ofispring [s'T1]2[3]0]0]0] |5'\1|2|n|3\0|0|...|s-\0|0|0|3\2|1|
Ll] L1 i L1 I

1 I 1 Ll I
Set 6 Controllers ~ Set 6 Controllers Set
Cover Cover Cover

1
6 Contrallers

Figure 2: Reproduction B

be generated from multi-individual reproductions. Should two dif-
ferent individuals be used in the reproduction operation, it would
become increasingly difficult to enforce controller subgraph unique-
ness and it could potentially lead to disconnected domains from
differing mutations of two individuals. The first reproduction oper-
ation, Figure 1, uses the subgraph of a selected chromosome and
generates a new chromosome with randomly assigned controllers.
The second reproduction operation, Figure 2, selects a chromosome
and mutates its set cover S using either of the mutation operations
defined below and then generates a new chromosome with ran-
domly assigned controllers from the set cover S”. The reproduction
operation to be used is selected randomly every iteration according
to some probability P(a) and P(b) where P(a) is the probability of
inducing reproduction A and P(b) is the probability of inducing
reproduction B. In our implementation P(a) = P(b) = 0.5. We
have decided on equal probabilities in order to reduce result bias
generated from favoritism to either reproduction operations.

3) Mutation operation: Mutation consists of four possible op-
erations and is only applied to children generated through the
reproduction operation. The first mutation operation randomly
selects a utilized controller A and an un-utilized controller B and
moves the subgraphs of A to B, deactivating A. The second mutation
operation randomly selects two utilized controllers A and B and
switches their subgraph. The third mutation operation, Figure 3,
performs subgraph mutation by first selecting a random subgraph
from the network and repeating the set cover generation process on
the network graph, it then updates the chromosome representation
by assigning new subgraphs to the controller. The fourth mutation
operation, Figure 4, performs subgraph mutation by selecting two
subgraphs A and B that have common links and moves a domain
from A to B if the movement does not create disconnectedness for
A. The mutation operation used is selected randomly with equal
probability of 1/4 for all four mutation operations.

The population is trained in real time, according to Figure 5, by
initializing the population using the GSGCP algorithm [6] and then
evaluating the fitness of all individuals according to inter-controller
latency, load distribution and number of controllers before being
added to the population and then being ranked by the sum of the
three fitness evaluations scaled by an individual’s position in their
fitness niche layer. Once the individuals have been added to the
population and ranked, The multi-objective GA then generates a
subpopulation of offspring using the reproduction operation fol-
lowed by mutation and then restarts the fitness process until a
termination generation count is reached. Generally speaking, 1000

S. Champagpne et al.

% t\;,, J
Set Cover After

Set Cover Before

Figure 3: Set Cover Mutation

\\\;7777//,’;‘

Set Cover After

\\\;w—///n

Set Cover Before

Figure 4: Domain Relocation Mutation

generations should be sufficient to discover a relatively large so-
lution set with an average fitness that improves upon the initial
population.

4 EVALUATION

To properly evaluate our proposed approach, we chose to test it by
running simulations on the graph implementations of the United
States backbone (Section 4.1) and the Japanese backbone (Section
4.2). The United States backbone network is obtained from the Inter-
net2 Abilene backbone [1], and the Japanese backbone is obtained
from the Japanese NNTNET topology [8]. Although the number of
available controllers is flexible and can be changed as required, both
simulations were done using 10 controllers to clearly demonstrate
the difference between a medium size graph/network and a large
size graph/network given the same parameterization.

The initialization of the population is done with a modified
GSGCP algorithm [12] which can generate different populations
over different iterations. To avoid aberrant results due to the initial
variability, and to reduce time complexity, all simulations were
run a hundred times over 1000 generations before aggregation
of the data. Other than maintaining the default amount of 10
controllers, we also used a mutation probability of 20% and a
reproduction probability of 80% for both simulations. Fine tuning
these parameters for specific networks could yield better results in
all cases, but these were omitted for comparative purposes.

