
Compiling a Benchmarking Test-Suite for Combinatorial
Black-Box Optimization: A Position Paper

Ofer M. Shir
Tel-Hai College and Migal Institute

Upper Galilee, Israel
ofersh@telhai.ac.il

Carola Doerr
Sorbonne University, CNRS, LIP6

Paris, France
Carola.Doerr@mpi-inf.mpg.de

Thomas Bäck
LIACS, Leiden University
Leiden, The Netherlands

t.h.w.baeck@liacs.leidenuniv.nl

ABSTRACT

This contribution focuses on the challenge of formulating a set of

benchmark problems and/or a test-suite for Combinatorial Opti-

mization problems when treated as black-box global optimization

problems.We discuss the involved dilemmas and possible obstacles

of such a compilation. To this end, we formulate a list of design

questions that need to be answered as a �rst step in this compi-

lation process. We articulate our perspective on these questions

by proposing a rough classi�cation of relevant problem classes,

answering the posed questions, and suggesting a preliminary set

of problems. While this position paper addresses the Evolutionary

Computation community, it intends to o�er an open-minded Com-

puter Science perspective – by considering the broad de�nition

of Combinatorial Optimization and by accounting for equivalent

threads within Operations Research and Mathematical Program-

ming communities. At the same time, this work capitalizes on prior

art in algorithms’ benchmarking, including the authors’ own ex-

perience with the continuous BBOB benchmark problem set, as

well as a number of discrete black-box optimization challenges fre-

quently encountered in practice.

CCS CONCEPTS

• Computing methodologies→ Randomized search; Discrete

space search;

KEYWORDS

discrete black-box optimization, combinatorial optimization, bench-

marking, algorithm evaluation, algorithm comparison

ACM Reference Format:

Ofer M. Shir, Carola Doerr, and Thomas Bäck. 2018. Compiling a Bench-

marking Test-Suite for Combinatorial Black-Box Optimization: A Position

Paper. In GECCO ’18 Companion: Genetic and Evolutionary Computation

Conference Companion, July 15–19, 2018, Kyoto, Japan.ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3205651.3208251

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208251

1 INTRODUCTION

A subclass of global optimization problems is denoted as Combi-

natorial Optimization (CO) — referring to problems formulated ei-

ther by integral decision variables (possibly mixed-integer, where

continuous variables are incorporated as well), or by discrete struc-

tures, e.g., graphs [40]. Formally, a CO problem

P :=
(

S, f : S → R+
)

,

is de�ned by a �nite set S with an objective function f assigning

a non-negative value to any of its elements s ∈ S. An optimization

process is de�ned as the search over S with the explicit goal of

locating an element s∗ with the minimal f -value.

CO constitutes a broad, well-studied �eld that has been address-

ed by multiple scienti�c sub-communities of Computer Science

(CS) and Applied Mathematics for at least six decades. It has been

approached by means of formal algorithms and Mathematical Pro-

gramming (MP) [13] (often branded as Operations Research (OR),

yet strongly rooted at Theoretical CS [38]), and has simultaneously

been treated by a wide range of dedicated heuristics (frequently

under the label of Soft Computing [33, 36, 43]). The domain of

Constraints Satisfaction Problems (CSPs) [25] covers combinato-

rial problems which do not formulate an objective function and

are predominantly concerned with satisfying the set of imposed

constraints. Such problems are associated with models for which

obtaining feasible solutions already sets a hard challenge, or other-

wise to models for which the objective function is of secondary im-

portance. CSPs have practical implications in Functional Veri�ca-

tion, and are commonly addressed in OR by so-called Constraints

Programming (CP) – which is treated by an independent branch

of dedicated techniques for constraints satisfaction. In the “for-

mal algorithms” end, OR of either MP or CP is practically carried

out by two sub-communities, employing di�erent classes of algo-

rithms. In the current paper, however, unless speci�ed otherwise,

CO-problems are referred to as an umbrella term, encompass-

ing all types of discrete optimization problems, as well as CSPs.

CO problems arise almost everywhere in theoretical and prac-

tical optimization, while a large volume of so-called solvers is con-

stantly under development. An important subclass of CO problem-

solvers is black-box optimization heuristics, which operate in a trial-

and-error fashion, by evaluating candidate solutions and using the

function values to evolve the strategy upon which the next search

points are drawn. This approach is in sharp contrast to classical

white-box optimizers, which construct solutions bottom-up, by ex-

ploiting the explicit problem-structure and the available instance-

data.1 Problem-speci�cwhite-box approaches are often superior to

1In practice, mixed forms of these approaches exist, often subsumed as gray-box opti-
mizers; see, e.g., [45].

https://doi.org/10.1145/3205651.3208251
https://doi.org/10.1145/3205651.3208251

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Ofer M. Shir, Carola Doerr, and Thomas Bäck

general-purpose black-box approaches – when comparisons over

speci�c problems are available (cf. discussion below). At the same

time, the practical relevance of black-box optimizers is rooted in

the fact that an explicit problem structure is not a prerequisite for

their operation – i.e., they do not require that the optimization

problem is formulated via an explicit map f : S → R+.

