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ABSTRACT

Understanding the properties of neural network error landscapes
is an important problem faced by the neural network research
community. A few attempts have been made in the past to gather
insight about neural network error landscapes using fitness land-
scape analysis techniques. However, most fitness landscape metrics
rely on the analysis of random samples, which may not represent
the high-dimensional neural network search spaces well. If the
random samples do not include areas of good fitness, then the pres-
ence of local optima and/or saddle points cannot be quantified.
This paper proposes a progressive gradient walk as an alternative
sampling algorithm for neural network error landscape analysis.
Experiments show that the proposed walk captures areas of good
fitness significantly better than the random walks.
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1 INTRODUCTION

Neural networks (NNs) are mathematical models capable of rep-
resenting an arbitrary non-linear mapping from inputs to out-
puts [1, 8]. Due to their non-linear information capacity, NNs have
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enjoyed unprecedented success in application areas such as im-
age and speech recognition [6, 17], sequence modelling [30], and
function approximation [12], amongst others. However, despite
the practical success of NNs, certain theoretical properties of these
models remain poorly understood. Specifically, the landscape prop-
erties of the objective functions associated with supervised NN
training are hard to quantify and visualise due to the inherent high
dimensionality of the search space [4, 25]. As a result, the influence
of various NN parameters on the resulting error surface remains
unknown.

Fitness landscape analysis (FLA) provides an excellent means
of studying NN error landscapes under various parameter settings
and algorithm contexts. FLA comprises of a large set of techniques
designed to capture and quantify significant topographical features
of fitness landscapes such as ruggedness, neutrality, modality, dis-
persion, and searchability [18, 24]. The FLA techniques can be used
to better understand the problem at hand, and to aid the process of
algorithm selection and dynamic parameter adaptation [13, 18].

The concept of FLA comes from the evolutionary context, and
most metrics are defined for discrete search spaces [14, 21]. Fitness
landscape properties are estimated by taking random samples of
the search space, calculating the objective function value for every
point in each sample, and analysing the relationship between the
spatial and the qualitative characteristics of the sampled points.
This concept can easily be translated to continuous search spaces,
so long as an adequate sampling method is defined [20]. FLA of
continuous fitness landscapes has attracted a significant amount of
research recently [18, 19, 22, 29].

NN training is a continuous optimisation problem, which can
be studied using FLA. The search space of a NN is made up of
all possible real-valued weight combinations, where each weight
combination corresponds to a certain measure of error. Training
algorithms seek to minimise the error by searching for an opti-
mal weight combination. Thus, the landscape of the error function
defined in terms of the weights constitutes the fitness landscape,
also referred to as the error landscape. Several studies have been
conducted, showing FLA to be a useful tool for analysis and visual-
isation of the NN error surfaces [2, 3, 25, 31].

However, an earlier study by Smith et al [26] has shown that,
given a difficult optimisation problem with a limited number of
good fitness areas, random sampling may fail to capture the unique
features of the landscape. Indeed, if the random sample fails to
capture any points of good fitness, it will not be possible for the
FLA metrics to correctly quantify properties such as modality and
the presence of saddle points. In the context of NNs, quantifying
local optima and saddle points is of very high interest, since there
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is theoretical evidence for the prevalence of the latter over the
former [5, 11], but no empirical evidence exists to date.

This study proposes a randomised gradient sampling technique
based on the progressive random walk [20]. The proposed algorithm
uses the error function gradient to choose the general direction of
each step. The magnitude of the step is randomised within a closed
interval per dimension, thus introducing stochasticity. Therefore,
the proposed sampling is biased towards the search space areas that
contain high fitness solutions. The added stochasticity makes the
sampling general enough to not be algorithm-specific, and allows
for the coverage of poor fitness as well as good fitness areas.

The rest of the paper is structured as follows: Section 2 discusses
the problem of random and adaptive sampling in continuous search
spaces, and proposes the progressive gradient walk for neural net-
work fitness landscape analysis. Section 3 presents the empirical
study of the proposed gradient walk compared to two random walks
commonly used in the FLA literature. Section 4 concludes the paper
and outlines possible directions for future work.