To demonstrate the applicability of the proposed approach, we
chose to first use an 11 node United States backbone network, Figure
6. Figure 6 overlays an example of one of the best individuals of the
proposed multi-objective GA. All gray links are considered inactive

A Genetic Algorithm for Dynamic Controller Placement in SDN

Initialization
[GSGCP)

v

Fitness
Evaluation (

JIC
\ 2 4 ¥

Inter-Controller Load Humber of
Latency Distribution Controllers

L J
YYY¥
Fitness
Summation

Y

Add to
population

h 4

Rank
Population

Stop Condition

Output Results o

¢No

Crossover

Mutation

Figure 5: Genetic algorithm flowchart

and controllers (shown as red nodes on the figure), Ci, manage one
or more colored links. This specific individual that is overlaid on
this map has four out of 10 controllers active and a total fitness
value of 8.1. This individual was one of 27 unique individuals out
of 100 total individuals. Through simulations on the United States
backbone, we noticed an increase in diversity and improvement in
fitness over time.

4.1 United States Backbone

We compared diversity over time using fitness sharing and Pareto
ranking and observed an overall increase in diversity with the use
of fitness sharing. In Figure 7, we see that after 1000 generations
the proposed multi-objective GA discovered 15 unique individuals

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Abilene Federal/Research Network Peers

Pacific Wave
N Cricago o
StarLight DREN, ESNet
h. Taratirid * NISN, vBNS
N ! usGS

N\ C1 NREN, DREN

c2 C4 ._1 New York

ESNet

Sunnyvale
ESNet

NGIX-West
DREN, NISN,
NREN, USGS,
(MIX)

Washington
Darpa
Supernet *

NGIX-East
DREN, NISN,
USGS, vBNS

* Limited Research Peering

Figure 6: United States Backbone, Internet2 [1]

United States Backbone Fitness Comparison
Fitness Sharing Diversity Comparison

== With Fitness Sharing == Pareio Ranking Only

30
@
w
E
b=l
5 20
&
E]
=
5
5 10
g
E
E]
=

0

0 250 500 750 1000
Generation

Figure 7: Comparison with and without fitness sharing.

United States Backbone Fitness Average
Fltness Sharing Average per Generation
= Fitness Average == Best10% Best5%
20

N

Fitness Average

0 200 400 600 800 1000

Generation

Figure 8: Count of unique individuals.

(out of 100 total individuals) without fitness sharing, as opposed
to 27 unique individuals (out of 100 total individuals) with fitness
sharing. Without fitness sharing, the Pareto ranking solutions with
slightly less than optimal fitness were discarded too quickly.
Furthermore, although the fitness average did increase using
fitness sharing, the top 5% of individuals remained unchanged, thus
providing good evidence that the fitness sharing approach found
the same optimal individuals while retaining boundary individuals

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

Number of Controllers Load Distribution Inter-Controller Latency Fitness Summation
w0778 1.691 21.009_777777777_722_72
07 1020 10200 20054
0o b 17400 19104
o4 a7 15000 e
050 1.4 120 1904
- 138 12000 rasra
7
o511 13 \ foe =
0457 \\\ 8.400 10333
a2 174 a0 ases
osra 1m0 400 a0
%0333 0.145 3.000 5.023

Figure 9: Fitness distribution of unique individuals

over time. In Figure 8, we notice that after 1000 generations our
GA had an average fitness of 11.2, where the top 5% of individuals
had a fitness of 4.7 and the top 10% had a fitness of 9.9.

