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ABSTRACT
XCS and its derivatives are some of the most prominent Learning
Classifier Systems (LCSs). Since XCS’s design was done “algorithm
first”, there existed no formal basis at its inception. Over the past 20
years, several publications analysed parts of the system theoretically
but the only approach to a more holistic theory of LCSs in general
was never fully adapted. We present an algebraic formalisation of
XCS that facilitates formal reasoning about the system and serves
as a complement to earlier algorithmic descriptions. Our work is
meant to give a fresh impetus to XCS and LCS theory. Since we use
the programming language Haskell for our formal expressions we
also describe a new abstract XCS framework in the process.
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•Theory of computation→Design and analysis of algorithms;
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1 INTRODUCTION
LCSs combine evolutionary algorithms and reinforcement learn-
ing [2]. One of the most prominent of these algorithms is XCS,
which was originally devised by Wilson in 1995 [23]. In spite of
two decades of XCS-related research, there are only few theoreti-
cal findings about its workings—many publications on the matter
either use vast simplifications or only regard parts of the system.
Additionally, most of their results have only been validated through
experiments instead of through formal proofs. The main reason
for this might be that XCS lacked a formal basis right from the
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beginning; the description of the system which nearly all further re-
search built on was algorithmic [7], which makes formal reasoning
difficult [13].

One notable exception is the work by Drugowitsch and Barry [9,
10] who approached LCSs in a manner similar to how other re-
inforcement learning algorithms like Q-learning were designed.
While the rest of the research community went about XCS in a top-
down way (given Wilson’s XCS algorithm, deduce which problems
can be learned and which modifications to the algorithm improve
learning etc.), they developed a theory from the bottom up (given
a reinforcement learning problem, what properties do classifiers
have and how should they be combined by an LCS). This way they
provided a profound formal basis for LCSs in general from which
they were also able to deduce properties of and improvements for
XCS. However, while the work of Drugowitsch and Barry has been
cited several times in different publications regarding XCS, their
general results have not been directly built upon any further in the
XCS context (albeit they were e. g. in the UCS setting [11]); reasons
for this are probably their conceptual separation from other publi-
cations on XCS and their, in comparison to other XCS-related work,
higher mathematical complexity. Nevertheless, since the results of
Drugowitsch and Barry are definitely valuable for formal reasoning
about XCS, we think that they need to be integrated more tightly
into the body of XCS research in the long run.

In the present paper, we use the functional programming lan-
guage Haskell (Section 2) to provide a new top-down formalisation
of XCS that is based on algebraic instead of algorithmic descriptions
(Section 3). We accurately model XCS’s different parts and their
interdependencies in a formal and mathematically pure way. Our
work facilitates formal reasoning about XCS in the future and is
meant to reignite the theoretic discourse. The long term vision is
to be able to perform formal proofs about which kinds of problems
XCS is capable of learning and which parameters should be used to
do so as well as to close the gap to the work of Drugowitsch and
Barry.

2 FORMALISATION USING HASKELL
The algebraic formalisation in this paper is carried out using the
functional programming language Haskell [18]. While the formal
definition of that language is deliberately independent of any im-
plementation, the dialect defined by the GHC (Glasgow Haskell
Compiler) [8] has become the de-facto standard and is used here
as well. For some of the more abstract expressions, a number of
often-used language extensions included in the GHC is needed.

The main requirement for the formalisation is that it has to
be strictly mathematical. This is the most important difference to
XCS’s earlier algorithmic description [7] since a purely mathemati-
cal description can be reasoned about far more easily. In general,
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formal reasoning about algorithms is often only possible with sig-
nificant overhead such as Hoare logic [13]; for XCS this is even less
suitable as it is a complex algorithm making use of randomness and
revolving around a stateful collection of objects [7]. By making an
intermediate step towards a formal mathematical description, the
effort can be reduced.

