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ABSTRACT 
In this paper, we propose a method to generate an optimized 
ensemble classifier. In the proposed method, a diverse input space 
is created by clustering training data incrementally within a cycle. 
A cycle is one complete round that includes clustering, training, 
and error calculation. In each cycle, a random upper bound of 
clustering is chosen and data clusters are generated. A set of 
heterogeneous classifiers are trained on all generated clusters to 
promote structural diversity. An ensemble classifier is formed in 
each cycle and generalization error of that ensemble is calculated. 
This process is optimized to find the set of classifiers which can 
have the lowest generalization error. The process of optimization 
terminates when generalization error can no longer be minimized. 
The cycle with the lowest error is then selected and all trained 
classifiers of that particular cycle are passed to the next stage. Any 
classifier having lower accuracy than the average accuracy of the 
pool is discarded, and the remaining classifiers form the proposed 
ensemble classifier. The proposed ensemble classifier is tested on 
classification benchmark datasets from UCI repository. The results 
are compared with existing state-of-the-art ensemble classifier 
methods including Bagging and Boosting. It is demonstrated that 
the proposed ensemble classifier performs better than the existing 
ensemble methods. 
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Ensemble Classifiers, Evolutionary Algorithms, Particle Swarm 
Optimization, Clustering, Multi Classifier Systems, Neural 
Networks1 

1 INTRODUCTION 
Ensemble classifier is a machine learning classification 
methodology where a number of classifiers are fused together to 
form a common decision (classification). Ensemble classifiers have 
shown success in various disciplines like weather forecasting, credit 
risk analysis, banking, medical diagnosis, and house pricing [1-5].  
Essentially, the idea behind ensemble classifier is that a group of 
classifiers can produce better results than a single classifier. 
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Additionally, a single classifier performing well on one dataset 
might not perform well on others as well [6]. A great body of 
research is presented in [1-5, 7-9], which states various 
methodologies for fusing classifiers. Two key factors to consider 
when fusing classifiers to form an ensemble classifier are classifier 
accuracy and classifier diversity. Classifiers that are fused to 
generate an ensemble classifier should at least be better than random 
guessing and make uncorrelated errors [9].  

A number of previous research has pointed out the merits of 
diversity in ensemble classifiers [10, 11]. However, a trade-off must 
be maintained between accuracy and diversity. Precedence given to 
diversity only will result in an ensemble classifier that is diverse but 
performs inaccurately. Ultimately, the main objective of generating 
an ensemble classifier is to increase classification accuracy [3].  To 
maximise diversity and accuracy simultaneously, several ensemble 
classifier methods have been proposed. These methods can be 
generalized into three categories i) random sub sampling of training 
dataset, ii) feature randomization of training dataset, and iii) 
parameter randomization. These methodologies are elaborated in [2, 
4]. 

In relation to diversity through sub sampling, two pioneering 
works to consider are Bagging[10] and Boosting[12]. Bagging 
works by creating sub samples of data with repeating and unique 
groups. Classifiers are trained on each sub sample of the dataset, 
which are then fused together using majority voting. Boosting on the 
other hand subsequently trains a classifier on the data patterns where 
the classifier performed poorly, therefore the name boosting. A 
popular ensemble classifier methodology based on boosting is 
AdaBoost. Over the years many variations of AdaBoost have been 
proposed and they are detailed in [13-15]. A renowned work in 
achieving diversity through feature randomization is Random Forest 
[16]. Random forest works by training decision trees on random 
subset of records and features from the training dataset.  Ensemble 
classifier methodologies based on parameter randomization can be 
classified further into two categories. Firstly, are ensemble classifier 
methodologies that randomize classifier parameters using kernel 
functions [17], secondly are methodologies that use evolutionary 
algorithms to manipulate features and/or ensemble classifier 
components [18].  
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In recent works, authors have created a diverse input space from 
the training dataset using clustering [19]. In [20] authors proposed 
an incremental ensemble classifier process. Input data were 
partitioned into a number of clusters on which base classifiers were 
trained. Classifier accuracy and diversity were then calculated for all 
classifiers, and with incremental layered approach, each new 
classifier with higher accuracy was added to the ensemble. A 
classifier is added to the pool if, either accuracy is greater than the 
last classifier in the pool, or accuracy is the same, but diversity has 
increased, otherwise the classifier is discarded. The number of data 
clusters generated are increased iteratively, which are generated by 
k-means. Similarly, in [21] data diversity was achieved by not only 
clustering, but also discarding similar clusters using Jaccard index. 
Any cluster having Jaccard index value higher than a given 
threshold was discarded. It was also suggested that using a 
maximum value of clustering with k-means should be √𝑛# ,	where n 
is the number of records in the training dataset. This not only 
ensured that the computational complexity of the algorithm 
remains	𝑂(𝑛(), but also kept the algorithm from creating clusters 
with few records in them. In another research [22] data diversity was 
achieved through clustering using k-means algorithm by partitioning 
the dataset into atomic and non-atomic clusters.  An atomic cluster 
is class pure, whereas a non-atomic cluster is not. Every non-atomic 
cluster is converted to an atomic cluster through a 2-layer neural 
network classifier. The process is repeated till every non-atomic 
cluster is converted to an atomic cluster. When all clusters are 
atomic, decisions can be formed as every cluster is class pure.  

