
Meta-Learning by the Baldwin Effect
Chrisantha Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang, Tom Schaul, Denis

Teplyashin, Pablo Sprechmann, Alexander Pritzel, Andrei Rusu∗
Google DeepMind

London, UK
chrisantha@google.com

ABSTRACT
The scope of the Baldwin effect was recently called into question
by two papers that closely examined the seminal work of Hinton
and Nowlan. To this date there has been no demonstration of its
necessity in empirically challenging tasks. Here we show that the
Baldwin effect is capable of evolving few-shot supervised and rein-
forcement learning mechanisms, by shaping the hyperparameters
and the initial parameters of deep learning algorithms. Further-
more it can genetically accommodate strong learning biases on the
same set of problems as a recent machine learning algorithm called
MAML "Model Agnostic Meta-Learning" which uses second-order
gradients instead of evolution to learn a set of reference parameters
(initial weights) that can allow rapid adaptation to tasks sampled
from a distribution. Whilst in simple cases MAML is more data
efficient than the Baldwin effect, the Baldwin effect is more general
in that it does not require gradients to be backpropagated to the ref-
erence parameters or hyperparameters, and permits effectively any
number of gradient updates in the inner loop. The Baldwin effect
learns strong learning dependent biases, rather than purely geneti-
cally accommodating fixed behaviours in a learning independent
manner.
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1 INTRODUCTION
There is a growing interest in the machine learning community in
meta-learning [26], i.e. learning to learn. Recently an influential
model-agnostic meta-learning (MAML) algorithm was proposed
for the fast adaptation of parameters in neural networks [9]. It
works by using gradient descent to learn the reference (initial)
parameter values of a neural network from which new parameters
can most rapidly be learned to solve a sample of tasks from a
distribution of tasks. It requires a differentiable learning procedure
to backpropagate into the reference parameter values, and even then
it is limited in the number of gradient steps in the inner learning
∗
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loop that can be made before second order gradient calculations
become intractable. Meta-learning in this way achieves state of the
art in few shot learning, for example by allowing a reinforcement
learning algorithm to (within a few gradient updates) learn the
optimal speed or direction of a simulated cheetah or four-legged
robot based only on reward.

Over a hundred years ago, a similar effect was proposed by Mark
Baldwin [2] to explain how evolution could deal with irreducibly
complex adaptations without the need for Lamarckian information
flow [14]. John Maynard Smith described the effect as follows: “If
individuals vary genetically in their capacity to learn, or to adapt
developmentally, then those most able to adapt will leave most de-
scendants, and the genes responsible will increase in frequency. In
a fixed environment, when the best thing to learn remains constant,
this can lead to the genetic determination of a character that, in
earlier generations, had to be acquired afresh in each generation”
[19]. In this formulation the Baldwin effect is really two effects, or a
trade-off between two factors: initially genetically specified pheno-
typic plasticity (variance), followed by genetic accommodation of
the induced trait (bias). Turney writes "...the Baldwin effect has two
aspects. First, lifetime learning in individuals can, in some situa-
tions, accelerate evolution. Second, learning is expensive. Therefore,
in relatively stable environments, there is a selective pressure for
the evolution of instinctive behaviors.” [29].

Here we compare these two algorithms – MAML and the Bald-
win effect – on the same tasks. Note that unlike in MAML, our
evolutionary experiments show no learning of the hyperparame-
ters and initial parameters, only standard Darwinian evolution of
these elements. We show that the Baldwin effect is competitive with
MAML, biasing a learning algorithm to fit the distribution of tasks
encountered during evolution, without some of the restrictions
encountered in [9] (e.g. having direct access to gradients).