The current focus of the targeted benchmarking suite is set on

algorithms adhering to the black-box approach. Within this class,

Evolutionary Algorithms (EAs) [7], and more broadly randomized

iterative black-box optimization heuristics, commonly referred to

as Randomized Search Heuristics (RSHs) [6], constitute popular

black-box solvers. They have been concerned with CO-problems

since their early development because of their natural �t to ad-

dress them. Importantly, since they employ a black-box approach

by default, and since CSPs may be transformed into optimization

problems, the aforementioned distinction between MP to CP

has no equivalence in the RSHs/EAs communities. In other

words, RSHs treat all CO problems, including CSPs, indistinguish-

ably. At the same time, loosely speaking, there are no common

grounds for performance comparisons between RSHs to MP/CP

solvers when targeting similar CO problems. Traditionally, this has

been explained by the dramatic di�erences in the models’ scales

when comparing the two approaches: MP/CP (representing white-

box approaches) are known to handle millions of decision vari-

ables and constraints, whereas RSHs (representing black-box ap-

proaches) operate well over thousands of variables. On this note,

however, it should be kept in mind that MP-solvers occasionally

“hit a wall” on CO problems, and are sometimes outperformed by

so-called Hybrid Metaheuristics [9]. Such a scenario is mentioned

herein in order to shed light on this borderline between the two sci-

enti�c communities. As an example, we present anMP formulation

of the Multidimensional Knapsack Problem (MKP), utilizing n bi-

nary decision variables xi for items’ selection (relying on instance-

speci�c data:m knapsacks’ capacities ck , the pro�ts of the n items,

pi , and the resources consumptions ri,k of items per knapsacks):

[MKP] maximize

n
∑

i=1

pi · xi

subject to:
n
∑

i=1

ri,kxi ≥ ck ∀k ∈ 1 . . .m

xi ∈ {0,1} ∀i ∈ 1 . . .n

(1)

This problemmay seem straightforward for an MP-solver, but is in

fact highly-challenging and hard to be accurately treated by mod-

ern commercial solvers without hybridization (i.e., introduction of

black-box techniques) [9].

Finally, in order to target an e�ective suite compilation, we re-

strict by choice the optimization scope to single-objective, noise-

free, and static problems.We suggest to dedicate separate threads

for targeting the benchmarking of multi-objective, noisy, and/or

dynamic problems.

1.1 The Role of Benchmarking

Benchmarking aims at supporting practitioners in choosing the

“best” algorithmic technique and its �ttest instantiation for the

problem at hand through a systematic empirical investigation and

comparison amongst competing techniques in light of the follow-

ing more detailed questions:

• How does the algorithm perform on di�erent classes of

problems (e.g., network/�ow optimization or scheduling,

to mention a couple) and how does its performance com-

pare to that of other approaches?

• Which problem features possess the strongest impact on

the accuracy and/or the convergence speed, and how this

dependency may be quanti�ed? Examples for relevant fea-

tures are themodality of a problem (proportion of local and

global optima), its separability (grade of inter-dependencies

between the decision variables), the degree of constraints,

and its monotonicity.

• How does the performance scale with increasing prob-

lem complexity (i.e., dimensionality, cardinality of cate-

gories per a decision variable, etc.)?

• How sensitive is a given algorithm with respect to small

changes in the problem instance or the algorithmic compo-

nents?

For theoreticians, benchmarking can be an essential tool for the en-

hancements ofmathematically-derived ideas into techniques being

broadly applicable in practical optimization. In addition, empirical

performance comparisons constitute an important source for for-

mulating new research questions.

Designing sound benchmarking is a very demanding task that

requires a very good knowledge of the research literature, existing

techniques, and applications. In addition, systematic benchmark-

ing typically necessitates original research, to design test prob-

lems whose features are controllable and scalable – elements that

usually do not characterize real-world optimization tasks. Finally,

signi�cant implementation e�orts are needed to realize an easily-

accessible, well-designed, and well-documented testbed. All this is

not feasible unless a deliberate approach takes place.

1.2 Existing Work and State-of-the-Art

Benchmarking RSHs on CO-problems is an open issue for debate.

While white-box algorithms routinely compete within the OR com-

munity on an established and increasingly growing set of prob-

lems’ libraries (see, e.g., the Mixed-Integer Programming (MIP) li-

brary [1] or the CSP library [2]), black-box algorithms do not enjoy

equivalent settings. There exist isolated examples of benchmark-

ing environments for black-box CO, but they are typically designed

by practitioners and focus on speci�c sets of challenging problems.

As a consequence, benchmarking an algorithm on such problems

may become irrelevant to theoreticians, since the problems’ com-

plexity would render analytical attempts infeasible. We therefore

believe that an e�ort to accommodate a balanced compilation of

problems is much needed, to serve the large spectrum of black-box

algorithms’ researchers.