There has also been a lot of research into the benefits of using 
evolutionary algorithms in order to generate ensemble classifiers. In 
[18] the authors suggested that achieving high diversity with 
accuracy can be classified as a multi objective optimization 
problem, and that using evolutionary algorithms such as Genetic 
Algorithms (GA) can be beneficial in this regard. Data are 
partitioned into distinct clusters incrementally in a layered fashion 
and at each layer, a different value of K clusters were generated with 
a maximum value of K set to be n (number of records). GA is used 
to find the optimum trade-off between accuracy and diversity, and 
the process of incrementally clustering terminates when a global 
optimum is achieved.  

In [23] authors suggested adding a layer of entropy between 
meta classifiers in stack generalization. They suggested that using 
diversity as a measure to select the best set of base classifiers will 
have a lesser impact on computational resources. Oracle output and 
entropy measures were used as inputs for optimization algorithm. In 
[24] authors proposed clustering ensemble classifiers using Particle 
Swarm Optimization (PSO). The weight of each cluster was 
calculated using PSO. Each cluster was treated as a particle in n 
dimensions, which was then given a relative weight using classical 
PSO. This proved not only efficient in terms of generalization error 
but also effective in lowering the complexity of the ensemble. 
Similarly, in [25] authors suggested using PSO as a model selection 
tool in order to select the best set of classifiers to form an ensemble 
classifier. It was argued that traditional model selection 
methodologies tend to focus on maximising an individual model’s 
accuracy rather than promoting diversity amongst different models 
in the pool consequently, promoting higher global ensemble 

accuracy. Popular model selection approach, which overcomes this 
problem, is known as Particle Swarm Model Selection (PSMS). In 
recent studies [25-28], PSMS has shown a remarkable success and 
proved to be a good contender for optimizing a binary search space. 
PSMS was also used to find the best set of features, as a model 
selection tool, and for parameter optimization for classification 
dataset. 

Although several methods use clustering to create a diverse 
input space [18, 20-22, 29], the need for an optimum value of 𝐾 to 
create a diverse input space needs careful consideration. A single 
value of K for different datasets is not an ideal solution; a dynamic 
way to adjust 𝐾 which is reflective of dataset’s dimensions should 
be investigated. Additionally, various methodologies have been 
proposed, which argue the benefit of combining ensemble classifier 
with evolutionary algorithms [25-27] to optimize various hyper-
parameters. However, a careful consideration in the use of 
evolutionary algorithms to create a diverse input space is essential.  

In this paper, we use a set of heterogeneous classifiers to 
generate an accurate and diverse ensemble classifier. Furthermore, 
certain classifier parameters are randomized to further promote 
structural classifier diversity. We generate a diverse input space by 
clustering dataset and filtering redundant clusters. The input space 
is optimized with an evolutionary algorithm, giving precedence to 
the overall classification accuracy of the ensemble classifier by 
dynamically optimizing K.  

The original contributions of this paper are (i) identifying the 
optimum value of K to generate heterogeneous data clusters, which 
can increase the classification accuracy of the ensemble classifier; 
(ii) analysing the impact of using an evolutionary algorithm to 
optimize the diverse input space on overall classification accuracy 
of the ensemble; and (iii) comparing the proposed method with 
existing state of the art ensemble approaches including Bagging and 
Boosting. 