In the framework of deep reinforcement learning (RL), evolution
can be complementary to gradient descent by specifying and evolv-
ing the initial neural network parameters P and hyperparameters h
of a learning algorithm [5, 15]. Throughout the course of learning,
phenotypic plasticity is expressed as gradient updates are made
to the parameters and the model learns to perform the task. This
has the effect of smoothing the fitness landscape [29]. In the case
of Baldwinian evolution, these updated weights are forgotten by
the next generation, which instead inherit the initial weights P and
hyperparameters h, with possible mutation, whereas in Lamarckian
evolution, these final, learned weights are evolved and passed on
(see Figure 1). We refer to Darwinian evolution as the case where
there is no learning within a lifetime. Lamarckianism closely re-
sembles Population Based Training (PBT) [15]: a method for online
hyperparameter evolution with the exception that in PBT we do
not mutate the learned parameters P but inherit them unchanged,
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Figure 1: Baldwinian evolution (left) versus Lamarckian evo-
lution (right). In Baldwinian evolution the initial parame-
ters P and hyperparameters h of a learning algorithm are
evolved and subsequently evaluated by training on multi-
ple independent learning trials (which adjust the weights P )
to obtain the fitness. However, these learned parameters are
not inherited by the next generation; only the original ini-
tial parameters P and hyperparameters h are inherited and
then mutated to obtain P∗ and h∗. In contrast, in Lamarck-
ian evolution the parameters are learned over multiple se-
quential learning trials and the final parameters P ′′′ (in the
case of 3 learning trials shown in the diagram) are inherited
along with the hyperparameters h, which are then mutated
to produce P∗ and h∗.

only mutating hyperparameters: h to h∗. This method, while highly
successful on a number of supervised, unsupervised and reinforce-
ment learning tasks, has no incentive to learn a representation that
can be easily evolved to solve a number of different tasks in a meta-
learning setup. Control experiments in [9] suggest that sequentially
training (fine-tuning) a model on different tasks doesn’t lead to
competitive performance in meta-learning.

There is already evidence that the Baldwin effect has a role to play
in machine learning because it is capable of evolving inductive bias
in the form of the initial parameters P and hyperparameters h of a
learning algorithm [5, 29]. Here we test themore specific hypothesis
that the Baldwin effect provides a way to evolve agents for few-
shot data-efficient fast learning on a task distribution (previously
examined mainly in classification settings [21, 22, 30], but see also
[8, 31] for applications to RL), across a wide variety of learning
domains. The Baldwin effect is thus used here as an algorithm
for meta-learning, which results in a representation that is fit to
a distribution of tasks, i.e. learning the structure of the various
problems to be encountered rather than the specifics [26]. The
genome to be evolved is shaped by the task distribution, whereas
the learning algorithm itself learns task specifics. The effect arises
whenever there is a cost to learning imposed by the speed at which
learning must occur. Such costs often arise in nature, for example
in a co-evolutionary ecosystem where a newly born organism must
rapidly learn to run so it can escape predators.

Our main experimental contributions are as follows: First we
show that the Baldwin effect and MAML are comparable on a
supervised learning task. Secondlywe demonstrate that the Baldwin

effect can be used in caseswhereMAML cannot be used, for instance
in cases where the genotype is non-differentiable, e.g. where we
evolve the macro-actions used by a discrete action RL algorithm, or
the algorithms’ discrete hyperparameters themselves. Thirdly we
examine how genetic accommodation takes place in real deep neural
networks undergoing the Baldwin effect. Fourthly, we examine two
task distributions; one where Baldwinian learning is superior to
Lamarckian learning and vice versa.

2 RELATEDWORK
While deep learning systems trained with traditional supervised
or reinforcement learning methods have achieved remarkable suc-
cess in a variety of tasks, they perform poorly when only a small
amount of data is available. Meta-learning aims to mitigate this
limitation by broadening the learner’s scope from a single task to
a distribution of related tasks [25, 26]. The goal of meta-learning
is then to learn a learning strategy that generalizes to similar but
unseen tasks from a given task distribution. A lot of interest in
meta-learning comes from the problem of one-shot learning in im-
age classification, which consists of learning a new class from a
single labelled example [18]. Several approaches address this prob-
lem by using specialized neural network architectures that learn an
embedding space that allows to effectively compare new examples.
For instance, employing Siamese networks [17] or recurrence with
attention mechanisms [30]. These approaches achieve very good
results in one-shot visual learning but cannot be easily employed
in other tasks, such as reinforcement learning. Another approach
to meta-learning is to train a recurrent memory augmented learner
to quickly adapt to new tasks of a given task distribution. Such
networks have been applied to few-shot image recognition [22]
and reinforcement learning [8, 31]. More recent approaches pro-
pose to include the inductive bias of optimization-based learning
into a meta-learner [9, 13, 21]. Particularly related to this work is
model-agnostic meta-learning (MAML) approach [9], that aims to
learn the initial set of parameters such that they can be rapidly
adapted (via gradient descent) to solve a given task from the task
distribution. We describe this method in detail in section 3.1.