In addition, a better abstract understanding of the different parts
of the system is accomplished: While XCS is usually described with
fixed types of observations, conditions and actions (e. g. bit strings
for observations and actions, ternary strings for conditions), our
formalisation deliberately stays on an abstract level that does not
dictate the structure of these primitives. This is done using type
variables and classes instead of concrete types wherever possible
(and sensible). In an upcoming work we plan to show how different
interfaces (e. g. the original bit strings or XCSF) can be expressed
using our framework.

Haskell is preferred over the usual mathematical notation out of
several reasons:
• Valid Haskell code is type safe [18] meaning that as long as
the expressions of this paper can be compiled, they are at
least correct regarding their type—reducing the amount of
possible mistakes.
• Haskell syntax is very similar to conventional mathematical
notation anyway.
• A usable implementation of the formalised concepts is pro-
vided “automatically”.

The last argument is stressed further by the fact that Haskell sup-
ports literate programming [15]. This technique was made use of
when writing this paper, which means that its source code can
be compiled to a LATEX document as well as to a working Haskell
library that can be tried out and experimented with. We aim to
publish that library in the future.

For the ones not proficient in Haskell a few differences between
Haskell’s and conventional mathematical notation need to be poin-
ted out (for more details, consider the standard [18] or a Haskell
textbook [20]).
• x :: t means that the value x has the type t.
• Function application: f x corresponds to f (x), f ′ x y z
corresponds to f (x ,y, z).
• There are functions with a similar syntax at the type level
as well (called type constructors).
• Haskell supports polymorphism via a concept called type
classes. Such a class defines which functions are necessary
for a type to be part of it.
• Context expressions such as “(T m) ⇒ . . . ” may be read as
“given a type m that is in type class T , . . . ”.
• f ◦g $ x corresponds to (f ◦д)(x), the <$> operator is similar
( $ is a function of type (a→ b) → a→ b with low operator
precedence, <$> has type Functor f ⇒ (a → b) → f a →
f b).

An important concept used in many functional programming
languages which is vital to this work is that of a monad. Monads
are a clean mathematical means to deal with the non-mathematical
parts of a formalisation (e. g. parts that can not be “controlled”—
i. e., themselves formalised—such as external systems). An in-depth
discussion of monads is beyond the scope of this paper; instead,

the next paragraphs try to provide the reader with an intuitive but
sufficient understanding.

A monad is essentially a type constructor and several functions
with certain properties [22]. Given a monad with type constructor
m, a monadic value of type m t, can be thought of as a computation
that results in a value of type t; until the computation is evaluated,
the underlying value of type t only makes sense in the context
provided by m.

An example for one kind of monad featured in this work are
random monads [24]. Functions have the property to, given the
same inputs, always return the same outputs; therefore, no function
returning random values exists. However, a function of type

(MonadRandom m) ⇒ getRandom ::m Real

is mathematically pure: instead of returning a value, it returns a
monadic value—a computation that returns a real number. The
type classMonadRandom abstracts from the actual implementation
of the random monad (e. g. from the choice of random generator
implementation).

To evaluate a monadic value, the underlying computation has to
be run. For this, functions like

evalRand :: Rand g a→ g → a

exist (g is the type of a random generator, Rand g is the type
constructor of a certain random monad).

Monadic values from the same monad can be combined in a
natural way. Therefore, the aforementioned instantiation of actual
values is usually done exactly once, namely at the upmost level
directly below the main function of a Haskell application.

3 ALGEBRAIC DESCRIPTION OF XCS
This section presents our algebraic formalisation of XCS; at that,
we cover both the versions for single- as well as for multi-step
problems (we call them single- and multi-step XCS respectively).
Both these algorithms were devised by Butz and Wilson in their
algorithmic description of XCS [7]. As we closely follow their work
semantically, we will often only show the signatures of functions—
their implementation can be deduced directly from the involved
types and the corresponding algorithmic description.