2 RANDOM WALKS

This section describes the concept of a random walk, and relates this
notion to fitness landscape analysis. Section 2.1 discusses the ran-
dom walk definition, Section 2.2 discusses the concept of adaptive
walk in discrete spaces, Section 2.3 discusses how random and adap-
tive walks translate to continuous search spaces, and Section 2.4
proposes a progressive gradient walk as the most efficient way to
ensure that areas of good fitness are present in the sample.

2.1 Definition of a Random Walk

A random walk of length n is a sequence of points in an m-dimensional
search space, obtained by starting at a certain point in the search
space, Xp, and generating the next point, ¥1, by randomly selecting
a neighbour of Xj. In general, every ¥;1 is obtained by randomly
selecting a neighbour of ¥;. Thus, a random walk X, is a sequence
of points (X, %1, . . . ,Xn), where every ¥;41 is derived from ¥; using
a neighbourhood function, ¥j+1 < N(X;).

Random walks are used in multiple scientific fields such as
physics, biology, and economics [23, 27]. In the context of FLA,
random walks provide an alternative to random sampling from
a given probability distribution [20, 34]. As opposed to a random
sample, where individual points in the sample are spatially uncor-
related, random walks generate spatially correlated samples. It is
precisely the spatial correlation between the individual steps of the
sample that can be exploited to obtain descriptive information such
as the degree of ruggedness, neutrality, or gradients present in the
search space [18].

2.2 Adaptive Walks

The unbiased nature of random walks ensures that each point in
the search space has an approximately equal probability of being
selected. However, if the purpose of the analysis is to quantify the
presence and extent of local minima, such a randomised approach
may not prove very useful. Indeed, if a random sample does not
contain any points associated with good fitness, no conclusions
about the landscape features of the areas associated with good
fitness can be made. Thus, fitness landscape characteristics are
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often derived from an adaptive rather than a random walk [15, 24].
Adaptive walks were originally defined for binary problems. To
perform an adaptive walk, a neighbour ¥ of ¥; is randomly chosen.
The neighbour ¥} is accepted as the next step of the walk, Xj41, if
and only if the fitness of ¥} is better than the fitness of X; [15]. In the
context of genetic algorithms, a neighbour of ¥; can be generated
by applying a random mutation to ¥j, i.e. randomly flipping one
or more bits of X;. This approach is equivalent to stochastic hill
climbing in a binary space. Kauffman and Levin [15] estimated the
ruggedness of the landscapes based on the average length of the
adaptive walk. A shorter average length would indicate a rugged
landscape, whereas a longer average length would be indicative of
larger areas of consistently decreasing fitness.

2.3 Random and Adaptive Walks in
Continuous Search Spaces

Discrete space sampling can be performed exhaustively, as each
point ¥; will at all times have a finite number of neighbours. This
is not the case in continuous spaces, where every point ¥; has an
infinite number of neighbours in every dimension. Therefore, both
random walks and adaptive walks can only be used in continuous
spaces if neighbour selection is defined as a finite process.

The neighbourhood of a point ¥; in a continuous m-dimensional
space can be defined as all points within a certain distance from
¥i. Malan and Engelbrecht [20] proposed the following hypercube
definition of the continuous neighbourhood of X;:

fk eEN(%) = |xkj—xij| <s,Vjef{l,...,m} (1)

where % is a neighbour of ¥; if and only if for every dimension j
the absolute difference between x ; and x;; does not exceed some s.
Using Equation 1, a single step of a simple random walk can
be defined as randomly generating an m-dimensional step vector
i, such that yxj € [=s,s] ¥j € {1,...,m}, and adding i to X to
generate Xj41:
Xiv1 = X + g 2
A simple random walk is isotropic, i.e. not biased towards a partic-
ular direction, since the direction of each step is randomised. An
anisotropic, or directionally biased variant of a random walk was
proposed by Malan and Engelbrecht [20], called a progressive ran-
dom walk. The progressive random walk assigns a randomly chosen
direction bias to each walk in order to improve overall search space
coverage. Direction bias is represented by an m-dimensional ran-
domly generated bit mask b.A single step of a progressive random
walk can be defined as randomly generating an m-dimensional step
vector ik, such that yi; € [0,s] Vj € {1,...,m}, and setting the
sign of each yy ; according to the corresponding b;:

—Ygj, ifbj =0.
ykj={ / !

Ykj»  otherwise.