Hinton and Nowlan showed in their 1987 paper that the Baldwin
effect works in the toy example of a needle-in-a-haystack binary
optimization problem of 20 alleles (bits) using random search, where
the random search distribution is encoded by evolution [12]. The
emphasis in their paper was to show how learning can smooth a
(single task) rugged fitness landscape. The generality of that work
has recently been called into question by a paper which claims
that the scope of the effect is severely limited [23]. Specifically,
Santos et al showed that under certain task parameter settings
(i.e. initial ratios of correct alleles P(1) = 0.5, and incorrect alleles
P(0) = 0.5) then standard Darwinian evolution finds the needle in
a haystack in the same number of generations as the Baldwin effect
on average. However, a more recent paper by the same authors
has shown that, when actually using Hinton and Nowlan’s original
conditions, P(1) = 0.25, P(0) = 0.25, and P(?) = 0.5, (where ?
refers to an allele that does random search) the Baldwin effect is
indeed significantly faster than Darwinian evolution [10]. In short,
we know the Baldwin effect is possible in this toy task, only in a
subset of the parameter conditions, but we wish here to provide
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convincing empirical support for the necessity of the Baldwin effect
in more substantial and contemporary learning tasks than L = 20
bit learning problems using random search.

The Baldwin effect in neural network learning has been investi-
gated in several papers following the original work of Hinton and
Nowlan [7]. Notably, Keesing and Stork used a genetic algorithm to
evolve the initial weights of a neural network for digit classification,
and found that the extent of genetic accommodation by the Bald-
win effect depended on the amount of learning; too much learning
and evolution was slowed down because there was too little selec-
tion pressure on the initial weights (as learning can do well form
any starting position); too little learning and evolution was slowed
down because fitness landscapes were not sufficiently smoothed
[16]. Interestingly, they found that randomly sampling the number
of gradient update steps from a distribution rather than using a
fixed number significantly increased the rate of accommodation
because that way the cost of learning was always felt by selec-
tion. Bullinaria evolved learning rate schedules during a lifetime,
showing the evolution of developmental critical periods tailored to
specific problems [4]. Neural network learning is only one kind of
phenotypic plasticity. Turney used a genetic algorithm to evolve a
population of biases for a decision tree induction algorithm for clas-
sification [28]. Cecconi et al evolved a hyperparameter determining
how much learning, by imitation of a parent, an offspring will do in
a co-evolutionary system [6]. Anderson modelled how the adaptive
immune system could facilitate natural antibody production by
the Baldwin effect [1]. Bull argued that the Haploid-Diploid cycle
was a primitive example of learning and so subject to the Baldwin
effect. [3]. This paper extends the existing literature by applying the
Baldwin effect to deep learning reinforcement learning algorithms
in task distributions.

3 METHODS
In this section, we begin by describing the three algorithm families
that we compare. Secondly we describe the three tasks that we
solve, before finally outlining the details of the models that we train
and evolve.

3.1 Algorithms
Model-Agnostic Meta-Learning. Given a distribution over tasks
p(T ) and a neural network with parameters collectively denoted θ ,
MAML aims to learn an set of reference parameters θ∗ such that one
or a small number of gradient decent steps computed using a small
amount of data for a given task from the distribution, Ti ∼ p(T ),
leads to effective generalization on that task.

