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ABSTRACT
This paper introduces a new, highly asynchronous method for
surrogate-assisted optimization where it is possible to concurrently
create surrogate models, evaluate fitness functions and do parame-
ter optimization for the underlying problem, effectively eliminating
sequential workflows of other surrogate-assisted algorithms. Us-
ing optimization networks, each part of the optimization process is
exchangeable. First experiments are done for single objective bench-
mark functions, namely Ackley, Griewank, Schwefel and Rastrigin,
using problem sizes starting from 2D up to 10D, and other EGO
implementations are used as baseline for comparison. First results
show that the implemented network approach is competitive to
other EGO implementations in terms of achieved solution qualities
and more efficient in terms of execution times.
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1 INTRODUCTION
In some optimization areas, especially in simulation-based optimiza-
tion, objective evaluations can be quite expensive. Furthermore,
depending on the problem size, conventional optimization meth-
ods often require a vast amount of evaluations to be able to find
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Figure 1: Conceptual view on the implemented surrogate-
assisted optimization network.

good solutions, which makes executing the required amount of
(expensive) evaluations in order to explore and exploit the search
space and find promising regions therein infeasible due to time
constraints. Therefore, approximations of the actual objective func-
tions, so called surrogate models, are used instead, which are orders
of magnitude faster to evaluate.

In this paper, we introduce an optimization network [2] for
surrogate-assisted optimization, where both the optimization of a
surrogate model, as well as the optimization of problem parameters
is done at the same time in an asynchronous manner. To evaluate
the network approach, benchmark test functions with different
problem dimensions are optimized. In order to get a baseline for
comparison, the same problem instances are also optimized by two
implementations of efficient global optimization (EGO) [1] in R
(package: DiceOptim1) and HeuristicLab2.

2 OPTIMIZATION NETWORK
Figure 1 shows the surrogate-assisted optimization network (SAON),
which consists of a total of five nodes: The explorer randomly ex-
plores the search space, the exploiter, an ALPS-GA, concentrates
on particular areas of the search space with high expected im-
provement (EI), the expensive evaluator evaluates points using the
underlying problem, the model builder creates kriging models and
finally the orchestrator handles communication between all nodes.
Once the optimization process is started, points generated by the
exploration node are continuously sent to the expensive evalua-
tor, where they are buffered in a limited FIFO queue and wait for
evaluation. Each conducted expensive evaluation is returned to
the orchestrator. The model builder continuously creates a surro-
gate model for all already known data. The surrogate model is sent

1https://cran.r-project.org/web/packages/DiceOptim/
2https://dev.heuristiclab.com/
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Figure 2: Some best objective value histories of EGO-R, EGO-
HL and the SAON.

back to the orchestrator and, if accurate enough, used in the ex-
ploitation and expensive evaluation nodes. The points found by the
exploitation node are also sent to the expensive evaluator, where
they are buffered in a priority queue (priority is the EI) and wait
for evaluation. All parts can be executed asynchronously.

Asynchronous optimization as shown here has its advantages
and disadvantages. In synchronous optimization approaches, dif-
ferent steps are executed one after another in each iteration (cf.
the classic EGO approach: one solution is exploited using the cur-
rent model, then the model is rebuilt). If e.g. the execution time for
model building increases with the number known data points, the
iterations themselves will take longer which prolongs the search
process. Furthermore, optimizing step by step puts parts of the al-
gorithm to sleep until a next iteration is started. The asynchronous
approach presented here keeps all parts of the network busy during
the whole optimization procedure. While the explorer generates
new random solutions, the exploiter focuses on certain areas of
the search space, the expensive evaluator processes solutions and
generates more data for the model builder, which is also repeatedly
executed and continuously generates new surrogate models. In this
setup, it is less hurtful if the execution time of the model builder
increases, because all other parts of the network can run in the
meantime. Nevertheless, this asynchronous implementation also
has its drawbacks, such as race conditions that have to be taken
care of and non-reproducibility of results due to thread scheduling.

3 EXPERIMENTS & RESULTS
Four well-known benchmark test functions are tested, namely the
Ackley, Griewank, Rastrigin and Schwefel functions. The chosen
problem sizes range from 2D up to 10D. The number of maximum
expensive evaluations has been limited to 100 ∗ D. To simulate
expensiveness, an additional evaluation delay of 5 seconds per
evaluation was set. Most algorithm parameters have not been tuned.
All configurations have been tested 10 times. Detailed algorithm
configurations can be found on our additional material page3.

Figure 2 shows the course of the best objective value throughout
all expensive evaluations for both EGO implementations and the
3https://dev.heuristiclab.com/wiki/AdditionalMaterial
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Figure 3: The average execution times of all runs in all di-
mensions for EGO-R, EGO-HL and the SAON.

SAON. Dashed lines represent the actual objective values for each
repetition, solid lines show the median curves. Figure 3 shows the
average execution times.

EGO-R was faster, but inferior in terms of achieved qualities.
EGO-HL consumed the most runtime, but yielded the best results
in general. Quality-wise, the SAONwas comparable to EGO-HL, but
vastly outperformed both in terms of runtime (mind the logarithmic
scale in Figure 3). The differences between the EGO variants can
have a number of reasons. While EGO-R employs the usual BFGS
for optimizing EI, EGO-HL uses a CMA-ES. Unlike in EGO-R, EGO-
HL restarts the model building process if it resulted in a weak model.
Usually, building kriging models takes longer when more data is
known, but this does not seem to heavily impact EGO-R. The SAON
applies parameter optimization, expensive evaluation and model
building in an asynchronous manner. Therefore, e.g. optimizing
EI does not block kriging, or vice versa, which positively effects
execution time.

4 CONCLUSION
Benchmark test functions have been used to evaluate and compare
the performance of a surrogate-assisted optimization network. The
achieved results are promising and show that the network approach
is competitive compared to other EGO implementations. Given the
basic principle of optimization networks, it is possible to chose dif-
ferent algorithms for exploration, exploitation and model building.
Future work includes testing the SAON with different algorithms
and conduct experiments with more than one expensive evaluator
in order to measure scalability.
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