Equation 2 can then be used to generate ¥;+1. Thus, the mag-
nitude of the step is randomised per dimension, but the overall
direction of movement remains persistent. For a more detailed
discussion of the algorithm, refer to [20].

Both the simple random walk and the progressive random walk
do not take the fitness of the neighbours into account when gen-
erating the next step ¥;+1. Smith et al [26] have shown that when
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the distribution of fitness values across the search space is highly
skewed towards poor fitness, random sampling may produce an
inadequate sample that does not capture enough points of high
fitness. Thus, an adaptive walk for continuous search spaces is
necessary.

Adaptive walks in discrete spaces rely on random mutations of
the individual. The same approach can be employed in continuous
spaces, thus emulating stochastic hill climbing. Mutations can be
performed by adding random noise in one or more dimensions. If
the mutated position has a higher fitness than the current position,
the mutated position will be added to the walk. However, if the
search space is high-dimensional and skewed towards poor fitness
areas, such random mutations are likely to not produce neighbours
of higher fitness. Thus, stochastic hill climbing in continuous search
spaces will be computationally expensive, and may produce very
short walks that neither adequately cover the search space, nor find
areas of high fitness.

Particle swarm optimisation (PSO) has also been proposed in the
past as a sampling method. Each particle in the swarm represents a
candidate solution, and the next step of the walk can be defined in
terms of the next step of the global best particle in the swarm [18].
There are two problems with this approach: Firstly, PSO sampling
is algorithm-specific, and the trajectory will be highly sensitive to
algorithm parameters. Secondly, PSO has been shown to exhibit di-
vergent behaviour on NN training [32], which yields this algorithm
a suboptimal choice for NN error landscape sampling.

A number of attempts have been made to study the error surface
of NNs from the perspective of the gradient descent trajectory [9,
10, 16]. Gradient descent uses the numerical gradient of the error
function, thus the fitness is likely to increase per step, provided
there is an incline. Similarly to PSO, analysing the trajectory of
gradient descent is algorithm-specific. Steep gradients combined
with the learning rate parameter may induce large steps through the
search space, while weak gradients may produce small steps. Thus,
the step sizes are bound to be inconsistent, providing an unrealistic
view of the search space. Additionally, the lack of stochasticity
makes gradient descent unlikely to investigate the areas of poor
and average fitness.

This study proposes to combine the gradient information avail-
able in case of NNs with the stochasticity of the progressive random
walk. The proposed algorithm is described in the next section.

2.4 Progressive Gradient Walk

Gradient information, when available, is clearly the most direct way
of performing hill-climbing in a continuous search space. In addition
to being a reliable source of direction, the gradient is also more effi-
cient to compute than choosing the best individual in a population.
Population-based approaches such as PSO require each individual
to be evaluated separately, whereas the gradient is computed once
per step. Computational efficiency is an important concern for NNs,
since NN search spaces are inherently high-dimensional.

To alleviate gradient descent specificity of the proposed adaptive
walk, and to study the error landscape as a whole rather than an
algorithm trajectory, the following approach is proposed:

(1) Gradient vector gj is calculated for point X;.
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(2) A binary direction mask b is extracted from gi:

by = 0, ifgij<0.
Y 1, otherwise.

(3) Progressive random walk algorithm is used to generate X;41.

The progressive random walk algorithm requires two parameters
to be set: maximum dimension-wise step size, s, and the boundaries
of the search space. The progressive gradient walk requires the
same two parameters. Behaviour of the progressive gradient walk
with no search space boundaries is also investigated in this paper.

The next section provides an empirical analysis of the proposed
gradient walk on a typical NN error surface.

3 EMPIRICAL ANALYSIS

The aim of this study is to illustrate that random sampling fails
to capture high fitness solutions, and that the proposed progres-
sive gradient walk generates more representative samples than
the random walks. The rest of this section details the experiments
conducted to illustrate these points. Section 3.1 outlines the dataset
used. Section 3.2 describes the NN architecture employed. Sec-
tion 3.3 provides a discussion of the obtained results.

3.1 Dataset

The XOR problem was chosen for the purpose of this study as the
simplest classification problem requiring a non-linear solution. The
entire dataset can be seen in Table 1. Despite being a seemingly
trivial problem, the XOR is not linearly separable, and generates a
complex error landscape that is still not fully understood [11, 28].