The objective function for MAML is given by

min
θ
ETi∼p(T) LTi (θ

′
i ) (1)

where the expectation is taken over the task distribution, LTi rep-
resents the loss corresponding to task Ti and the parameters θ ′i are
the parameters adapted to fit K representative training examples
for this task. The task-specific learning is obtained via gradient
descent,

θ ′i = θ − α∇θLTi (θ )

where α is the learning rate. We used a single gradient descent step
for ease of notation, but multiple steps can be used insted. The outer

Algorithm 1 Model-Agnostic Meta-Learning (from [9])

Require: p(T ): distribution over tasks
Require: α , β : step size hyperparameters
1: randomly initialize parameters θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Evaluate ∇θLTi (θ ) with respect to K examples
6: Compute adapted parameters with gradient descent:

θ ′i = θ − α∇θLTi (θ )
7: end for
8: Update θ ← θ − β ∇θ

∑
Ti∼p(T) LTi (θ

′
i )

9: end while

loss in (1) evaluates the generalization of θ ′i on a small amount of
validation data for the i−th task. The reference set of parameters
θ∗ are found by minimizing (1) via stochastic gradient descent. The
procedure is given in Algorithm 1. Note that high order gradients
are required to compute the parameter update.

Genetic Algorithm (GA) is a general-purpose optimization algo-
rithm inspired by the biological processes of mutation and selection.
In our work, we use two flavors of Genetic Algorithms: a Steady
State Genetic Algorithm and Generational Genetic Algorithm [11].
In section 3.2 we introduce a sinusoid fitting task and a physics task
domain. In the sinusoid fitting experiments we use a generational
GA of population size 100, and rank-based selection. The physics-
based RL experiments use an asynchronous parallel steady state
GA with population size 500, and tournament size 10. The Bald-
winian evolution algorithm hybridizes the GA and gradient-based
learning as shown in Algorithm 2. We compare the Baldwinian
algorithm with to two baselines: standard Darwinian evolution,
and Lamarckian evolution.

With some small modifications to Algorithm 2 we can obtain a
learning process for single task or for a continual/multi-task learn-
ing setting by allowing all gradient updates to act successively on
the same set of parameters. In this setting we can also consider a fur-
ther modification/variant in which we use Lamarckian inheritance
(changing line 15 to update the population using the parameters
from the end of the short run of gradient optimization).

Natural Evolution Strategies (NES) are a family of continuous
black-box optimization algorithms thatmaintain and adapt a (Gauss-
ian) search distribution in order to maximize the expected fitness
under that distribution [32, 33]; they update the distribution pa-
rameters ⟨µ, Σ⟩ in the direction of the (natural) policy gradient,
as estimated from the fitnesses f д of a population of samples
θд ∼ N(µ, Σ). In our case specifically, we employ the variant called
separable NES (SNES [24]) that models only the element-wise vari-
ances σ 2, instead of the full covariance matrix Σ, because its linear
complexity enables it to scale the high-dimensional spaces required
for our experiments.
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Algorithm 2 Baldwinian Meta-Learning

Require: p(T ): distribution over tasks
Require: P: initial population-representation of individuals
Require: S: procedure to obtain a batch of individuals (i.e. param-

eters and hyper-parameters) given a population-representation
Require: U: procedure to update a population-representation

given a batch of fitness-scored individuals
Require: F : fitness scoring function
Require: N : number of gradient steps to take during per-task

gradient training
1: while not done do
2: Generate batch of individuals from population:

θд, ∅,αд ∼ S(P)
3: for all θд, ∅ do
4: Sample batch of tasks Ti ∼ p(T )
5: for all Ti do
6: θд,i ← θд, ∅

7: for k=1...N do
8: Evaluate ∇θд,iLTi (θ

д,i )

9: Update adapted parameters with gradient descent:
θд,i ← θд,i − αд∇θд,iLTi (θ

д , i)
10: end for
11: Compute fitness-score for current task: f дi = F (θ

д,i )

12: end for
13: Compute overall fitness estimate: f д =

∑
i f

д
i

14: end for
15: Update population based on fitness of individuals:

P ← U(P, {
(
1,θ1,α1, f 1

)
, ..., (д,θд ,αд , f д)})

16: end while

3.2 Tasks
A supervised regression problem distribution and two physics-
based reinforcement learning task distributions are used to compare
the algorithms.