Observing the fitness distribution of unique individuals after
1000 generations, Figure 9, we can visually identify a negative
correlation between the fitness of controller counts and fitness
of inter-controller latency. This should not be surprising as an
increase in total active controllers, lowering fitness for the num-
ber of controllers, will increase the communication costs between
controllers. Similarly, load distribution is loosely correlated to the
number of active controllers as increasing the number of active
controllers reduces the number of domains available per controller.
The multi-objective GA attempts to minimize fitness and as such
we notice that inter-controller latency has the largest contribution
to fitness summation. Given the negative correlation between con-
troller count fitness and inter-controller fitness, it is understandable
why the proposed GA approach attempts to minimize the number
of controllers in order to minimize inter-controller latency.

Figure 10: Japanese NNTNET topology, S. Liang et al. [8]

S. Champagpne et al.

4.2 Japanese backbone

We also simulated the proposed GA approach on a 55 node Japanese
Backbone, Figure 10, to test the GA against a larger real world
network and evaluate its efficiency under pressure. That is to say,
the Japanese Backbone has a long and thin topology resulting in
several critical nodes that are potentially ‘bottleneck’ locations.
Conversely, the US Backbone has fewer nodes that are more evenly
distributed.

Comparing diversity over time of fitness with and without fit-
ness sharing, we observed a similar trend as with the United States
backbone. In Figure 11, we see that after 1000 generations the multi-
objective GA discovered 34 unique individuals (out of 100 total
individuals) without fitness sharing, as opposed to 61 unique indi-
viduals (out of 100 total individuals) with fitness sharing. Consider-
ing previous results from the United States backbone simulations,
we notice an increase of nearly twice the amount of unique indi-
viduals with fitness sharing versus Pareto ranking. Similarly, the
fitness sharing approach found the same optimal individuals while
retaining boundary individuals over time. In Figure 12, we notice
that after 1000 generations, the GA had an average fitness of 40.2
where the top 5% of individuals had a fitness of 33.9 and the top
10% had a fitness of 38.1.

Japanese Backbone Fitness Comparison
Fitness Sharing Diversity Comparison

= With Fitness Sharing == Pareto Ranking Only

80
0
E]
E 60
=
=
£
R
2
=]
k=1
s 2
5
15
E
=

0

0 250 500 750 1000
Generation

Figure 11: Comparison with and without fitness sharing.

Japanese Backbone Fitness Average
Fltness Sharing Average per Generation
== Fitness Average == Best10% Best 5%
44

42 k
40
38

0 250 500 750 1000

Filness Average

Generation

Figure 12: Count of unique individuals.

A Genetic Algorithm for Dynamic Controller Placement in SDN

Load Distribution
1.200

Number of Controllers
0.222

Inter-Controller Latency
45,000

0200 / E 3300

ats00

7 7 30.900

20200

36.500

34500

XEEE

33100

31.400

20.700

26.000

Figure 13: Fitness distribution of unique individuals

From the fitness distribution of unique individuals in the Japan-
ese backbone, Figure 13, we observe the same correlations as in the
United-States backbone. Recalling that the GA minimizes fitness,
the Japanese backbone has a larger diversity of load distribution
fitness frequencies caused by the increase of domains per controller
and the corresponding controller sub-graph associations. As this
simulation was kept at 10 controllers, it is easy to understand why
their is a lower amount of diversity in the number of controllers and
inter-controller latency, because it would not make sense to distrib-
ute 55 domains across fewer than 8 controllers. We can achieve a
higher diversity count on these factors with an increase of the total
amount of available controllers. However, because of the increased
density caused by the lower amount of total controllers available,
we have an increased cluster diversity as compared to the United
States backbone example.

In all cases, the algorithm proved to be time efficient on a linear
growth scale. Completing 1000 generations in 5.3 seconds with the
11 node United States backbone and 8.5 seconds with the 55 node
Japanese backbone. These results demonstrate that the algorithm
could be used in real time if diversity is a requirement as the in-
creased cluster diversity provides longevity to any iteration of the
multi-objective GA.