Our aim is thus to design a benchmarking environment that con-

stitutes an open-minded CS framework, facilitating a broad range

of challenges frequently encountered in practice. We argue that

it should include relevant benchmarks of the OR community –

while at the same time subsume problems that help understand

Compiling a Combinatorial Benchmarking Test-Suite GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

algorithms’ behavior on archetypal “toy problems”, whose under-

lying landscapes are well understood, and mathematical analyses

may thus turn fruitful. If successful, this compilation e�ort is ex-

pected to establish an e�ective benchmarking tool, useful both for

practitioners and theoreticians, with potential impact beyond the

scope of standard black-box optimization (that is, with outcome

potentially relevant to the OR community).

The remainder of this paper is organized as follows. In Section 2

we outline the existing challenges and the apparent requirements

for addressing them. Section 3 includes an overview of relevant

problem classes with their representative problem-instances – on

which we raise certain design questions that should be debated

prior to a compilation process. We note our answers to the pre-

scribed questions in Section 4, and then devise a preliminary set

of test-problems for the suite in Section 5. Finally, we summarize

this position paper in Section 6.

2 CHALLENGES AND REQUIREMENTS

We are concerned with the design of a benchmark environment

for discrete black-box optimization, and more concretely as previ-

ously mentioned, with the black-box single-objective optimization

of noise-free and static CO problems. Our task is therefore to iden-

tify a set {(Si ,Fi : Si → R) | i ∈ [N]} of CO problems for which

we want to compare algorithms’ performances.

The black-box setting requires that the algorithms undergoing

benchmarking hold basic information on the search space Si per

a given problem. They iteratively propose candidate solutions

x (1) , . . . ,x (s) ∈ Si ,

for which the objective function values,

Fi (x
(1)), . . . ,Fi (x

(s)) ∈ R,

are evaluated without revealing any other information about the

problem (Si ,Fi).

2.1 Previously Proposed Guidelines for
Black-Box Benchmarking

Over two decades ago, Whitley et al. [46] criticized the commonly

tested arti�cial landscapes in the EC community at that time, and

o�ered general guidelines for constructing test problems. Those

problems were mostly continuous parameter optimization in their

nature, but we consider the statements valid for the current scope.

We summarize those guidelines in light of the current context, i.e.,

an environment for discrete black-box optimization benchmark:

(A) “Test suites should contain problems that are resistant to hill-

climbers”. Hill-climbing strategies, including greedy local search,

are typically faster than EAs, when they are successful. Hence,

it is justi�ed to test EAs on landscapes which cannot be easily

hill-climbed.

(B) “Test suites should contain problems that are non-linear, non-

separable, and non-symmetric”.

(C) “Test suites should contain scalable functions”. The dimension-

ality of the search space is an important issue, and thus should

be tested accordingly.

(D) “Test suites should contain problems with scalable evaluation

cost”. The cost of some evaluation functions grows as a func-

tion of the search space dimensionality. This typically charac-

terizes real-world problems, and should be considered.

(E) “Test problems should have a canonical form”. This demand is

relevant to encoding-based algorithms, such as GAs.

We hereby adopt those recommendations, and intend to pose a

list of additional design questions in Section 3 that need to be ad-

dressed prior to the benchmark design process takes place.

2.2 The Continuous Counterpart: BBOB

The continuous Black-boxOptimization Benchmarking suite BBOB

for real-valued search [29] constitutes an established testing frame-

work for evaluating performance of continuous optimizers. The

noise-free suite encompasses 24 functions classi�ed as follows:

(1) Separable functions

(2) Functions with low or moderate conditioning

(3) Functions with high conditioning and unimodal

(4) Multi-modal functions with adequate global structure

(5) Multi-modal functions with weak global structure

We do not formally de�ne the aforementioned terms nor do we ex-

plain the rationale in this classi�cation, due to scope and space lim-

itations, and refer the interested reader to the documentation [30].

These classes, nevertheless, may inspire us when searching for typ-

ical equivalent features to be covered by the discrete black-box op-

timization benchmark. Another conclusion we draw from this clas-

si�cation is the option of aggregating performance over a class of

functions, a question that we will return to in Section 3.4.

3 NINE FUNDAMENTAL DESIGN QUESTIONS

This section aims at identifying the desirable properties of CO benc-

hmarking problems. In this identi�cation process we pose relevant

questions and examine several speci�c CO-problems that feature

some of these properties.

Next, we begin by presenting the archetypical Traveling Sales-

man Problem (TSP), which would illustrate multiple design issues

to be discussed. The TSP is posed as �nding a Hamilton circuit of

minimal total cost. Explicitly, given a directed graphG, with a ver-

tex set V = {1, . . . , |V |} and an edge set E = {〈i, j〉}, each edge is

associated with cost information ci j ∈ R
+. Two TSP formulations

are provided herein:

[TSP-ILP] minimize
∑

〈i,j〉∈E

ci j · xi j

subject to:
∑

j ∈V

xi j = 1 ∀i ∈ V

∑

i ∈V

xi j = 1 ∀j ∈ V

ui − uj + 1 ≤ (|V | − 1)
(

1 − xi j
)

∀i, j ∈ {1, . . . , |V |}

|V | ≥ ui ≥ 2 ∀i ∈ {2,3, . . . , |V |}

xi j ∈ {0,1} ∀i, j ∈ V

(2)

This ILP, known as the Miller-Tucker-Zemlin formulation [40], uti-

lizes n2 binary assignment variables xi j in addition to n integersui
that play the role of inner-circles eliminators (replacing, otherwise,

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Ofer M. Shir, Carola Doerr, and Thomas Bäck

an exponential number of subtour elimination constraints [40]).