Sinusoid-fitting task: In this supervised task, in any one lifetime
the agent must fit by regression a single sinusoid drawn from a
distribution of phases and amplitudes. If evolution were to encode a
non-plastic neural network, it would be impossible for it to do more
than evolve the mean sinusoid for the distribution; whereas with
lifetime learning, the initial function at birth could be modified to
fit the sampled sinusoid encountered in any particular lifetime. In
this case, the Baldwin effect would be expected to take place. This
leads to a different perspective on the Baldwin effect to that taken
by Hinton and Nowlan and others; whereby its role is not primarily
for smoothing fitness landscapes in otherwise unsolvable adaptive
problems, but instead for meta-learning distributions of adaptive
problems that would be entirely unsolvable by evolution alone
without phenotypic plasticity, and then encoding these distributions
genetically to produce faster learning.

We compare the performance of MAML, NES, and generational
GA on fitting sinusoids. In each generation, we sample 25 differ-
ent sine waves, out of which we select 10 points for training and
10 points for testing. The amplitude of sine waves was sampled
uniformly from [0.1, 5.0] and the phase from [0,π ]. In one fitness

evaluation, we perform 5 gradient descent steps for each sine wave
using training points, evaluate performance as mean-squared error
on test data, and average the results for different sine waves. For
NES and the GA, the fitness is the final MSE for that task after
the gradient updates obtained over a separate sample of data than
what was trained on. In both our models (generational Genetic
Algorithms and Natural Evolution Strategies) the different geno-
types in a given generation are evaluated using the same data, so
that the amount of data our models see after some fixed number of
generations is equal to the data baseline MAML sees after doing
that number of meta-updates. In NES the population size was 25
and in GA it was 100.

Physics simulation reinforcement learning tasks. In reinforce-
ment learning, the goal of few-shot meta-learning is to enable an
agent to quickly acquire a policy for a new task based on training
on the same distribution of tasks. For example, an agent might learn
to quickly run at a certain desired target speed or direction. We
constructed two sets of tasks based on those used in Finn et al [9].
One fitness evaluation consisted of 10 independent episodes with
different task parameters. For the Baldwinian training condition,
the parameters were reset to the inherited parameters at the start
of each episode, and before inheritance. With Lamarckian training,
the parameters were not reset between episodes and were inherited
at the end of the final episode. In the Darwinian case there was
no learning (gradient updates) in any of the 10 episodes. Fitness
was defined as the sum of rewards obtained over all 10 episodes,
providing an implicit selection pressure to learn quickly.

Two types of high-dimensional locomotion tasks were investi-
gated using theMuJoCo simulator [27], specifically using the Planar
Cheetah task, requiring it to run in either a particular direction
(Goal Direction) or at a particular velocity (Goal Velocity). In the
goal velocity experiments, the reward was the negative absolute
value between the current velocity of the agent and a target velocity.
The target velocity for each episode was chosen exhaustively in
steps of 0.2, in the range 0.0 to 2.0. There were 10 such episodes for
one fitness evaluation. The fitness was the sum of the rewards over
these 10 episodes. In the goal direction experiments, the reward was
the magnitude of the velocity in either the forward or backward
direction. The fitness was the summed reward over 10 episodes
with each episode alternating in whether backwards or forwards
movement was required. In both cases the length of one episode
was 3000 time steps (30 seconds) with a rollout size of 40 simulation
time steps per gradient step, unless otherwise noted.

3.3 Models
Sinusoid regression network: The model architecture we used
for the sinusoid fitting task (see Tasks) was the same as in [9]: a neu-
ral network with two hidden layers with 40 neurons each. We used
Gaussian noise with mean 0 and std 0.01 to initialize the weights
and biases of the network in GA and NES. The mean squared error
loss is used to train the parameters of the network using stochastic
gradient descent.

A2C Controller: For the RL tasks described in section 3.2 we use
the a2c algorithm (policy gradient with a trainable baseline) [20]



Meta-Learning by the Baldwin Effect GECCO ’18, July 15–19, 2018, Kyoto, Japan

to estimate the gradient for training the controller of the running
cheetah agent. It consists of a shared torso which is a feed-forward
neural network with rectified-linear transfer functions and two
hidden layers of size 100. A policy readout from this final layer
outputs a softmax over 12 possible discrete actions. A value function
readout from the final layer outputs a single scalar value which is
used as a baseline for the policy gradient algorithm. On replication,
Gaussian noise of mean zero and standard deviation 0.02 is added
to each weight and bias of the neural network. Additional noise is
added to the hyperparameters which are the learning rate, entropy
lost scale, and discount of the a2c algorithm.