5 DISCUSSION

From both the US backbone and Japan backbone, we notice clear
clustering patterns in population diversity upon a closer obser-
vation of Figures 13 and 9. Clusters can be labeled as individuals
sharing the same number of controllers and inter-controller la-
tency. We maintain that diversity is observed as the total number of
individuals within a cluster as well as the total number of clusters.

Diversity within a cluster groups together unique individuals
that are relatively close to each other in fitness. A cluster can there-
fore be seen as its own solution space. Individuals within the same
cluster provide similar network alternatives without any significant
difference in fitness. However, diversity among clusters provides a
larger amount of solution spaces which can provide more solutions

Fitness Summation

*ﬁae.ws

aaa70

787

1045

;0.2

arez0

38008

34,100

32,484

20771

29.05

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

that are farther apart from each other in fitness. This diversity is
critical because it provides a greater variety of choices for dynamic
network reconfiguration.

Given the high diversity among clusters of any given fitness
summation group, seen in Figures 9 and 13, we believe that our
results show usefulness in the application of moving target defense
in SDN networks using rapid network reconfiguration for attack
mitigation. As such, we provide a security model using moving tar-
get defense in Figure 14 that could be implemented in an Intrusion
Detection System (IDS) to reconfigure a network configuration on
the fly in order to provide improved security.

Network
Structure
A 4 ool 1
pop properties P E—
Execute Genetic Algorithm Ly from Pool 1 Pool containing
- genetic algorithm
possible input
parameters

FPush states to
Fool 2 by fitness

push properties
into Pool 1

push state 5 Event 2
Pool containing | into Pool 2 Conditional or
possible network | Probabilistic
states by fitness Switch
cluster
pop state 5
from Pool 2
Y
Event 1
Network State |em—— 1 time ¢
2: attack

Figure 14: Moving target defense flowchart

Given a network structure and an optional set of parameters as
input, the proposed GA could provide clusters arranged by fitness
which could then be used to change a network’s configured state
when a given timer has elapsed or an attack is detected by an IDS.

The optional first pool includes sets of viable input parameters
for the GA given that multiple parameters can be changed at the
start of the algorithm to produce different cluster sets, we can
choose different input sets from the first pool to produce increased
variability between model cycles. Parameters such as the number of
reproduction offspring, reproduction mutation rates, the population
size and the total number of available controllers would all provide
differing output sets which could gradually increase or replace the
set of viable configurations within the second pool.

The second pool would consist of viable network configurations
that are pushed from the GA’s output, arranged into fitness clusters,
from the lowest to the highest. Based on these a network configu-
ration state would be popped from the second pool and used as a
network state.

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

The network state could then be changed according to a timer
event or an incoming attack to mitigate the value of reconnaissance
and the effect of an attack on the network. Given that the network
state could be changed without reiteration of the multi-objective
GA, this rotation could occur without delay if desired.

If a time delay is acceptable, then a second switch event can be
used to increase the size of the second pool by rerunning the GA
with different parameters, chosen from the first pool. This second
event could be conditional, if any state S has been used more than
some desired amount, or probabilistic.

We believe that a similar model to the one shown in Figure 14
could be used for reliability assurance by establishing different
conditions on the execution of the first event. The diversity of and
within fitness clusters provides similar network configurations that
could change the network configuration should a different subgraph
distribution be required.

6 CONCLUSION

Looking at the results, we notice that fitness sharing improves
diversity over time without removing the top individuals. Adding
on the initial variability from the modified GSGCP algorithm [12]
to the variability provided by fitness sharing, the proposed multi-
objective GA approach is able to discover a large solution space
which could be used for network reliability or in moving target
defense. The varying fitness clusters demonstrate a large set of
alternative network configurations with similar controller layouts
and inter-controller latencies which provide varying controller
subgraph distributions with unique load distributions. This variance
in load distributions offers similar controller subgraph distributions
for reliability by providing different domain subgraphs with similar
inter-controller latencies.