[TSP-perm] minimize

n−1
∑

i=0

cπ (i),π ((i+1)modn)

subject to:

π ∈ P
(n)
π

(3)

In the latter, P
(n)
π denotes the set of permutations of length n. This

permutation formulation does not qualify as an MP, since it vio-

lates the canonical form. Nevertheless, it is often useful for RSHs

which utilize dedicated permutation variation operators. These two

alternative formulations would raise the problem representation

question in what follows.

3.1 Problem Representation

An important design question in CO is the formulation of the orig-

inal problem as a function f : S → R. It is well known that care

should be given to this step, since the representation of candidate

solutions can have a decisive in�uence on the complexity of the

problem, as well as on the performance of the algorithms [21]. For

some CO problems, a canonical problem representation exists, but

for a considerable number of problems this does not hold. At the

same time, since black-box optimization algorithms are often tai-

lored to a speci�c search-space at hand, the problem representa-

tions must be well-de�ned in advance.

Among themost common representations are then-dimensional

cube of alphabet size r , {0, ...,r − 1}n , and the set P
(n)
π of permuta-

tions over the set [n] := {1, . . . ,n} – which were both illustrated

within the TSP formulations above.

[Q1] Should a problem representation be dictated per

each benchmarking problem?

3.2 Instance-Based Problems

Importantly, each TSP-instance constitutes an independent COprob-

lem, whose properties are essentially dictated by the graph G and

the associated cost information ci j . Therefore, TSP problems are

not scalable.

Other instance-based CO-problems are addressed by RSHs as a

common practice, among which Kau�man’s NK-landscapes [5, 34]

and the Quadratic Assignment Problem [11] are worth noting in

this context.

[Q2] Should instance-based problems be incorporated

within the test-suite?

3.3 Invariant Problem Formulation

An important feature of the BBOB suite is a set of invariances that

the problems are required to adhere. That is, BBOB considers as

a problem not a single pair (S , f : Rn → R
+) of search space

and objective function, but rather a whole collection of problems

with identical, but rotated, translated, and scaled �tness landscapes.

More formally, for a set Φ of automorphisms ϕ : Rn → Rn and a

set T of automorphisms τ : R→ R, the problem (S , f : Rn → R+)

is identi�ed with the set {(S ,τ ◦ f ◦ ϕ : Rn → R+) | ϕ ∈ Φ,τ ∈ T }.

[Q3] Should the benchmarking framework cover the

invariance aspect, and implicitly favor algorithms that

are invariant with respect to problem representation,

and if so, which invariances should be respected?

3.4 Performance Evaluation

In black-box optimization two competing types of performance

indicators exist: elapsed CPU time and the number of function

evaluations (typically coined query complexity in the broader CS-

literature). While CPU time is arguably the measure that predomi-

nantly matters in practical applications, it has the substantial draw-

back that it is hardware and software speci�c, and thus hard to

generalize. Function evaluations, in contrast, have the advantage

of being a universal performance measure, independent of the im-

plementation and the hardware that it is executed on.

[Q4] Which primary performance evaluation mea-

sure should be adopted?

Similarly as BBOB de�nes the �ve subclasses presented in Sec-

tion 2.2, it might make sense to categorize the benchmark prob-

lems, and to compute some aggregated performance measures for

these problem clusters as a standard output of the testbed.

[Q5] Should performance aggregation be conducted?

Most benchmarking environments allow for a comparison of

algorithms’ performances, but do not necessarily facilitate an in-

depth analysis of the optimization process beyond the evolution

of quality indicators such as the best function value identi�ed so

far. From an analytical perspective, however, additional informa-

tion, such as the evolution of dynamic parameter values, diversity

measures, etc. might be desirable.

[Q6] Should the test-suite also facilitate algorithm

pro�ling in the sense of algorithmic analysis beyond

pure performance evaluation?

3.5 Simple Benchmark Problems Admitting
Runtime Analysis

Amongst a number of highly challenging black-box optimization

problems, BBOB also encompasses a few rather simple problems

like the Sphere function (Rn ,F1 (x) :=
∑n
i=1 x

2
i) as well as a few

additional unconstrained convex problems.