Table 1: The XOR Problem Dataset

Input1 Input2 Output
0 0 0

0 1 1
1 0 1
1 1 0

3.2 Neural Network Architecture

Given the classic XOR problem, a corresponding fully-connected
feed-forward NN architecture was chosen. The NN comprised of
two input units, two hidden units, and one output unit [28]. Bias
weights were associated with the hidden and the output units. The
total number of weights was equal to 9. The sigmoid activation
function was employed in the hidden and the output units. The
mean squared error was used as an error metric to calculate the
gradients and the fitness of any given point in the search space.

3.3 Experiments

Random sampling is typically performed within some predefined
bounds. For the purpose of this study, the search space bounds
were set to [-10,10]. This range was chosen as the range likely
to contain high fitness solutions [3]. Since the granularity of the
walk, i.e. the average step size, has a bearing on the resulting FLA
metrics [19], two granularity settings were used throughout the
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(d) Random walk, macro

(e) Progressive random walk, macro

(f) Progressive gradient walk, macro

Figure 1: Plots of the positions of paired dimensions of sample walks. Micro walks were performed over 500 steps. Macro

walks were performed over 50 steps.

experiments: micro, where the maximum step size was set to 1% of
the search space, and macro, where the maximum step size was set
to 10% of the search space.

To illustrate the basic movement dynamics of the various walks,
a sample of points obtained by a random walk, a progressive ran-
dom walk, and a progressive gradient walk under micro and macro
settings are shown in Figure 1. Each walk was performed in 9 di-
mensions corresponding to the NN weights. The first 6 dimensions
of 2 independent walks are plotted in pairs along the axes. Thus,
each axis corresponds to a weight of the NN, and the depicted sub-
set of a walk illustrates how the walk progressed through a subset
of 2 of the 9 dimensions. Micro walks performed 500 steps, and
macro walks performed 50 steps. It is evident from Figure 1 that the
progressive gradient walk is biased compared to the random walks,
but does perform a reasonable amount of exploration. Smaller step
size leads to more consistent trajectories (see Figure 1c), indicating
that the surface is locally smooth. Previous theoretical studies have
indicated that the NN error landscapes are comprised of plateaus
and narrow ravines [10, 16]. The progressive gradient walk may be
exploring these consistent structures.

To estimate the search space coverage of the three walks, 10,000
points were generated per macro walk, and 100,000 points were
generated per micro walk. A total of 100 walks were performed
under both the micro and macro setting. Micro walks performed
1000 steps each, and macro walks performed 100 steps each. The
values across all dimensions were plotted in histograms of 100

equally sized bins each. The resulting histograms are shown in
Figure 2. Mean and standard deviation values of the samples are
also displayed above each histogram. While the random and the
progressive random walks covered the search space near-uniformly
(mean close to zero), the gradient walk leaned strongly towards
the borders of the search space, especially in the micro case. Even
though the walks were not allowed to leave the search space, it
appears that the gradient direction often pointed outwards, thus
causing the gradient walks to cluster around the boundaries. This
observation is in line with the previous studies, proposing that
the NN error landscapes have a “starfish” or “sombrero” structure,
with ravines of lower error leading outwards [7, 16]. A question
thus needs to be answered: should NN error landscapes be studied
within predefined boundaries? Previous studies have argued that
the boundaries are necessary, since random sampling cannot be
performed in unbounded space [3, 20]. However, if progressive
gradient sampling is used instead of random sampling, the gra-
dient information should lead the walks to “interesting” areas of
the landscape, rather than causing meaningless wandering. Un-
bounded progressive gradient sampling has been performed, and
the resulting walk samples are shown in Figures 3a and 3d. In both
micro and macro settings, the gradient walks tended to move away
from the origin, once again aligning with the “starfish” structure.
The search space coverage histograms for the unbounded gradient
walks are shown in Figures 3b and 3e. Unbounded walks exhibited
less clustering than bounded walks, and covered the search space



Progressive Gradient Walk for Neural Network Fitness Landscape Analysis

better. Spikes associated with particular ranges may be explained
by the presence of local minima or saddle points that could have
trapped the gradient walk.

