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ABSTRACT
A wide range of real-world problems are multi-objective optimiza-
tion problems (MOPs). Multi-objective evolutionary algorithms
(MOEAs) have been proposed to solve MOPs, but the search pro-
cess deteriorates with the increase of MOPs’ dimension of decision
variables. In order to solve the problem, firstly, the decision vari-
ables are divided into different groups by adopting a fast interde-
pendency identification algorithm; secondly, a novel cooperative
co-evolutionary algorithm is used to solve MOPs. Experiment re-
sults on large-scale problems show that the proposed algorithm is
effective.
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1 INTRODUCTION
Over the past years, a number of investigations has been proposed
to solve MOPs. Many MOEAs have proven their effectiveness in
solving MOPs, e.g., [5, 6, 27, 31, 32]. However, traditional MOEAs’
search ability is severely deteriorated when the number of objec-
tives increases, especially for many-objective optimization prob-
lems (MaOPs) which have more than three objectives. Recently,
MaOPs have been widely discussed and people propose much re-
markable work, e.g., [5, 8, 11–13, 15, 17, 23, 27]. In fact, empirical
evidence indicates that most of the classical MOEAs significantly
decrease their effectiveness when the number of decision variables
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of the MOP increases [7], and this kind of problems is called large-
scale multi-objective optimization problems (LSMOPs). In the last
several years, several algorithms are proposed to solve LSMOPs
[1, 18, 29, 30], but work is still little comparing to MaOPs’.

Fortunately, in the field of single objective optimization problems
(SOPs), large-scale global optimization (LSGO) is widely studied.
Some remarkable work has been proposed, e.g., [2, 20, 22, 26]. The
variable-grouping mechanism and the cooperate mechanism are
the basic ideas of LSGO, which enlighten us to solve LSMOPs.

This paper proposes a cooperative co-evolutionary algorithm for
solving LSMOPs. This algorithm firstly divides decision variables
into different groups by adopting a fast interdependency identifica-
tion algorithm which is proposed by [9]. Then we design a novel
cooperative co-evolution algorithm to solve LSMOPs based on previ-
ous groups. Experiments are done and they prove the effectiveness
of the proposed algorithm.

The reminder of this paper is organized as follows. Section 2
presents background. Section 3 describes the proposed algorithm.
Section 4 presents the test suite. Finally, conclusions and experi-
mental results are made in section 5.

2 BACKGROUND
2.1 BASIC CONCEPTS

2.1.1 Multi-objective Optimization Problems. Without loss of
generality, a multi-objective optimization problem can be described
as (1) [4],

f (x) =

{min f (x) = (f1(x), f2(x), . . . , fm (x))

s .t . x ∈ Ω
(1)

where x = (x1,x2, . . . ,xn ) is the decision vector, Ω is the search
space, fi (x) is the i-th objective function in the objective space. We
call the problem many-objective optimization problem when the
number of objectives is more than three.

2.1.2 Pareto dominance. A solution x = (x1,x2, . . . ,xn ) is said
to dominate (denoted by ≺) another solution y = (y1,y2, . . . ,yn )
if and only if f (x) is partially less than f (y). That means, ∀m ∈
{1, . . . ,M}, we have fm (x) ≤ fm (y) and ∃m ∈ {1, . . . ,M}, where
fm (x) < fm (y).

2.1.3 Pareto optimal solution. A solution x = (x1,x2, . . . ,xn )
is said to be an optimal solution if and only if there is no y =
(y1,y2, . . . ,yn ) that y dominates x with respect to solution space.

2.1.4 Pareto optimal set. For a given MOP f (x), the Pareto op-
timal set is P = {x ∈ Ω |�y ∈ Ω, f (y) ≺ f (x)}, which is also called
non-dominated solutions.
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2.1.5 Pareto front. Given MOP f (x) and its Pareto optimal set
P, the Pareto front is PF = { f (x),x ∈ P}.