The mathematical property of convexity in continuous domains

naturally does not hold in CO. Yet, in terms of problem hardness,

we consider the equivalent to convex problems [10] as simple prob-

lems admitting runtime analysis. A well-known representative of

this class is the “OneMax” problem [3], also known as the “Count-

ing Ones” problem. OneMax is considered to be one of the sim-

plest non-trivial CO problem.We consider its formulation as amin-

imization problem, which is named the “Hamming Distance” (HD)

problem: Let a binary string of length n, x := (x1, . . . ,xn) with

xi ∈ {0,1}, form the decision variables. The objective function to

be minimized is simply the summation over those variables:

[HD] minimize

n
∑

i=1

xi

subject to:

xi ∈ {0,1} ∀i ∈ {1, . . . ,n}

(4)

Compiling a Combinatorial Benchmarking Test-Suite GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

The HD problem enjoys a number of available, quite precise, run-

time results per a broad class of di�erent RSHs, including the (1+1)

EA [31], population-based EAs [26], GAs using recombination [14],

and algorithms with dynamic parameter choices [15, 19]. It is also

one of the few problems for which the complexity is very well un-

derstood [20, 24].

[Q7] Should the test-suite encompass simple COprob-

lems admitting runtime analysis?

3.6 Facing Operations Research

A large volume of commonly-addressed combinatorial optimiza-

tion problems may be formulated as integer problems that are lin-

ear both in the objective function and the imposed constraints.

This formulation yields a so-called Integer orMixed-Integer Linear

Program ([M]ILP), that consequently may e�ciently be treated by

adecquate solvers [8]. Progressive applied reseach throughout sev-

eral decades in OR has obtained a large variety of forceful MILP

solvers – either commercial (e.g., IBM’s ILOG CPLEX [32]) or non-

commercial. Such solvers typically tackle MILP problems very ef-

fectively, featuring a smaller order of performance magnitude in

terms of CPU time when compared to RSHs.2 Clearly, drawing

such a comparison is problematic, due to the fact thatMILP-solvers

enjoy a white-box perspective, while RSHs are subject to either

gray- or black-box perspectives. But even so, a legitimate question

could be raised within this context on benchmarking:

[Q8] Should RSHs’ performance be evaluated on prob-

lems that are known to be e�ectively treated by MP-

solvers in practice?

3.7 MP versus CP

Since MP and CP are clearly distinguished within the OR commu-

nity, we pose a general question on the distinction between opti-

mization to CSPs in the black-box perspective:

[Q9] Should RSHs’ performance be indistinguishably

evaluated on CSPs as well? That is, should a distinc-

tion between standard optimization to CSPs be avoided

in the black-box perspective?

4 PROPOSED POSITION AND PROBLEMS

We o�er our perspective by answering the preceding questions:

(1) A certain problem formulation dictates the test-case, and

should be set �xed (i.e., TSP-ILP and TSP-perm are essen-

tially two di�erent search-problems). We suggest to restrict

the benchmark suite to functions f : {0, ...,r − 1}n → R+.

This problem representation allows for a large �exibility

and subsumes a large fraction of classical CO problems. It is

also the arguably most common representation used in the

EC literature for CO problems.

(2) We suggest that (i) preference be given to problems that are

not instance-based, and that (ii) instance-based problems

2This comparative statement is noted with a reservation, since some MILP solvers ac-
tually employ evolutionary operators in their heuristic components, such as CPLEX’s
polish subroutine [42].

be included only to the extent needed to understand per-

formance behavior that cannot be otherwise observed over

instance-free CO problems.

In light of existing benchmarking suites, this claim may ap-

pear surprising at �rst. We base our position on the follow-

ing argumentation: Firstly, it is well known that the com-

plexity of an instance-based CO problem can di�er substan-

tially between two di�erent instances. Depending on the

particular instance, the problem can be relatively easy to

solve (i.e., polynomial or better time complexity), or very

di�cult (i.e., exponential time complexity). For a fair com-

parison, all algorithms would therefore need to be tested on

the same set of instances, which carries the risk of over�t-

ting. Secondly, problem instances require speci�c descrip-

tions and are therefore, in general, not arbitrarily scalable

with respect to their dimensionality.3 Finally, we wish to

avoid future scenarios in which the competition of black-

box approaches over an instance-based CO problem splits

into an independent research activity – as evidently occurred

for the TSP and SAT sub-communities. We argue that such

specialized empirical investigations of particular benchmark

problems should not overcast the goal of a broad-scope RSHs’

performance comparison.

Finally, should instance-based problems be included, we sug-

gest to give priority to problems that are scalable, in the

sense that the �tness landscapes adhere similar patterns.We

also recommend to consider each selected problem-instance

as a separate problem.

(3) Yes, the suite should account for problem invariances. As

no selection of CO problems can encompass all the relevant

features of real-world optimization challenges, every bench-

mark suite bears the risk of focusing the research commu-

nity on a too small, not too representative set of problems.

As a consequence, over�tting may occur. We believe that

conforming to certain, natural invariances reduces the risk

of such over�tting. This belief is seemingly backed up by the

BBOB development as witnessed by its participants/users.

We present in Section 5.1 a number of invariances that we

consider meaningful in the context of minimizing functions

of the type f : {0, ...,r − 1}n → R+.