Large parts of the formalisation are relevant to single- as well
as multi-step XCS; in that case we will simply talk about XCS. The
phrase an XCS always refers to a certain instance of an extended
classifier system whereas the term XCS (without article) refers to
the XCS algorithm as a whole.

3.1 Abstract system monad
An XCS interacts with a system external to it (in the following
simply called “the system”) by repeatedly receiving a description
of that system’s current state and, based on that, initiating actions
to be carried out by it. After each executed action, the XCS gets
assigned a reward, which could for example be based on the dif-
ference in system performance gained through that action. Butz
and Wilson proposed that this reward is issued by a reinforcement
component which evaluates the system’s performance [7]; however,
from the XCS’s perspective, it might as well come directly from
the system itself. While it may not always be reasonable to assume
that the system is able to determine its own performance, this is a
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trivial abstraction since the reinforcement component evaluating
the system’s performance has to be interconnected tightly with it
to do so.

Another capability of the system is to signal whether the end
of problem (EOP) is reached. Strictly speaking, this mechanism is
only necessary for finite multi-step problems (in the last step, an
additional update is performed). However, a systemmay also simply
constantly return False here. The EOP can be used to signal when
a learning phase ends as well.

We now can define a type class for the types of systems1:

class (Monad m) ⇒ MonadSystem o a m where
observe ::m o
act :: a→ m Reward
eop ::m Bool

For two given types o and a, the type m is a system if the three
functions observe, act and eop are implemented for it. At that, m is
required to be a monad (the system monad) while o and a are type
variables that can be interpreted as the types for observations and
actions respectively. The system monad abstracts away the internal
state of the system which is not under the control of the XCS.
It works similarly to the random monad introduced in Section 2;
instead of providing a context of randomness, it provides the context
of the external system’s current state.

The previous definition shows the level of abstraction of our
formalisation: neither the actual structure of actions, observations
nor, as can be seen in the next section, of conditions is fixed. Instead,
only the operations these types have to support are specified.

3.2 Conditions, actions, detectors and mutators
For a type c to be usable as the type for conditions its values have
to be comparable (the combination of the type classes Eq and Ord
require an equality relation as well as a partial order to be defined
on c). The generalises function relates two conditions c1 and c2
in terms of whether c1 matches all observations that c2 matches.
crossover1 performs a single-point crossover on two conditions,
returning two new conditions. Since most implementations will
want to choose the crossover position at random, the resulting pair
of conditions is wrapped into the random monad. Given a function
for single-point crossover, a function for n-point crossover can be
derived through recursion and a monad combinator.

class (Eq c,Ord c) ⇒ Condition c where
generalises :: c → c → Bool
crossover1 :: (MonadRandom m) ⇒ c → c → m (c, c)
crossovern :: (MonadRandom m) ⇒ c → c → m (c, c)
crossovern c1 c2
| n ⩽ 0 = return (c1, c2)
| otherwise =
crossover1 c1 c2 >>= uncurry (crossovern−1)

The Detector type class defines the relationship between the
types for conditions and observations: An XCS matches incoming
observations of type o against conditions of type c; therefore a
function matchedBy is required. In order to support covering, a
1Slightly simplified, functional dependencies [12] are required for this expression to
pass the type checker.

coverConditionp# function must be defined that relates a probability
p# for a higher generality (e. g. using a wildcard in a bit string
condition) and an observation of type o to a random condition of
type c. Covering usually requires randomness thus the random
monad context.

class (Condition c) ⇒ Detector o c where
matchedBy :: o→ c → Bool
coverConditionp# :: (MonadRandom m) ⇒ o→ m c

Just like types for conditions, types for actions are required to
be comparable. The only other requirement is a function called
otherThan that is used for covering: Given a list of actions, it either
returns an action not in that list wrapped in a Just or Nothing (if
the list of actions contains all possible actions, no other action can
be returned). This is expressed using the Maybe type constructor
which augments a type with the possibility to not have a value. If
multiple allowed actions are not in the list, an implementation of
otherThan may use randomness to select one.