Furthermore, we suggest that the wide solution space could be
used to implement moving target defense in SDNs of varying sizes
which retain near optimal controller placement. We believe that the
implementation of this approach for moving target defense could
improve network security by increasing active information gath-
ering complexity and mitigating denial of service attacks through
dynamic controller subgraph and domain reallocation. Future work
will include testing of the suggested MTD security model in Figure
14 using the proposed multi-objective GA based approach. More-
over, we will explore parameter optimization of the GA for the

S. Champagpne et al.

general and specific network cases. Our results seem to indicate
that more parameter testing may lead to substantial improvements
in diversity and fitness in all network topologies.

7 ACKNOWLEDGEMENT

This research was partially supported by Natural Science and Engi-
neering Research Council of Canada (NSERC). It is conducted as
part of the Dalhousie University Network Information Management
and Security (NIMS) Lab at: http://projects.cs.dal.ca/projectx/.

REFERENCES

[1] 2017. Abilene Backbone Network. Internet2. (2017). https://www.internet2.edu
[2] Md. Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi Zhang,
Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba. 2013. Dynamic Con-
troller Provisioning in Software Defined Networks. In International Conference

on Network and Service Management. 18-25.
[3] H.Bo, W. Chuan’an, and W. Ying. 2016. The controller placement problem for

software-defined networks. In IEEE International Conference on Computer and
Communications. 2435-2439.

[4] Brandon Heller, Rob Sherwood, and Nick McKeown. 2012. The controller place-
ment problem. Computer Communication Review 42, 4 (2012), 473-478.

[5] David Hock, Steffen Gebert, Matthias Hartmann, Thomas Zinner, and Phuoc
Tran-Gia. 2014. POCO-framework for Pareto-optimal resilient controller place-
ment in SDN-based core networks. In IEEE Network Operations and Management
Symposium. 1-2.

[6] Ahmad Jalili, Vahid Ahmadi, Manijeh Keshtgari, and Morteza Kazemi. 2015.
Controller Placement in Software-Defined WAN Using Multi Objective Genetic
Algorithm. In International Conference on Knowledge-based Engineering and Inno-
vation. 656—662.

[7] Rajeev Kumar and Peter Rockett. 2002. Improved Sampling of the Pareto-Front
in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto
Converging Genetic Algorithm. Evolutionary Computation 10, 3 (2002), 283-314.

[8] S.Liang, A.N. Zincir-Heywood, and M.I. Heywood. 2006. Adding more intel-
ligence to the network routing problem: AntNet and Ga-agents. Applied Soft
Computing 6, 3 (2006), 244-257.

[9] Adetokunbo Makanju, A. Nur Zincir-Heywood, and Shinsaku Kiyomoto. 2017.
On evolutionary computation for moving target defense in software defined
networks. In ACM Genetic and Evolutionary Computation Conference. 287-288.

[10] A.Sabeegh, Y. Al-Dunainawi, M. F. Abbod, and H. S. Al-Raweshidy. 2016. A hybrid
intelligent approach for optimising software-refined networks performance. In
International Conference on Information Communication and Management. 47-51.

[11] Jean-Michel Sanner, Yassine Hadjadj Aoul, Meryem Ouzzif, and Gerardo Ru-
bino. 2017. An evolutionary controllers’ placement algorithm for reliable SDN
networks. In International Conference on Network and Service Management. 1-6.

[12] G. Wang, Z. Zhao, J. Peng, R. Li, and H. Zhang. 2014. An approximate algorithm
of controller configuration in multi-domain SDN architecture. In International
Conference on Communications and Networking in China. 601-605.

https://www.internet2.edu

	Abstract
	1 Introduction
	2 Related Work
	3 Genetic algorithm framework
	3.1 Formal Definitions
	3.2 System description
	3.3 Model Description

	4 Evaluation
	4.1 United States Backbone
	4.2 Japanese backbone

	5 Discussion
	6 Conclusion
	7 Acknowledgement
	References