2.1.6 Variable Interdependency Identification. Suppose f (x) is a
given objective. If xi interacts with x j for this objective, then we
have a function,

∂ f

∂x
= д(xsub ) (2)

where x j ∈ xsub , xsub ⊆ x ,д(x) is another function. According to
the Newton-Leibniz formula, we have

f (x)|xi=b − f (x)|xi=a =

∫ b

a

∂ f

∂xi
dx (3)

where f (x)|xi=b=f (x1, . . . ,xi−1,b, . . . ,xn ). So we have

f (x)|xi=b − f (x)|xi=a =

∫ b

a
д(xsub )dx (4)

As x j ∈ xsub , if we perturb x j , then the difference value obtained
from the left part of (4) would change. On the contrary, if xi is sepa-
rable, д(xsub ) is a function of xi or a constant and the perturbation
of all other variables cannot affect the left part of (4). Therefore,
by simply investigating a variable’s difference value with a per-
turbation method, the variable interdependency information of a
problem can be obtained [9, 20, 22].

2.2 Related Work
2.2.1 Cooperative Coevolution. The framework of cooperative

coevolution (CC) is originally introduced by Potter and De Jong
[21]. Many cooperative coevolutionary numerical optimization al-
gorithms consist of three basic ingredients [2]. The first is a decom-
position method which is used to divide theN -dimensional decision
vector into groups of variables G1 . . .Gm . Each such group is opti-
mized with a separate subpopulation. The second is the cooperation
step. A representative individual from each of the other subpopu-
lations is selected. Then a population of complete N-dimensional
candidate solutions is constructed by concatenating the representa-
tives to each element of the current subpopulation. The last is the
optimizer. The optimizer is applied to the population for optimiz-
ing the decision variables in the current group. By combing with
different EAs, a variant of algorithms has been proposed under CC,
e.g., [14, 16]. However, little work applies CC to solve MOPs.

2.2.2 Variable Grouping Strategy. As demonstrated above, CC
needs a decomposition method to divide the decision vector into
groups of variables. In SOPs, many algorithms have been developed.
[26] proposes a new cooperative coevolution framework that is ca-
pable of optimizing large-scale nonseparable problems. A random
grouping scheme and adaptive weighting are introduced in problem
decomposition and coevolution. It is particularly good at dealing
with nonseparable problems. However, as the algorithm is designed
to solve nonseparable problems, they use a random grouping strat-
egy and this may works not well on separable problems.

Later, detection-based static decomposition strategies are devel-
oped, e.g., [2, 20, 22]. However, both of them require heavy compu-
tational cost in the identification process, resulting in unsatisfactory
performance in the optimization.

2.2.3 Related Work on LSMOPs. CCGDE3 [1] is a cooperative
coevolution algorithm combined with GDE3 for solving MOPs
with a large number of decision variables. The results confirm that
it is effective and efficient in tackling LSMOPs. However, their
scheme assigns each decision variable to its corresponding group
in a random way, since they assume this will increase the chance
of optimizing some interacting variables together.

In [30], variable grouping is used in the so-called Weighted Opti-
mization Framework to tackle LSMOPs without using CC. A set of
weights is applied to the groups of decision variables. The original
decision variables and the weight-variables are optimized in turns.
The authors report a superior performance compared to the SMPSO
[19] and NSGA-II [6] algorithms. However, they use differential
grouping (DG) mechanism [20] to group variables that can become
computationally expensive. Besides, in their work only one of the
objective functions is considered in the DG algorithm.

Ma et al. propose a decision variable analysis based MOEA,
known as MOEA/DVA, for solving large-scale MOPs [18]. The de-
cision variable analysis method based on dominance relationships
is designed to divide the decision variables into three groups. Ex-
periments show that this decision variable analysis method works
efficiently on LSMOPs with two or three objectives. MOEA/DVA
simply treats the variables related to both convergence and diver-
sity as diversity related variables, as the variable analysis strategy
is not able to further distinguish them. Following the basic idea of
MOEA/DVA, Zhang et al. propose a decision variable clustering
based evolutionary algorithm for LSMOPs [29]. Their empirical
observation indicates that these decision variables still can be fur-
ther divided into two groups. Based on the grouping results, the
groups of variables are optimized separately. It has been shown
that decision variable clustering is effective for solving LSMOPs.
However, their grouping strategy have rather high computational
cost.