class (Eq a,Ord a) ⇒ Action a where
otherThan :: (MonadRandom m) ⇒ [a] → m (Maybe a)

A rule consists of a condition and an action; this simplifies nota-
tion in many cases. Since conditions and actions are comparable,
so is a rule.

data Rule c a = Rule
{condition :: c
, action :: a}
deriving (Eq,Ord)

To support the genetic mutation operation, any used combi-
nation of condition and action types is required to implement a
mutateµ function which is specified by the Mutator type class.
Given a probability µ for a gene’s mutation and an observation
of type o that the result needs to conform to (mutation never makes
a classifier leave the current niche), this function returns a rule
with a mutated condition and action.

class (Condition c,Action a) ⇒ Mutator o c a where
mutateµ :: (MonadRandom m) ⇒

o→ Rule c a→ m (Rule c a)

3.3 Classifiers
A classifier consists of a rule and data about its validity. That data
is called the classifier’s metadata:

data Metadata = Metadata
{prediction :: Prediction, error :: Error
,fitness :: Fitness , experience :: Experience
, timeStepGA :: Integer , avgASetSize :: Real
, numerosity :: Positive }

The type of a classifier for a condition type c and an action type
a is therefore:

data Classifier c a = Classifier
{ rule :: Rule c a
,md ::Metadata}
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Two classifiers are considered equal if and only if their rules are
equal.

instance (Eq c, Eq a) ⇒ Eq (Classifier c a) where
cl1 ≡ cl2 = rule cl1 ≡ rule cl2

In order to shorten some of the definitions and more closely resem-
ble the original notation, access to a classifier cl’s metadata fields
is possible via g cl where g is one of the accessor functions devised
by Butz and Wilson [7]:

g ∈ [a, c, p, ϵ, f , exp, ts, as, num]

For example, the classifier’s fitness can be accessed as usual via f cl
instead of fitness ◦md $ cl.

For the sake of brevity, most of the functions defined on classi-
fiers are left out here and only the function subsumes is shown as an
example. It closely follows the definition of the DOES SUBSUME pro-
cedure by Butz and Wilson [7]. The value of type Config contains
the XCS’s parameters—in this case, the function couldSubsume uses
the parameters θsub and ϵ0 to assess whether cl1 is experienced and
accurate enough to subsume another classifier.

subsumes :: (Condition c, Eq a) ⇒
Config → Classifier c a→ Classifier c a→ Bool

subsumes conf cl1 cl2 =
a cl1 ≡ a cl2 ∧

couldSubsume conf cl1 ∧
c cl1 ‘generalises‘ c cl2

couldSubsume :: Config → Classifier c a→ Bool
couldSubsume conf cl = exp cl > θsub conf ∧ ϵ cl < ϵ0 conf

3.4 Population
The XCS keeps a set of classifiers in a structure called the population
for which several possible interfaces exist; the one presented here
strikes a decent balance between the number of supported opera-
tions and their generality. It is specified by a type class: Given types
for conditions and actions, c and a, a type p c a is a population if
the following functions are defined for it.

class Population p c a where
empty :: p c a
size :: p c a→ NonNegative
retrieve :: Rule c a→ p c a→ Maybe (Classifier c a)
matching :: (Detector o c) ⇒ o→ p c a→ [Classifier c a]
insertWith ::
(Metadata→ Metadata→ Metadata) →
Classifier c a→ p c a→ p c a

update :: (Metadata→ Maybe Metadata) →
Rule c a→ p c a→ p c a

foldr :: (Classifier c a→ y → y) → y → p c a→ y

At that, these semantics must hold (only listing the non-obvious
ones):
• If a classifier cl with rule l exists in population p, retrieve l p
is Just cl (otherwise it is Nothing).
• matching o p is a list of classifiers in p whose conditions
match o.