The next sections of the paper are outlined as follows. Section 2 
presents the proposed ensemble classifier methodology. Section 3 
entails the experimental setup, results and comparative analysis. 
Section 4 concludes the paper and provides future directions. 

2 PROPOSED METHOD 
The proposed method starts with the training data, validation data, 
a set of base classifiers, and an initial value of	𝐾. The training data 
is passed to the optimization process, which generates data clusters 
from 	𝑘 = 1,… , K . All generated clusters are filtered based on 
similarity, and on all remaining clusters, a set of base classifiers are 
trained. An ensemble classifier is then generated using all of the 
trained classifiers; in the fitness function of the optimization 
process, generalization error of the ensemble is calculated using 
validation data. All of the trained classifiers along with value of 𝐾, 
and error are stored. The process of optimization repeats with a 
different random value of 𝐾 in each cycle until error can no longer 
be minimized or no relative change in error occurs. The method 
then passes all of the trained classifiers and the value of 𝐾, of the 
cycle, which had the lowest error to the next stage. The average 
accuracy of the pool of classifiers is calculated and any classifier 
performing lower than a threshold gets discarded. The remaining 
classifiers are then utilized to generate the proposed ensemble 
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classifier and classification accuracy is calculated with an unseen 
testing dataset. 

 
Figure 1: Flowchart of the proposed ensemble classifier method 
 
Fig. 1 shows the flow chart of the proposed method and the 
subsequent subsections provide details on the different components 
involved in the proposed ensemble classifier methodology. 

2.1 Generating diverse input space 
In contrast with generating random sub samples of the dataset as in 
Bagging, the proposed methodology incrementally generates data 
clusters from the training data in each cycle. The process starts with 
an initial value of 𝐾 = 1 and goes up to a maximum of		𝐾	 = 	𝑛, 
where 𝑛	is the number of records in the training data.  In each cycle, 
the number of generated data clusters are  𝑗 = 𝐾(𝐾 + 1)/2. 

 
Figure 2: Incrementally clustering dataset. Different shapes 
are different data patterns. 
 
Let us assume that 𝑋 = {	(𝑥8, 𝑦8), (	𝑥(, 𝑦()	… , (	𝑥:,𝑦:)}  is the 
training dataset and 𝑛 is the number of records, then each 𝑥 is a 
feature vector containing 𝑚 discrete or continuous valued features  
< 𝑥:,8, 𝑥:,(,… , 𝑥:,> >   and 𝑦: is the respective discrete class label. 
Clustering is done without the inclusion of class labels in the dataset 
so that the decision boundaries are not reflective of class labels. The 
process of clustering is summarized in Fig. 2. It can be noted from 
Fig. 2 that in each cycle a different number of clusters are generated 
and, in some cycles, as in the nth cycle, cluster overlap occurs. 

Each cluster Ω	will contain a set of observations and is given 
as	Ω: = {𝑥8, 𝑥(,… , 𝑥:}.  In each cycle, the total generated clusters 
are 	Ω = {Ω8,Ω(,… , ΩA} . Clusters are checked for inter cluster 
similarity in order to discard redundant clusters using Equation (1). 
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𝑠	CΩD, 	ΩAE =
FΩD,∩ ΩAF
FΩD ∪ ΩAF

				∀	𝑖, 𝑗	 ∈ 	Ω				𝑎𝑛𝑑	𝑖	 ≠ 𝑗				(1) 

The value of 𝑠	varies from 0 to 1, with 1 implying the two clusters 
are 100% identical to each other and 0 implying there are no 
repeating records.  

2.2 Classifier training 
In the proposed method, a set of heterogeneous base classifiers are 
used, which include Naïve Bayes (NB), Discriminant Analysis 
(DISCR), k-Nearest Neighbour (kNN), Decision Trees (DT), Neural 
Networks (NN), and Support Vector Machines (SVM). These 
classifiers have different learning capabilities and certain classifier 
parameters are randomized per cluster, which introduces classifier 
structural diversity in the ensemble. The hyper parameters and their 
respective selection criteria are given in Table 2. Therefore, if the 
total number of clusters after optimization and filtering is 𝑘 (𝑘 < 𝑗 
), and on each cluster a set of 𝐵 base classifiers are trained, then the 
total trained classifiers are	𝑙 = 	𝑘 × 𝐵. 