Progressive gradient walks are suggested as a method of search
space sampling that is more likely to find areas of good fitness
than the random walks. To estimate the fitness coverage, the fitness
frequency distribution of the sample points obtained by each of the
walks under micro and macro setting were plotted in histograms
of 100 equally-sized bins. The resulting histograms are shown in
Figure 4. The means and standard deviations of each distribution are
shown above the histograms. It is evident from Figure 4 that both the
random and the progressive random walk failed to discover areas
of good fitness. For both random sampling techniques, the average
MSE was around 0.45, with a very sharp peak on the average value,
and a heavy tail on the left, corresponding to areas of above average
fitness. The lowest error sampled by the random walks hovered
around 0.2. Thus, the random walks have sampled mostly average
(random guess) fitness areas, and the areas of optimal fitness (near
zero) were almost not sampled at all. Thus, whatever conclusions
about the fitness landscapes are made based on these random walks,
the conclusions would only be applicable to the areas of random
guess fitness. These areas are the least interesting areas from an
optimisation algorithm perspective, and an optimisation algorithm
is expected to spend the least amount of time in those areas. Thus,
the usefulness of studying low fitness areas is highly doubtful.

A progressive gradient walk, on the other hand, has success-
fully captured error values around zero (optimal fitness). Figures 4c
and 4f indicate that the mean error of the gradient walks was be-
low the lowest error of the random walks. Interestingly, both the
micro and the macro gradient walks exhibited peaks around spe-
cific error values. This can be an indication of the presence of local
minima or saddle points at those fitness values. Macro progressive
gradient walk exhibited a good spread of fitness values between
0.0 and 0.5, indicating that the macro samples may have captured
the information relevant to a potential training algorithm. Fitness
frequency histograms have also been plotted for the unbounded
gradient walks, shown in Figures 3¢ and 3f. Unbounded gradient
walks have captured a similar distribution of fitness values as the
bounded gradient walks, exhibiting similar peaks. The peaks may
be indicative of the modality of the error landscape. Future research
will investigate this correspondence.

Spread of fitness values was also calculated in terms of classifi-
cation accuracy. Since the XOR problem has only four data points,
the set of possible classification accuracy values is discrete, and is
comprised of the following values: {0.0,0.25,0.5,0.75,1}, where 0.0
indicates incorrect output for each pattern, and 1.0 indicates correct
output for all patterns. Frequency histogram for the various walks
under micro and macro setting is shown in Figure 5. It is evident
from Figure 5 that the random walks failed to capture areas of 100%
accuracy, and sampled mostly average, or random guess accuracy
points instead. Gradient walks, on the other hand, sampled mostly
above average accuracy and 100% accuracy. Macro setting yielded
a better coverage of average accuracy by the gradient walks. Once
again, the gradient walks captured the areas of the landscape that
are of a higher interest to a potential optimisation algorithm.
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Fitness Landscape Metrics. Since progressive gradient walks cap-
ture a different distribution of fitness values compared to the ran-
dom walks, the FLA metrics are expected to yield different results
when calculated over the gradient walks. To test this hypothesis,
three metrics were used, originally proposed as metrics calculated
over the random walks. The metrics are:

(1) First Entropic Measure of Ruggedness (FEM): Malan
and Engelbrecht [19] proposed two ruggedness measures
based on Vassilev’s [33] first entropic measure (FEM). These
measures quantify the change in fitness values based on the
entropy of the random walk. The value of FEM is continuous
and ranges between 0 and 1, where 0 indicates a perfectly
smooth landscape, and 1 indicates maximal ruggedness.

(2) Neutrality Measures M1 and M2: Two random walk-based
neutrality metrics were proposed in [31], M1 and M2. M1
measures the proportion of neutral 3-point structures in a
walk, and M2 measures the relative length of the largest
sequence of neutral steps in the walk. A step is classified as
neutral if the fitness does not change by more than a certain
specified threshold value. Both M1 and M2 range between 0
and 1, where 0 indicates a landscape with no neutral regions,
and 1 indicates a completely flat landscape.

The resulting FEM, M1, and M2 values calculated over the various
walks are shown in Table 2. Table 2 shows average values obtained
over 30 independent runs, together with the corresponding stan-
dard deviations shown in parenthesis. Each run comprised of 100
walks. Each micro walk performed 1000 steps, and each macro walk
performed 100 steps.