• insertWith f cl p equals p but with the classifier cl1 inserted.
If a classifier cl2 with rule rule cl1 already exists in p, that
classifier’s metadata is updated to be f (md cl2) (md cl1).
• update f l p updates the classifier with rule l in p using f . If
f returns Nothing, the classifier is deleted.
• foldr uses the given right-associative operator to fold the
population to a single value.

While all the functions defined here could be expressed using foldr
alone, for many underlying collection types this would result in a
non-optimal performance (e. g. if a hash map were used, retrieve
could be O(1) instead of foldr’s O(n)).

Note that the population is not updated in place as is the usual
case in imperative languages; instead, an updated copy of the pop-
ulation is returned. This, again, is due to the purely functional
paradigm this work follows.

3.5 State in the XCS
In most publications about XCS, the XCSmanages the population by
updating it in place. The same applies to the step counter, which is
used, for example, to determine whether an iteration of the genetic
algorithm (GA) should be performed. Some XCSs perform parame-
ter optimisation or adjustment during runtime (e. g. adapting the
learning rate); thus it makes sense to consider the configuration to
be updateable as well. All in all, the state managed by an XCS can
be expressed like so:

data State p c a = State
{config :: Config
, population :: p c a
, time :: TimeStep }

The upcoming sections make use of this data structure: they
retrieve configuration values, update classifiers from the population
aswell as increase the current time step. In imperative programming
languages these operations could be carried out by reading and
writing a global variable containing the current state. In the setting
of this paper, however, this is not possible: there are no mutable
values like that in pure mathematics. To cope with that, we utilise
state monads, whose mechanics are briefly introduced by example
next.

Assume that there are two procedures with the following signa-
tures.

f :: a→ b; g :: b→ c

Further assume that they are purely functional save for reading and
writing the value of an object of type S (the state object). Then, these
procedures can be “transformed” into pure functions by adding a
parameter of that type, yielding:

f ′ :: S → a→ (b, S)
g′ :: S → b→ (c, S)

Now each of these functions has read access to a state object: they
are provided with one via a parameter. In addition, they each return
a pair which contains the new, updated state object. Programming
with these functions now consists of applying them to the current
state and retrieving the new state for the next function call:

(g′ ◦ f ′) s a = let (b, s′) = f ′ s a in g′ s′ b
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Here, a let-expression was used to bind the values of the tuple
returned by f ′.

This whole mechanism can be made abstract by using a state
monad [17, 22], which does nothing more than “automatically”
adding the corresponding parameters to functions. General state
monad–versions of f ′ and g′ are:

f ′′ :: (MonadState S m) ⇒ a→ m b
g′′ :: (MonadState S m) ⇒ b→ m c

With that, the composition of f ′′ and g′′ can be written as

(g′′ ◦ f ′′) a = f ′′ a >>= g′′ :: (MonadState S m) ⇒ m c

and the final value of type c can be retrieved using evalState which
provides the function chain with an initial state value s of type S.

evalState (f ′′ a >>= g′′) s :: c

Again, the above-introduced mental model of monadic values such
as f ′′ a being composable computations is helpful here.

A state monad is used in the following definitions whenever the
“current” value of the population, step counter or configuration
has to be retrieved or updated. An example is the function with
signature

increaseTime :: (MonadState (State p c a) m) ⇒ x → m x

which may be read as if increaseTime received an additional param-
eter of type State p c a and returned a pair of type (x, State p c a).
The function increases the tick counter by one (thus the use of
the state monad’s modify function); for a better composability, it
receives one argument of an arbitrary type x and returns it without
modification.

increaseTime x =
modify (λs→ s { time = time s + 1}) >> return x

3.6 Matching and covering
Whenever the XCS receives an observation, the first task is to find all
existing classifiers whose conditions match. If the classifiers in that
set propose less than θMNA different actions, covering occurs, which
means that new matching classifiers are created randomly until this
condition is met. Since the XCS as specified by Butz and Wilson
starts with an empty population, θMNA = 0 leads to no classifiers
being created at all; thus θMNA > 0 can be assumed. Therefore the
final set of matching classifiers (the match set) can never be empty,
which can be expressed at the type level by a non-empty list.