In order to deal with the limitations of above algorithms, this pa-
per proposes a cooperative coevolutionary algorithm for LSMOPs.
We adopt a fast interdependency identification algorithm with
which decision variables are fastly divided into different groups,
and present a novel cooperative coevolutionary approach based on
these groups.

3 PROPOSED ALGORITHM
3.1 Fast Interdependency Identification
We adopt the fast interdependency identification approach of [9],
and extend it to MOPs. The basic idea is based on (4). For a simple
example, let f (x) = x1x2, where f (x) is an objective and it has two
interacting decision variables, we have ∂f

∂x1
= x2, so д(xsub ) = x2,

Dx1 (x) = f (x)|x1=b − f (x)|x1=a =
∫ b
a x2 dx . So if we perturb x2

and get the new solution x ′, Dx1 (x
′) =

∫ b
a x2 ′ dx would be differ-

ent from Dx1 (x). Therefore, by investigating a variable’s difference
value with a perturbation method, we can identify the interdepen-
dency of decision variables.

The first stage is identification of separable and nonseparable
variables. Let Dxi (x) = f (x)|xi=a+∆ − f (x)|xi=a . By perturbing all
other variables, a new solution x ′ is produced. Then a new dif-
ference value Dxi (x

′) is calculated by Dx ′i (x) = f (x ′)|xi=a+∆ −
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f (x ′)|xi=a . If xi is a separable variable, then Dxi (x
′) equals to

Dxi (x). In the algorithm, a predefined threshold ϵ1 is used as an
allowable error for the equality. If |Dxi (x

′) − Dxi (x)| ≤ ϵ1, xi is
viewed as a separable variable for the objective f (x). The appli-
cation to MOPs examines xi for each objective. Only when xi is
separable for each objective, this decision variable is viewed as a
separable variable of MOP and divided into a single group.

The second stage is identification of the interdependency infor-
mation of nonseparable variables. Firstly, choose a nonseparable
variable and perturb it to produce a perturbed solution x ′. Secondly,
put the variables that satisfy |Dxi (x

′) − Dxi (x)| > ϵ2 for any ob-
jective into the subcomponent group. Thirdly, the variables newly
captured are perturbed together to find more variables belonging
to this group. When no variables can be added to this group, an-
other group is formed. This process is repeated and finally the
subcomponents are established. Each group in the first stage can
also be viewed as a subcomponent and it contains only one decision
variable. The procedure of grouping decision variables is shown in
Algorithm 1.

[9] shows that as an approach that covers both of separability and
nonseparability forms, this approach’s time complexity is O(N +
kn), which is more efficient than similar approaches like [20, 22],
where N is the dimension of the decision variables, n is the number
of nonseparable variables and k is the number of nonseparable
subcomponents.

3.2 Cooperative Coevolution for LSMOPs
As demonstrated above, CC firstly need to use a decomposition
method to divide the N -dimensional decision vector into groups of
variables, and this is done in Algorithm 1. Then it is the cooperative
step, that is to say a representative individual should be picked from
each sub-group. In return, these representative individuals are used
to evaluate the individuals of each sub-group. At the beginning,
the representative individuals are picked randomly, then they are
picked from the best solutions of each sub-group.

In this paper, we present a novel cooperative coevolution algo-
rithm and a simple examplewith four decision variables for showing
the procedure is shown in Figure 1. This cooperative coevolution
algorithm can be integrated into an MOEA and the MOEA is used
to evolve individuals in the subgroup. The initial population are
firstly non-dominated sorted and we randomly pick one individual
from the first PF as the representative. With the representative
individual, we calculate each individual’s objective values. In each
sub-group, then use an MOEA to evolve these individuals and the
representative individual is updated too. The process is repeated
until the end of cycles. The main loop of the proposed cooperative
coevolution algorithm (CCLSM) is shown in Algorithm 2.