For the physics-based RL tasks (see Tasks), macro-actions are
evolved by the Baldwin effect; i.e. the 12x7 action primitive matrix
which determines the 7 motor torques produced for each of the
12 discrete actions the cheetah controller can execute at each time
step. The use of second order gradients to modify such hyperpa-
rameters is known to be notoriously unstable, whilst the Baldwin
effect allows meta-optimization of these hyperparameters as well as
the initial weights as in [9]. In the a2c experiments we additionally
explored the use of a genetically encoded binary vector of hyper-
parameters of the same length as the number of parameters in the
model. This vector (which we call a mask) determines whether or
not each parameter should be learnable or not. Bit flip mutation
is used to evolve this mask hyperparameter vector. Thus is done
in order to emulate the setup in the original Hinton and Nowlan
paper.

4 RESULTS
Firstly, MAML is compared with genetic algorithms and natural
evolution strategies on a supervised learning task; fitting sinusoids
drawn from a distribution. Secondly, genetic algorithms are used
to evolve the hyperparameters and initial parameters of a policy
gradient algorithm with an adaptive critic, on two reinforcement
learning problems.

4.1 Rapid fitting of sinusoids
The performance of MAML, NES and GA on fitting sinusoids is
shown in Figure 2. As our methods are based on a population of
genotypes, we plot both the median and the best fitness achieved
in each generation.

Figure 4 shows the rate at which the neural network fits a partic-
ular sine wave presented during a lifetime. Similar to MAML, our
methods’s adaptation speed is superior to the one of the baseline
approach (pretrained), which was trained to predict sine waves
using a standard supervised-learning approach.1

4.2 Reinforcement Learning in Physics
Environments

Goal Velocity Task. The Baldwin effect evolves a model that can
quickly adapt its velocity to the target velocity within a single
episode lasting only 30 simulated seconds. Figure 5 shows that
Lamarckian evolution outperforms Baldwinian evolution, which in
turn outperforms Darwinian evolution. Figure 7 shows that Lamar-
ckian evolution achieves the target velocity in each episode better

1Plots for MAML and the pretrained approach come from [9].
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Figure 2: Sinusoid fitting task learning curves show a com-
parison of mean-squared errors of the Baldwin effect oper-
ating over evolution in NES and GA, vs during MAML train-
ing. Despite using only final fitness as a training signal, our
methods achieve results on par to MAML.
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Figure 3: Example fitting of a sine wave using trained NES
model. The parameters correspond to the mean of the dis-
tribution after 20000 generations. The red curve shows the
initial function of the regression network prior to learning
– note that it has evolved to be a sine wave. The blue line
shows the function learned after five gradient steps, and the
green curve shows the target sine wave to fit in this particu-
lar lifetime.

than Baldwinian evolution. Both the Baldwin effect and Lamarckian
learning are superior to pure Darwinian learning in this case.
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Figure 4: Comparison of the speed of fitting of the sine wave
during validation time, with MAML, NES, and GA.

Figure 5: Baldwin (Green), Lamarck (Red), Darwin (Blue) fit-
ness on the CheetahGoal Velocity task, showing that Lamar-
ckian evolution works best when evaluated on tasks very
similar to the previously learned on.

Goal Direction Task. The Baldwin effect evolves a model that can
quickly adapt its direction to the target direction within a single
episode lasting only 30 simulated seconds. Figure 6 shows the best
agent fitness recorded over five independent evolutionary runs; two
that use Baldwinian evolution (green), two that use Lamarckian
evolution (red) and one that uses Darwinian evolution (blue), on
the goal direction task. Best performance is obtained by Baldwinian
evolution without an explicit plasticity mask, and second best with
Baldwinian evolution with an explicit plasticity mask, followed by
Darwinian evolution, with Lamarckian evolution a very clear loser

Figure 6: Baldwin (Green), Lamarck (Red), Darwin (Blue) fit-
ness on the Cheetah Goal Direction task.

in this task. The horizontal velocity of the cheetah over the course
of one fitness evaluation is shown in Figure 8.