2.3 Optimizing the input space 
The process of optimization takes in all trained classifiers	𝐵R =
{	𝜑8,𝜑(,… , 𝜑T}, and the validation dataset 𝑉	having feature vector 
	𝑥	and class labels	𝑦 . Each classifier  𝜑T  from the set of trained 
classifiers is used to classify the feature vector of validation dataset 
using classification function 	𝑝(𝜑, 𝑥) = 	𝑦 , and their respective 
results are stored in a decision matrix	𝑑 as shown below in Equation 
(2). 
 

𝑑 = 	W

𝑦′8,8 …… 𝑦′8,T
𝑦′(,8...

… . . 𝑦′(,T...
𝑦′:,8 … . . 𝑦′:,T

Y																																					(2) 

 
where 𝑦′:,T is the classification result of 𝑝(𝜑T, 𝑥:) 

 
The proposed approach uses PSO to optimize the process of 
clustering by decreasing overall generalization error. To understand 
this process, we first define the PSO search space. In the PSO, we 
have a population of particles, with each particle having a personal 
best and a global best. Each particle in the proposed approach is the 
index of the respective classifier’s column in the decision matrix	𝑑, 
so if there are 𝑙 classifiers then there are 𝑙 particles. Therefore, the 
personal best is the possible inclusion of that particular column of 
responses 𝑦′ of a classifier. This is given by a row vector as: 
 

𝑟𝑣	 = 	 [𝟏(𝐜𝟏),𝟏(𝐜𝟐),… , 𝟏(𝐜𝒏)]																								(3) 
 

where 𝟏(𝐜𝒏): d
0		𝑖𝑓			𝑛 ∉ 𝑞	
1	𝑖𝑓			𝑛 ∈ 𝑞	  

 
where 𝑞 is the pool of classifiers  

The row vector has an upper bound of [1, 1, … , 1T], and a lower 
bound of [0,0,…	 , 0T].  Any element in the row vector, which has a 
0 value indicates that the classification labels of that column will not 
be selected, and 1 meaning otherwise. Class labels 𝑦’ of only those 

columns which have a respective 1 in the row vector are selected 
and a mode is taken or simply majority voting. Using the result, we 
can calculate the root mean square error of the ensemble as given in 
Equation (4). 
 

𝑅𝑀𝑆𝐸	 =
n	∑ (𝑦D − 𝑦qD)(

|s|
Dt8

|𝑉| 							∀	𝑦	 ∈ 𝑉								(4) 

 
where 𝑦q	is the predicted class label and 𝑦	is the actual class label 

of the validation dataset. 
 

Error in (4) is used as the fitness function and the optimization 
process searches in the binary search space to find the best set of 
trained classifiers that can minimize (4) globally. The process of 
optimization terminates when (4) can no longer be minimized. At 
this stage, the proposed approach yields the set of trained classifiers 
that had the lowest RMSE and the value of 𝐾	 chosen in that 
particular cycle.  

2.4 Classifier filtering 
Average accuracy of the set of the optimized trained classifiers is 
calculated using Equation (5). 

𝑎𝑣𝑔_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	
1
𝑐z𝑎𝑐𝑐D

{

Dt8

																						(5) 

Where 𝑎𝑐𝑐	is the individual classification accuracy of each classifier 
in the pool on validation dataset and is calculated using Equation 
(6). 
 

𝑎𝑐𝑐 =
1
|𝑉|z𝟏(𝑝(𝜑, 𝑥D))

>

Dt8

		∀	𝑥	 ∈ 𝑉													(6) 

 

where 𝟏C𝑝(𝜑, 𝑥)E:= 	 d0		𝑖𝑓	𝑝
(𝜑, 𝑥D) = 	𝑦D

1		𝑖𝑓	𝑝(𝜑, 𝑥D) ≠ 	𝑦D
 

 
Any classifier in the pool, that has lower classification accuracy than 
the average classification accuracy of the pool, gets discarded.  

2.5 Decision  
The classification is done using the set of filtered classifiers and the 
feature vector 𝑥	 from the unseen dataset test set 	𝑍 . All 
classifications labels 𝑦’ from each classifier are then combined via 
majority voting. Generalization error is calculated using (4) and the 
resultant error is the error of the proposed ensemble classifier. 

3 EXPERIMENTAL STUDY AND ANALYSIS 
In this section, we present several experiments to test the efficacy of 
the proposed ensemble classifier method on a set of benchmark 
datasets from UCI Machine Learning repository [30]. The details of 
these datasets are given in Table 1. We also compared our 
experimental results with existing state of the art ensemble 
techniques. 