4 EXPERIMENT DESIGN
To examine the performance of the proposed algorithm CCLSM, we
integrate CCLSM into NSGA-II [6] and basic IBEA [31], which are
named CCL-NSII and CCL-IBEA. We adopt WFG [10], UF [28] and
LSMOP [3] test problems. The LSMOP test problems are designed
to have large number decision variables, which is exactly suitable
for our experiments.

Algorithm 1: Fast Interdependency Identification
Input :Objectives Fs ,

predefined threshold ϵ1, ϵ2;
Output : seps, groups;

1 seps ←[];
2 nonseps ←[];
3 allDimens ← [1, 2, . . . ,N ];
4 randomly generate a decision vector x ;
5 D1s ← calDiff(Fs ,x ,allDimens);
6 for each dimen ∈ allDimens do
7 x ′ ← perturb(x );
8 D2s ← calDiff(Fs ,x ′,dimen);
9 if |D2s(i) − D1s(i)| ≤ ϵ1 for all Fs then

10 seps ← seps ∪ i;
11 else
12 nonseps ← nonseps ∪ i;
13 end
14 end
15 дroups = {};
16 j = 1;
17 while not empty nonseps do
18 pdim ← nonseps(1);
19 дroups{j} ← nonseps(1);
20 while both pdim and дroups not empty do
21 x ′ ← perturb(pdim,x );
22 D3s ← calDiff(Fs ,x ′,nonseps);
23 pdim ← [];
24 for ns ∈ nonseps do
25 if |D2s(i) − D1s(i)| > ϵ2 exists in Fs then
26 дroups{j} ← дroups{j} ∪ i;
27 pdim ← pdim ∪ i;
28 end
29 end
30 nonseps ← nonseps − дroups{j};
31 end
32 if length(дroups{j} == 1) then
33 seps ← seps ∪ дroups{j};
34 else
35 j = j + 1;
36 end
37 end

In order to examine the performance of CCLSM, we compare
it with some popular MOEAs for MOPs with large-scale decision
variables. They are NSGA-II [6], basic IBEA [31] where the fitness
scaling factor is set to 0.05, and NSGA-III [5]. We use the platform
PlatEMO [24] to conduct our experiments.

In the fast interdependency identification step, based on the
empirical study of [9], ϵ1 and ϵ2 are generally set to the same and
the performance of the grouping method is not sensitive to the
parameters. Here we set both ϵ1 and ϵ2 to 0.01; The perturbing value
of decision variable is also set to 0.01. In evolutionary process, the
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Figure 1: A CC example with four decision variables.

Algorithm 2:Main Loop of CCLSM
Input :Objectives Fs ,

predefined threshold ϵ1, ϵ2;
Output :SolutionSet

1 [seps,дroups] ← fastIdIdentif(Fs ,ϵ1,ϵ2);
2 sub-дroups ← combineGroup(seps,дroups);
3 Pops ← initialPop();
4 Represent ← Pops(randomselect);
5 while not termination do
6 for sub-дroup ∈ sub-дroups do
7 subPop ← getSubPop(Pops ,sub-дroup);
8 subPop ←MOEA(subPop,Represent );
9 Represent ←update(Represent , subPop);
10 end
11 end

population size is 100; the crossover probability is 0.9; the mutation
probability is 1/n (where n is the number of decision variables). The
maximum number of evaluations is set to 50000 in all experiments.

5 RESULTS
We adopt the Inverted Generational Distance (IGD) that is a variant
of GD [25] for our experiments. The smaller the IGD value is, the
better the result is, and results are shown below.