type MSet c a = NonEmpty (Classifier c a)

The classifiers created by covering are required to match the cur-
rent observation; thus that observation is a parameter of the cover
function. In order to only need to perform the expensive matching
operation on the whole population once, already existing match-
ing classifiers are provided to cover as well which recurses until
that value fulfils the θMNA requirement. Retrieving the configura-
tion value θMNA as well as inserting classifiers into the population
means utilising the state monad introduced in the previous section.
Since the creation of new classifiers makes use of the otherThan
function of Action, the random monad context is required as well.
The Detector relationship between the types of the observation and

the condition provides the coverConditionp# function. The function
signature of cover is therefore:

cover ::
(Population p c a,Detector o c,Action a,
MonadRandom m,MonadState (State p c a) m) ⇒

o→ [Classifier c a] → m (MSet c a)

The matchSet function now simply maps observations to match
sets. Its concise implementation makes use of two combinators
known from functors and monads:

matchSet ::
(Population p c a,Detector o c,Action a,
MonadRandom m,MonadState (State p c a) m) ⇒

o→ m (MSet c a)
matchSet o = (matching o <$> gets population) >>= cover o

3.7 Action selection
The next step is to select one of the actions proposed by the match
set. First, the classifiers in the match set are grouped according to
their proposed action and the system prediction of these groups is
evaluated. This results in the following data structure called the
prediction array. Note that contrary to the prediction array devised
by Butz and Wilson [7] the classifiers themselves are a part of it.
Actions that were not proposed make no occurrence.

type PArray c a =
NonEmpty
(a, (SystemPrediction,NonEmpty (Classifier c a)))

By selecting one of the proposed actions from the prediction
array an action set is formed. The original work [7] devised this as
a simple collection of classifiers; however, its semantics entail more
than that.

There are several different strategies to select actions; the one
chosen by Butz and Wilson [7] is the ϵ-greedy selection which per-
forms exploration with a certain probability pexplr and exploitation
otherwise. Since later on the handling of an action set will differ
based on whether it was formed during an explore or an exploit
step, it gets annotated with a mode (other selection strategies dis-
tinguish between these two modes as well, especially in online
learning settings).

data Mode = Exploring | Exploiting

The type of an action set formed through action selection given
a prediction array of type PArray c a can then be expressed as
follows. Again, the underlying set of classifiers is guaranteed to be
non-empty—the action simply could not have been chosen if no
classifier proposed it.

data ASet c a = ASet
{mode ::Mode
, proposing :: NonEmpty (Classifier c a)}

Accordingly, the signature of the ϵ-greedy selection function is:

selectEpsilonGreedypexplr :: (Action a,MonadRandom r) ⇒

PArray c a→ r (ASet c a)
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3.8 XCS for single-step problems
In order to be able to succinctly describe XCS’s main loop, we first
specify the type for an XCS computation. By employing monad
transformers this can be done in a modular and abstract way [17].
The following type definition can be interpreted as: Given types
for a system monad (io), a random generator (g), a population (p),
observations (o), conditions (c) and actions (a), an XCS computation
is a computation dependent on the external system augmented
with randomness-dependence and the state monad managing a
State p c a.

newtype XCS io g p o c a x = XCS
{ runXCS′ :: StateT (State p c a) (RandT g io) x }

The interaction function returns an XCS computation that per-
forms one XCS step save for the classifier update. Since single- and
multi-step XCS’s only differ in that update, this function is utilised
by both. Note that the do-notation is mere syntactic sugar; while it
closely resembles imperative programming, its semantics are differ-
ent. Each statement in this do-block must be an XCS computation
or a let-expression and each line break can be desugared to a com-
bination of a certain monad combinator (>>= or >>) and a lambda
expression [18].

interact ::
(P .Population p c a,Detector o c,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒

XCS io g p o c a (Result o c a)
interact = do
pexplr ← C.pexplr <$> gets config
o← observe
mset ← matchSet o
let parray = predictionArray mset
aset ← selectEpsilonGreedypexplr parray

r ← act ◦ proposition $ aset
let pSystem = maximum (fst ◦ snd <$> parray)
return $ Result o pSystem aset r

The interact function returns a value of type Result which is a
simple sum type introduced to increase descriptiveness of function
signatures in the following; it contains all the values required for a
single- or multi-step update.

data Result o c a =
Result o SystemPrediction (ASet c a) Reward

In a single-step XCS, the classifiers are always updated only
regarding information about the current step; thus this operation
depends on a Result and returns an XCS computation that performs
the necessary adjustments to the population and time step.

updatethis ::
(P .Population p c a,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒

Result o c a→ XCS io g p o c a ()

If the current step was an exploration step (whether that was the
case can be determined via the action set’s mode), the following
updates are performed (the details are left out here as they do not
differ from the original work [7]):

(1) update the metadata of the classifiers in the action set,
(2) perform action set subsumption (if that feature is enabled),

and
(3) run the GA on the action set (if indicated).

In exploitation steps, no update is performed.
At this point, all the building blocks for a single step of a single-

step XCS are defined; it consists of interacting, updating classifiers
and increasing the tick counter.

stepsingle ::
(P .Population p c a,Detector o c,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒

XCS io g p o c a ()
stepsingle = interact >>= updatethis >>= increaseTime

A run of a single-step XCS simply repeats stepsingle until the system
signals the EOP.

stepssingle ::
(P .Population p c a,Detector o c,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒

XCS io g p o c a ()
stepssingle = untilM eop stepsingle

3.9 XCS for multi-step problems
Multi-step XCS differs from single-step XCS in that the classifiers
that were in the action set in the previous step are updated instead
of the ones from the current step. In the long run, this is meant to
result in a reward for a correct lookahead.

The classifiers from the previous action set are not guaranteed
to exist any more one step later as several of them may have been
deleted after new classifiers were inserted into the population (e. g.
through covering or the GA). In particular, the set of classifiers to
be updated might be empty; therefore the action set type can not be
used to pass these classifiers to the next step. The update set thus
structurally differs from the action set in the set of classifiers being
possibly empty.

data USet c a = USet
{modelast ::Mode
, proposinglast :: [Classifier c a]}

A Resultlast contains all the data from the previous step that is
needed to perform an update.

data Resultlast o c a = Resultlast o (USet c a) Reward

A multi-step XCS updates the classifiers of the previous update set.
After that, it transforms the current action set into an update set
for the next step by
• deleting the classifiers that are not in the population any
more
• “refreshing” the remaining classifier’s metadata to reflect the
ones in the population.

updatelast ::
(P .Population p c a,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒
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Resultlast o c a→ Result o c a→
XCS io g p o c a (Resultlast o c a)

In each step, a multi-step XCS receives the previous step’s update
set if it exists and returns an XCS computation that will result
in its own update set (wrapped in a Maybe for simplifying the
combination of multiple steps).

stepmulti ::
(P .Population p c a,Detector o c,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒

Maybe (Resultlast o c a) →
XCS io g p o c a (Maybe (Resultlast o c a))

If there is no update set from the previous step (e. g. because it
is the very first step), the XCS interacts with the environment
and, if the end of problem is reached, performs the special end of
problem update. Since no standard classifier update is involved,
we can directly transform the Result to a Resultlast (remember that
increaseTime takes one parameter—here, it receives the Resultlast—
and returns it unmodified).

stepmulti Nothing =
interact >>= updateeop ◦ toLast >>= increaseTime

If there is an update set from the previous step, the XCS additionally
updates its classifiers.

stepmulti (Just last) =
interact >>= updatelast last >>= updateeop >>= increaseTime

A run of a multi-step XCS consists of repeatedly applying the
stepmulti function to its own result until the system signals that the
end of problem is reached.