(4) In line with the arguments presented in [27], we advocate

the use of function evaluations as the main performance

measure. The benchmarking system, however, should also

record the elapsed CPU times so that they can be accounted

for if needed. If scenarios of evident large di�erences in CPU

times occur, they should be reported in the respective docu-

mentation. When run on the same machine, CPU times can

be used as a secondary performance indicator.

(5) Yes, we support performance aggregation. We do not sup-

port, however, aggregation over problem dimension, since,

as already argued in [28], problem dimension should be used

for algorithm selection. Note also that even in the black-box

setting the algorithm needs to know the search space that

3Arguably, a large cluster of problem instances could be viewed altogether as a scal-
able problem, e.g., Random-3-SAT [12]; this idea however is not put forward herein.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Ofer M. Shir, Carola Doerr, and Thomas Bäck

it is asked to operate upon. For the same reason, we also

object to aggregation over the alphabet size r .

(6) Yes, the benchmark suite should allow for algorithm pro�l-

ing. A mere algorithm comparison/competition tool bears

the risk of being less appealing to the EC community, as one

of themain research ambitions is to understand theworking

principles behind RSHs, with the ultimate goal of enabling

a more e�ective algorithm design. However, the additional

data to be tracked should not result in a signi�cant slow-

down of the benchmarking activities. We therefore suggest

to implement it as an optional feature. Standard observables

may include population sizes, mutation/crossover rates and

probabilities, selective pressure, and the diversity of popu-

lations and/or objective values.

(7) Yes, selected analyzable functions, such as HD, should be

incorporated into the test-suite, also to promote intensi�ed

discussions between theory-driven to practice-oriented schol-

ars. To foster such an exchange, it is important to carefully

argue which aspect of black-box optimization each of these

selected problems covers.

(8) Yes, problems that are (easily) solvable byMILP-solvers could

be incorporated into the test-suite, as long as they are not

instance-based. Notably, a preference should be given tomore

challenging problems.

(9) Yes, RSHs’ performance should be indistinguishably evalu-

ated on CSPs as well, since in the black-box perspective they

are merely CO-problems.

5 EXAMPLE BENCHMARK PROBLEMS

We collect in this section a few benchmark problems that adhere

to the answers given in the previous section. Although we clas-

sify them according to their origin, we recall that this classi�cation

might be less relevant in the black-box setting. Put di�erently, the

suggested performance aggregation does not necessarily need to

follow this historic development.

Before we state the example problems, we �rst discuss the in-

variances that the problems should obey, in a similar fashion as

the 24 BBOB benchmark functions respect invariance with respect

to rotations, scaling, and translation.

5.1 Problem Invariances

We have argued that we restrict our attention to problems of the

type ({0, ...,r − 1}n , f : {0, ...,r − 1}n → R+). Already for r = 2

this class includes an important number of classical optimization

problems. We start our discussion with a set of invariances that

we consider most relevant in the context of such pseudo-Boolean

optimization problems. To this end, we recall that the hyper-cube

is equipped with a natural distance measure, the Hamming dis-

tanceH , which assigns to each pair of length-n bit strings the num-

ber of bits in which they di�er. Composing a pseudo-Boolean func-

tion with an automorphism of the hyper-cube that respects this

distance measure (so-called Hamming automorphisms) results in

a function of the same, but rotated �tness landscape. We suggest

to include this important set of automorphisms in the set of in-

variances that the problems should adhere. More concretely, we re-

quire to treat as invariances of the same problem f : {0,1}n → R+

all functions that can be expressed as

fz,σ : {0,1}n → R,x 7→ f (σ (x ⊕ z)) (5)

where the string z ∈ {0,1}n determines the shift and the permuta-

tion σ ∈ P
(n)
π the rotation. Note here that we abuse notation and

the de�ne as σ (x) the re-arranged string σ (x) := (xσ (1) . . . xσ (n)).

It has been argued in [35] that many important RSH respect

problem invariance with respect to Hamming automorphisms. In

black-box optimization, the invariance under Hamming automor-

phisms is intensively studied in the so-called unbiased black-box

complexity model, cf. [23] for a survey.

In addition to the invariance with respect to Hamming auto-

morphisms, we suggest to also conform invariance with respect

to translation
{

f + r : {0,1}n → R,x 7→ f (x) + r | r ∈ R
}

(6)

and with respect to scaling
{

c f : {0,1}n → R,x 7→ c · f (x) | c ∈ R
}

(7)

For CO problems represented as search over the n-dimensional

cube {0, ...,r − 1}n of alphabet size r ≥ 2, no natural equivalent

to Hamming distance exists. In contrast, there are a number of dif-

ferent distance measures that are meaningful in di�erent contexts,

even when restricting to a single optimization problem; cf. [17] for

the example of three di�erentmulti-valued OneMax problems. The

three distance measures discussed there are the classic L1 distance

d1 (x ,z) :=
∑n
i=1 |xi − zi |, the ring distance dr (x ,z) := min{xi −

(zi −r), |xi −zi |, (zi +r)−xi }, and the indicator distance di (x ,z) :=

n− |{j ∈ [n] | x j = zj }|. Other distance measures exist. We suggest

a problem-speci�c discussion of the metric that is used to de�ne

the automorphisms that the problem should adhere. Regardless of

the chosen set of search-space invariances, we also suggest to re-

spect translation- and scaling-invariance.