Table 2 shows that both bounded and unbounded progressive
gradient walks exhibited a higher disparity between the micro and
the macro FEM values than the random walks. Indeed, the random
sampling algorithms have covered more or less the same areas
of average fitness, while the gradient walks focused on areas of
higher fitness. The maximal size of the step had an influence on the
resulting FEM, since the error landscape is smooth when observed
locally, and exhibits ruggedness when observed at a larger scale.
Perhaps FEM values can be used to suggest an appropriate step
size scaling for NN optimisation algorithms.

Table 2 shows that the values of M1 were more or less the same
for all the bounded walks, and only the unbounded gradient walk
captured areas of increased neutrality. Indeed, if the gradient walk
is allowed to leave the bounded search space, it is likely to fall into
one of the “ravines” that the NN landscapes are known to contain.
Thus, the unbounded gradient walk captured a property of the NN
landscape that the other walks did not.

Values of M2 shown in Table 2 indicate that none of the walks
have experienced a long stretch of unchanging fitness values. Thus,
the progressive gradient walk did not simply converge on a single
point in the search space and sample it indefinitely.

These results are presented here simply to indicate that the
different walks do indeed capture different properties of the NN
error landscapes, and analysing the gradient walks rather than
the random walks may highlight more interesting and important
features of the landscape than that of the unbiased random walks.
Development of searchability and modality metrics based on the
progressive gradient walk is left for future research.
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(a) Random walk, micro
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(d) Random walk, macro
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(b) Progressive random walk, micro
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(e) Progressive random walk, macro
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(c) Progressive gradient walk, micro
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(f) Progressive gradient walk, macro

Figure 2: Frequency diagrams illustrating search space coverage by the various walks.
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Figure 3: Unbounded progressive gradient walk
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Figure 4: Frequency diagrams of the fitness (MSE) a
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Figure 5: Frequency diagrams of the classification accuracy associated with the samples obtained by the various walks.

4 CONCLUSIONS

This paper proposed a progressive gradient walk as an adaptive
sampling mechanism for the analysis of neural network fitness
landscapes. The gradient walk is more computationally efficient
than a population-based adaptive walk, and has better guarantees
of finding areas of high fitness. The gradient information is used to
calculate the direction of the next step, but the magnitude of the
step is randomised per dimension within the given bounds, thus
adding stochasticity and preventing convergence.

Both bounded and unbounded progressive gradient walks were
compared to the random and progressive random walks in terms of
search space coverage and fitness coverage. It was shown that, even
though random walks provide wider search space coverage, they
fail to capture areas of high fitness. The gradient walk, on the other
hand, is strongly biased towards the areas of high fitness, while
also covering some of the poor fitness areas. Thus, the gradient
walk is more representative of the search space in the context of
applicability to function optimisation. In addition, the unbounded
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Table 2: FLA metrics obtained over various walks

Random Progressive Gradient Unbounded
FEM 0.41178 0.30623 0.20239 0.20234
(micro)  (0.02238)  (0.00989)  (0.00263)  0.00263
FEM 0.47964 0.46006 0.65177 0.56348
(macro) (0.01450)  (0.00611)  (0.00707)  (0.01880)
M1 0.01897 0.02956 0.01003 0.36281
(micro)  (0.01192)  (0.00502)  (0.01287)  (0.03622)
M1 0.00310 0.00238 0.00967 0.12001
(macro) (0.00194)  (0.00084)  (0.00964)  (0.02479)
M2 0.00635 0.01095 0.00003 0.00142
(micro)  (0.00398)  (0.00162)  (0.00003)  (0.00026)
M2 0.00252 0.00188 0.00000 0.01999
(macro) (0.00149)  (0.00064)  (0.00002)  (0.01042)

progressive gradient walk seems to provide a truer picture of the
error landscape than the bounded gradient walk.

Finally, a selection of FLA metrics were calculated over the ran-
dom and the gradient walks. While the obtained FLA metrics did
not disagree with one another, the FLA metrics obtained from the
gradient walks seemed to capture the specific known characteristics
of NN error landscapes with better precision.

Future work will involve a scalability study of the proposed
gradient walk. Extensive experiments will be conducted on more
complex NN problems and architectures. The presence of high
fitness points in the gradient samples also allows for development
of searchability, modality, and dispersion metrics for NN error
landscapes.
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