5.1 IGD Results on Test Problems
Test problems’ average results for 15 times experiments are shown
in Table 1.

As shown in Table 1, for example, the UF5 problems with 2
objectives and 100 decision variables, NSGA-II’s result is 0.7123,

IBEA’s result is 0.9959, NSGA-III’s result is 0.4815. However, after
integrating the proposed algorithm, CCL-NSII’s result is 0.2285 and
CCL-IBEA’s result is 0.2187, which greatly improve other popu-
lar MOEAs’ performance. Other results also prove the proposed
algorithm CCLSM’s effectiveness.

5.2 The Pareto Front of the MOEAs
We also compare the Pareto front of these algorithms. For LSMOP9
test problems with 2 objectives and 100 decision variables, the
Pareto front comparisons are shown in Figure 2. For WFG3 test
problems with 10 objectives and 200 decision variables, the Pareto
front comparisons are shown in Figure 3. The number of evaluations
is 50000 in all experiments.

From Figure 2, the results show that all the test algorithms search
some local solutions. Solutions of NSGA-II, IBEA and NSGA-III devi-
ate from the true Pareto front and are poorly distributed. However,
CCL-NSII and CCL-IBEA are both close to the left part of LSMOP9’s
true Pareto front, and they search better solutions than NSGA-II,
IBEA and NSGA-III on LSMOP9 for diversity.

From Figure 3, results obviously show that CCL-NSII and CCL-
IBEA achieve better solutions on WFG3 than the other MOEAs, as
their Pareto fronts are more approximate to the true Pareto front.

Figures show that after integrating CCLSM, MOEAs achieve
better solutions. Results prove the effectiveness of CCLSM.

6 CONCLUSIONS
The goal of this paper is to investigate an algorithm LSMOPs. The
goal is successfully achieved by introducing a fast interdependency
identification algorithm and a cooperative coevolution algorithm
for LSMOPs with the obtained sub-groups. In order to examine
the effectiveness of the proposed algorithm, we integrate the pro-
posed algorithm CCLSM into NSGA-II and IBEA to obtain two
algorithm CCL-NSII and CCL-IBEA. Experiments are carried out
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Table 1: Average IGD Results on test problems

Test Problems Objective Number Variable Numbrer NSGA-II IBEA NSGA-III CCL-NSII CCL-IBEA
WFG2 5 100 0.8724 1.3963 0.8273 0.6664 0.7332
WFG2 5 200 0.9067 1.4905 0.8390 0.7948 0.7839
WFG3 10 200 3.3684 4.8088 2.3518 2.1588 1.3146
WFG3 7 300 1.7390 2.2983 1.4187 1.3246 0.9021
UF5 2 100 0.7123 0.9959 0.4815 0.2285 0.2187
UF5 2 200 0.8545 1.0721 0.7126 0.5912 0.5732

LSMOP1 5 100 4.5605 0.5227 1.1894 0.5270 0.2653
LSMOP1 3 200 1.7494 0.9006 0.9233 0.3582 0.3257
LSMOP5 5 100 12.6995 1.0821 3.7012 0.6463 0.7309
LSMOP5 4 200 13.9413 3.1324 5.2335 0.8181 1.0302
LSMOP9 5 100 22.0062 12.3691 21.8193 6.6637 4.3553
LSMOP9 5 200 24.8746 14.0627 19.8327 7.1205 4.7233
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Figure 2: The Pareto Front comparisons for LSMOP9.

to compare the performance of CCL-NSII, CCL-IBEA and other
popular MOEAs for MOPs with large-scale decision variables. From
the experimental results, the following conclusions can be drawn:
the proposed algorithm CCLSM successfully solves LSMOPs, the
results of MOEAs after integrating CCLSM are better than several
popular MOEAs’.

There are several relevant directions to pursue in the future.
First, it is desirable to study in more detail the variable grouping
algorithm. Second, we also consider developing new cooperative
coevolution mechanism. Finally, it would be interesting to propose
other MOEAs to get better results.
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