5.2 Analyzable Functions

We introduce some of the classic benchmark functions that allow

for a rigorous runtime analysis. Following our recommendation

with respect to Q7, each one of them highlights some important

problem features that are meaningful to showcase. We formulate

these problems as pseudo-Boolean functions f : {0,1}n → R, and

note that multiple ways exist to generalize these to multi-valued

analogs. As indicated in the previous subsection, such a generaliza-

tion requires an intensi�ed discussion of the underlying metric—a

question that we would like to put aside for the current paper.

OneMax (HD). As mentioned in Section 3.5, the OneMax func-

tion is the archetypal problem for a simple hill-climbing exercise.

Despite being the best-studied problem in the theory of discrete

black-box optimization,4 a number of questions concerning the

performance of classical EAs remain unsolved, among them the in-

nocently looking problem of determining the optimal adaptive mu-

tation rate for the (1+1) EA [20] and the usefulness of crossover [15].

BinaryValue.While greedy local search algorithms behave ide-

ntically on all strictly monotonous functions, performance gaps be-

tween di�erent linear functions f : {0,1}n → R,x 7→
∑n
i=1wixi

4Published results date back to Erdős and Rényi [24]; cf. [18] for a discussion on this
and relatedworks from discretemathematics in the context of black-box optimization.

Compiling a Combinatorial Benchmarking Test-Suite GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

can be observed already for the (1 + λ) EA with standard bit mu-

tation [22]. A particular linear function that has received much

attention in the runtime analysis community is BinaryValue BV :

{0,1}n → R,x 7→
∑n
i=1 2

n−ixi . In contrast to the OneMax func-

tion, where the correlation between the function values and the

distance to the optimal solution is perfect, the exponential decay

of the bit weights causes a much di�erent �tness landscape for Bi-

naryValue. Note, for example, that the BV-value of (1,0, . . . ,0) is

strictly larger than that of (0,1, . . . ,1), despite being much closer

to the optimal solution (0, . . . ,0).

Intermediate Linear Functions.OneMaxwith its constant bit

weights and BinaryValue with the exponentially decaying weights

can be seen as extreme examples for linear functions. Intermediate

linear functions, e.g., f : {0,1}n → R,x 7→
∑

i ixi may be worth-

wile to benchmark, in order to detect how sensitive an algorithm

is with respect to the bit weights.

LeadingOnes. Another very well studied function in the the-

ory of pseudo-Boolean black-box optimization is LeadingOnes, a

function for counting the number of initial ones in a bit string.

This problem is an interesting object in theoretical investigations,

because it is a non-separable problem with an easy to understand

structure. Optimal algorithms for this problem are surprisingly com-

plex [4]; they achieve a running time of Θ(n log logn), whereas

most RSHs have running times quadratic inn, and problem-tailored

binary-search-based solvers exhibit O (n logn) running times.

Jump Functions. For a non-negative integer ℓ, the function

jumpℓ is derived from the OneMax function, denoted here as OM,

by “blanking out” any informationwithin the strict ℓ-neighborhood

of the optimum and its bitwise complement (i.e., by setting a func-

tion value of 0). That is, for all x ∈ {0,1}n we have

jumpℓ (x) :=



n, if OM(x) = n,

OM(x), if ℓ ≤ OM(x) ≤ n − ℓ,

0, otherwise.

(8)

Multiple similar variants of this function exist, and they di�er most

notably in the size of the search space “between” local and global

optima, and in the values assigned to these points, cf. [16, Sec-

tion 2] for a discussion. What is common to any of these functions

is that they all expose the algorithms’ ability to excavate the gap

between the local optima and the global optimum. Variants of this

function with consecutive or shifted objective function gaps may

be worthwhile to study. Note, however, that the former introduces

a multimodal problem, which should be treated as a separate case.

RoyalRoad Functions. One way to introduce “consecutive”

plateaus is exhibited in RoyalRoad functions. These functions were

originally designed to showcase a situation in which the use of

recombination operators can be bene�cial over purely mutation-

based search. For a given block size k , the function partitions a

string x into n/k blocks of size k and counts the number of blocks

in which all bits are set correctly. Thus, formally, RRk (x) := |{i ∈

[1..⌈n/k⌉] | ∀j ∈ [k] : x (i−1)k+j = 1}|.

The discussion above shows that already these simple problems

admitting runtime analysis de�ne a large set of parametrized prob-

lems. Care has to be taken when deciding which linear functions,

which jump functions, which royal road functions, and which mul-

timodal variants thereof to include in the benchmark suite.