The contrast between the goal velocity and goal direction tasks
is interesting. The goal direction task requires a radical change
in policy for moving forwards or backwards in different episodes.
Lamarckian evolution gets stuck in a local optimum of only being
able to go backwards. Baldwinian evolution is able to cope with
these two diverse tasks. In the goal velocity task, Lamarckian evo-
lution is superior because the final velocity achieved in task T − 1
is a suitable starting point for the target velocity required in task T
(note we increment the target velocity by 0.2 in each episode).

How do the hyperparameters of the a2c algorithm evolve during
the goal direction task? Figure 9 shows histograms of the distribu-
tion of hyperparameters for 5 evenly spaced time-points during
the runs. The main points to note are that in Baldwinian evolution
we see learning rates evolve to quite high values, e.g. 0.005 to 0.01,
whereas in Lamarckian evolution we see learning rates drop to
the lowest values i.e. 0.00001. In Baldwinian evolution the entropy
loss scale evolves to high values 0.1, but experiences little directed
selection in Lamarckian evolution. In Baldwinian evolution the
discounts become as small as we allow, i.e. 0.92, but in Lamarck-
ian evolution they become as large as we allow i.e. 0.9999. The
Baldwin effect does not abolish learning in this task – instead, it
increases the rate of learning, but evolves strong learning biases.
This is something that would not be possible in the Hinton and
Nowlan task.

5 DISCUSSION AND CONCLUSION
In conclusion, in supervised learning tasks there was genetic accom-
modation of the initial function prior to learning, i.e. the regression
network’s prior was initially sinusoidal. Rapid learning contin-
ued to be selected for throughout evolution. In learning RL task
distributions using the Baldwin effect, we observed that learning
hyperparameters also evolved high learning rates and low discount
factors, with the initial behaviour ‘at birth’ providing strong biases
to the learning algorithm which continued to show rapid learning
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Figure 7: Velocities obtained in the Cheetah Goal Velocity task for (a,b) Baldwinian, (c,d) Lamarckian, and (e) Darwinian evo-
lution. Baldwinian evolution tends to revert back to low velocities during training, while Lamarckian maintains a steadily
increasing forward velocity, as a result of sequence of tasks trained on (target velocity incremented by 0.2 every episode).
Video1Supp shows the Lamarckian agent running forwards at different speeds.
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Figure 8: Velocities obtained in the Cheetah Goal Direction task for (a,b) Baldwinian, (c,d) Lamarckian, and (e) Darwinian
evolution. Each fitness evaluation consists of 10 episodes with alternating requirements for backwards or forwards velocity.
In the Baldwinian case, parameter values are reset at the start of each episode. In the Lamarckian case there is no resetting. The
Baldwinian agents are capable of learning to go forwards and backwards as desired, but the Lamarckian agents evolve/learn
only to go backwards. They have got stuck on that local optimum in this task. Video2Suppl shows the Baldwinian agent
running forwards and backwards.

throughout evolution. There is no complete genetic accommodation
because that can never achieve high fitness by construction. Instead,
it is the biases of the learning algorithm which are accommodated.
The Baldwin effect is superior to Lamarckian learning when the
distribution of tasks is broad or quickly changing, whereas Lamar-
ckian learning is superior when the task distribution is narrow. The
use of an explicit Hinton and Nowlan type mask did not speed up
learning or final performance in task distributions.

We have demonstrated that the Baldwin effect is capable of
producing learning algorithms and models capable of few shot
learning when combined with deep learning in supervised and
reinforcement learning tasks. Further work is to show that this
principle can be used to achieve state of the art results in machine
learning on more complex task distributions.

Remarkably, meta-learning through evolution enables the use
of non-differentiable fitness functions, in contrast to popular meta-
learning approaches. For example, the fitness function can be de-
fined on different, potentially multi-modal data distributions, mak-
ing it a prime candidate for multi-objective optimization, even when
data from one or several objectives is not always available to the
low level optimization process.
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