Table 1: Datasets 



Optimizing clustering to promote data diversity when generating an ensemble classifier GECCO’18, July 15-19, 2018, Kyoto, Japan 

 

 5 

Dataset 
Number of 
Features 

Number of 
Records 

Number of 
Class 

Labels 

Breast Cancer 9 683 2 

Ecoli 7 336 2 

Glass 10 214 7 

Haberman 3 306 2 

Ionosphere 33 351 2 

Iris 4 150 3 

Vehicle 18 946 4 

Table 2: Experimentation Parameters 

Algorithm / 
Classifier Parameter Values 

Neural network 

Hidden 
neuron 

Random between: 10 to 
30 

Training 
function 

Conjugate gradient 
descent back 
propagation 

Number of 
epochs 1000 

Error goal 1e-5 

Multi class 
support vector 

machine 

Kernel 
function Radial basis function 

Iteration limit Random between: 1000 
to 5000 

Naïve Bayes Distribution 
function 

Kernels 

K-Nearest 
neighbour 

Number of 
neighbours 

Random between: 4 to 
10 

Decision tree Minimum leaf 
size No of class labels 

Discriminant 
analysis 

Kernel 
function Polynomial 

K-means Number of 
iteration 2400 

Particle swarm 
optimization 

Maximum 
iteration 100 

Stall iteration 10 
Swarm size |classifiers| 

 

 3.1 Experimental setup 
We used 10-fold cross validation for experimentation purposes. A 
set of heterogeneous classifiers i.e. ANN, kNN, SVM, DT, NB, and 
DISCR were used.  MATLAB R2017a was used for 
experimentation using default implementations of k-Means 
algorithm for clustering, PSO for optimization, and base classifiers. 
Mostly, default parameters were used in addition to that mentioned 
in Table 2. These parameters were chosen on a trial and error basis. 

3.2 Results 

In Table 3, experimentation results entailing average classification 
accuracy, standard deviation, total clusters generated by the 
algorithm, and total clusters utilized by the algorithm per dataset are 
given. The proposed ensemble classifier was tested on Breast 
Cancer, Ecoli, Glass, Haberman, Ionosphere, Iris, and Vehicle 
datasets, and it achieved classification accuracies of 0.967, 0.957, 
0.989, 0.757, 0.923, 0.977, and 0.903 respectively.  
 Across all datasets, 66% of clusters were utilized and the 
remaining 34% clusters were discarded on the basis of similarity. 
The similarity threshold of 𝑠 chosen for these experimentations was 
0.9, and this was empirically calculated on trial and error basis as it 
resulted in the highest classification accuracy. The proposed 
technique dynamically calculated the optimum value of 𝐾 for each 
dataset; however, it is crucial to observe that 𝐾 is approximately 3.5 
for most of the datasets. 

Table 3: Classification accuracy, and clustering information 
of the proposed approach  

Datasets 
Avg. 

Classification 
Accuracy 

Standard 
deviation 

Total 
Clusters 

Clusters 
Utilized 

Breast 
cancer 0.967 0.0029 17 12 

Ecoli 0.957 0.0007 3 2 

Glass 0.989 0.0009 2 1 

Haberman 0.757 0.0046 9 7 

Ionosphere 0.923 0.0016 4 3 

Iris 0.977 0.0025 2 1 

Vehicle 0.903 0.0016 11 8 

 

  

Figure 3: K with respect to number of records 

We can see from Fig. 3 that a larger value of 𝐾 is selected as the 
number of records in the dataset increases. It, is however apparent 
that the average value of 𝐾 is 3.8 for datasets having number of 
records ranging from 300 to 950.  