stepsmulti ::
(P .Population p c a,Detector o c,Mutator o c a,
RandomGen g,MonadSystem o a io) ⇒

XCS io g p o c a (Maybe (Resultlast o c a))
stepsmulti = iterateUntilM eop stepmulti Nothing

3.10 Application
Finally, we can give an—albeit abstract, for brevity’s sake—example
of the application of our framework. Given a system (where m is
the system monad)

newtype System x = System { runSys ::m x }

the multi-step XCS can be applied to it like this:

runSys ◦ runXCS stepsmulti init $ mkStdGen 123

Here, mkStdGen is used to create a standard random generator
with seed 123 whereas the runXCS function is a helper function for
handling the monad transformer stack:

runXCS xcs s g = runRandT (runStateT (runXCS′ xcs) s) g

Owing to our functional approach, experiments with our frame-
work are reproducible in an elegant way; for example,

runSys ◦ runXCS stepsmulti init ◦mkStdGen <$> [1 . . 100]

is a list of the results from 100 deterministic XCS runs with the
seeds ranging from 1 to 100.

4 RELATEDWORK
Before we conclude our work, we give a short overview of other im-
portant theoretic work on XCS that has not already been mentioned.
The majority of these publications bases its results on experimental
validation which, as stated in the introduction, will not be sufficient
in the long term.

In the very first publication about XCS, Wilson investigates
the generalisation hypothesis (pressure towards accurate but also
maximally general classifiers) [23]. Kovacs postulates the optimality
hypothesis (under certain circumstances, XCS can reliably evolve
optimal populations) in his master’s thesis [16].

Bull develops a Markov model for LCSs with an accurracy-based
fitness measure [1]; at that, he lays more emphasis on the analysis
of the GA (action selection is always done randomly).

The work by Butz et al. features a number of important insights
into XCS’s workings that amongst other things underpin the gen-
eralisation hypothesis. They identify different kinds of pressures
that are at work in XCS [6] as well as preconditions that need to be
fulfilled for XCS to learn properly [5, 6]. They also derive several
bounds on the population size and show that XCS can PAC-learn
k-DNF problems [3, 4].

Stalph et al. transfers a number of the theoretical findings about
XCS to XCSF [21].

In order to analyse the evolutionary process in XCS, Iqbal et al.
introduce parent trees through which a classifier’s evolution can
be traced [14]. Their results corroborate earlier work such as the
generalisation hypothesis.

Nakata et al. examine how some of XCS’s parameter can be set
in a way such that no over-generalisation occurs [19]. In their work
they also criticise that there is too little theoretic foundation to
derive proper parameter settings.

5 CONCLUSION AND FUTUREWORK
In this paper we presented an alternative description of XCS: an
algebraic approach through functional programming instead of the
widely used algorithmic one. In the process, we implemented a
general XCS framework in Haskell.

By building XCS from algebraic data types and pure functions
only, the interdependencies between XCS’s components can be
seen more clearly. Given a problem, our type classes exactly specify
the definitions necessary for applying XCS to it while the function
signatures show unambiguously which part of the XCS algorithm
accesses which.

The purely mathematical treatment also allowed to identify the
exact components of the mutable state managed by XCS as well as
a minimal set of functions it is shared between. These insights may
for example be useful in the process of performance optimisations
(e. g. through parallelisation).

Our future work will include an analysis of how well the differ-
ent XCS derivatives can be expressed with our algebraic framework.
Some will probably be straightforward to deal with (e. g. XCSF),
whereas for others, further abstraction and refinement will be re-
quired.

The long-term vision is to conduct formal proofs of the prop-
erties of XCS using our algebraic description: We aim to derive
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problem classes and based on them analyse XCS’s behaviour for-
mally. One of the earlier steps on that path will be to revisit several
of the theoretical publications about XCS. We expect to get fur-
ther insights into parameter selection and computational as well as
storage bounds.
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