3

3

4

4

5

0 200 400 600 800 1000

K

Number	of	Records

Value	of	K	according	to	number	of	records
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3.3 Comparative analysis 
We compared the proposed approach with existing state of the art 
ensemble classifier methods presented in OEC-ILC [20], MPRaF-
T [31], REC [32], Bagging [29], Boosting [29] and Random Forest. 
Default implementation of Random Forest in MATLAB[33] was 
used for comparison using the “bag” parameter for fitcensemble 
function. The results are given in Table 4, with the highest 
accuracies given in bold. It can be noted that the proposed approach 
performed significantly better than other approaches in 4 out of 7 
datasets. Also observed was that the proposed ensemble classifier 
method had approximately 1.03% performance improvement over 

OEC-ILC, 1.05% over MPRaF-T, 1.09% over REC, 1.03% over 
Bagging, 1.05% over Boosting, and 1.05% over Random Forest. 
The results therefore, denote the efficacy of the proposed ensemble 
classifier. In order to test the significance of the results, we 
conducted non-parametric Wilcoxon Signed Rank Test for paired 
samples. The ranks given are (-) if the proposed approach 
outperformed the given approach, (+) if the proposed approach did 
not perform better, and (=) if there is no difference in the 
performance. The 𝑝 values of t-test are also given in Table 4, which 
were calculated with an alpha value of 0.05 and null hypothesis is 
rejected at a 𝑝 value lower than 0.05. 
 

Table 4: Comparison of classification accuracy of the proposed approach with OEC - ILC, MPRaF- T, REC, Bagging, Boosting, 
and Random Forest. Best results shown in bold. 

Datasets Proposed 
approach 

OEC - ILC 
[20] 

p=0.064 

MPRaF –T 
[31]    

p=0.0373 

REC 
[32] 

p=0.0139 

Bagging  
[29] 

p=0.031 

Boosting 
[29] 

p=0.014 

Random 
Forest     

[33] 
p=0.0232 

Breast cancer 0.967 0.965(-) 0.967(=) 0.960(-) 0.9778(+) 0.9694(+) 0.967(=) 

Ecoli 0.957 0.856(-) 0.855(-) 0.829(-) 0.8867(-) 0.8890(-) 0.865(-) 

Glass 0.989 0.966(-) 0.942(-) 0.730(-) 0.9591(-) 0.9545(-) 0.977(-) 

Haberman 0.757 0.782(+) 0.723(-) N/A 0.7420(-) 0.6637(-) 0.686(-) 

Ionosphere 0.923 0.916(-) 0.926(+) 0.917(-) 0.9136(-) 0.9000(-) 0.934(+) 

Iris 0.977 0.960(-) 0.976(-) 0.937(-) 0.9667(-) 0.9733(-) 0.946(-) 

Vehicle 0.903 0.810(-) 0.763(-) 0.725(-) 0.8424(-) 0.8096(-) 0.757(-) 
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Figure 4: Comparative analysis of classification accuracy among proposed method, OEC-ILC, MPRaf-T, REC, Bagging, Boosting, 
and Random Forest.  

4 CONCLUSIONS 
This paper presented a method for creating an optimized ensemble 
classifier. The method dynamically generated a diverse input space 
by clustering data into a set of heterogeneous clusters. Data clusters 
are generated in a cyclical approach incrementally. In each cycle, a 
different value of upper bound of clustering was selected and data 
clusters were generated. A set of heterogeneous classifiers, with 
random parameters, were trained on each cluster and an ensemble 
classifier was generated in each cycle. Generalization error of the 
ensemble classifier was calculated against validation dataset. The 
process was repeated in each cycle until the generalization error can 
no longer be minimized or no relative change can occur. The cycle 
with the lowest error was selected by the proposed method and all 
trained classifiers of that cycle were transferred to the next stage. 
The average accuracy of the pool of classifier was calculated and 
any classifier in the pool, having accuracy value lower than the 
average accuracy of the pool was discarded. The remaining 
classifiers form the ensemble classifier. In contrast with selecting a 
single value of 𝐾	for clustering, the proposed method dynamically 
selects the optimum	𝐾	, which can achieve the highest classification 
accuracy.  
 The proposed method was compared against popular and recent 
ensemble classifier methods including Bagging, Boosting, Random 
Forest, MPRaF-T, OEC-ILC, and REC, on 7 classification 
benchmark datasets from UCI repository. It was experimentally 
demonstrated that the ensemble classifier created using the proposed 
method performed significantly better on 4 out of 7 datasets. The 
higher results achieved by the proposed ensemble classifier method 
are attributed to the incorporation of data diversity by optimizing 
clustering and structural diversity by using a set of heterogeneous 
classifiers, and randomizing classifier parameters.  

 Although the proposed ensemble classifier method achieved 
high classification accuracy, we will further evaluate the proposed 
method on additional benchmark and real-world datasets. We will 
also evaluate the impact of classifier types and parameters in future 
research. 
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