5.3 CSP

Then-queens problem (NQP) is de�ned as the task to placen queens

on an n×n chessboard in such a way that they cannot capture each

other. NQP formally constitutes a CSP:

[NQP-CSP] satisfy:
∑

i,j

xi j = n

∑

i,j |j−i :=k

xi j ≤ 1 k ∈ {−n + 2,−n + 3, . . . ,n − 3,n − 2}

∑

i,j |i+j :=ℓ

xi j ≤ 1 ℓ ∈ {2,3, . . . ,2n − 3,2n − 2}

xi j ∈ {0,1} ∀i, j ∈ {1, . . . ,n}

(9)

This formulation utilizes n2 binary decision variables xi j , which

are associated with the chessboard’s coordinates, having an origin

(1,1) at the top-left corner. Setting a binary to 1 implies a single

queen assignment in that cell. This CSP formulation devises the de-

mand to place n queens as the �rst constraint, followed by two sets

of constraints eliminating queens’mutual threats at the increasing-

diagonal (using the dummy indexing k) and decreasing-diagonal

(using the dummy indexing ℓ). As the majority of CSPs, it can be

reformulated as a canonical optimization problem (transforming

into an ILP by, e.g., maximizing the summation over
∑

i,j
xi j while

dropping the �rst constraint). Also, it should be noted that a per-

mutation formulation also exists for this problem, and is sometimes

attractive for RSHs, as mentioned for the TSP-perm formulation.

Due to chessboard symmetries, NQP possesses multiplicity of op-

timal solutions. Its attractiveness, however, lies in its hardness.

5.4 Non-Linear Hard Problems

This class of problems is meant to capture challenging CO prob-

lems that do not fall under the umbrella of OR. They naturally �t

to be treated by RSHs.

Obtaining binary sequences possessing a high merit factor, also

known as the Low-Autocorrelation Binary Sequence (LABS) prob-

lem, constitutes a grand combinatorial challenge with practical

applications in radar engineering and measurements [41, 44] as

well as several open questions concerning its mathematical nature.

Given a sequence of length n, S := (s1, . . . ,sn) with si = ±1, the

merit factor is proportional to the reciprocal of the sequence’s auto-

correlations. The LABS optimization problem is de�ned as search-

ing over the sequence space to yield the maximal merit factor:

[LABS] maximize
n2

2E (S)
subject to:

E (S) :=

n−1
∑

k=1

*.
,

n−k
∑

i=1

si · si+k
+/
-

2

si ∈ {−1,+1} ∀i ∈ {1 . . .n}

(10)

While its current formulation does not adhere to the standard form

presented earlier, {0, ...,r − 1}n → R+, it could be reformulated

to follow it. This hard, non-linear problem has been studied over

several decades (see, e.g., [37, 39]), where the only way to obtain

exact solutions remains exhaustive search.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Ofer M. Shir, Carola Doerr, and Thomas Bäck

6 DISCUSSION AND SUMMARY

This position paper proposed an explanatory overview of the ex-

isting dilemmas and di�culties involving the formulation of a CO

benchmarking environment for black-box algorithms. It aimed at

o�ering a broad CS-perspective by accounting for the OR commu-

nity and its contribution on the one hand, and by examining exist-

ing benchmarks for black-box algorithms in numerical optimiza-

tion (BBOB) on the other hand. By posing 9 critical questions while

investigating related issues, it is our belief that we set the ground

for a constructive process of compiling such an environment.

In our opinion, thehuman factor plays a crucial role in such

processes. Generally speaking, formulation of a test-suite may in-

volve three types of scholars: theoreticians, algorithms’ designers,

and practitioners. While theoreticians naturally favor analyzable

functions, algorithms’ engineers may possess preferences toward

families of functions that are successfully treated by their designs,

and practitioners may have the best insights into which functions

most accurately represent real-world problems, and their prefer-

ences would then be biased accordingly. These human tendencies

should be acknowledged and accounted for. Importantly, we state

that a proper balance should be made amongst those three parties

in order to accomplish the ultimate goal of compiling an e�ective

test-suite that is appealing and meaningful to a broad audience,

and o�ers novel insights into the working principles of discrete

black-box optimization techniques.

ACKNOWLEDGEMENTS

This publication is based upon work from COST Action CA15140,

“Improving Applicability of Nature-Inspired Optimisation by Joining

Theory and Practice”.

REFERENCES
[1] MIPLIB: the Mixed Integer Programming LIBrary. http://miplib.zib.de/, 2017.
[2] CSPLib: A problem library for constraints. http://csplib.org/, 2018.
[3] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1987.
[4] P. Afshani, M. Agrawal, B. Doerr, C. Doerr, K. G. Larsen, and K. Mehlhorn. The

query complexity of �nding a hidden permutation. In Space-E�cient Data Struc-
tures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion
of His 66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages
1–11. Springer, 2013.

[5] H. Aguirre and K. Tanaka. Performance and Scalability of Genetic Algorithms
on NK-Landscapes, pages 37–52. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[6] A. Auger and B. Doerr. Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scienti�c Publishing Co., Inc., River Edge, NJ, USA,
2011.

[7] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York, NY, USA, 1996.

[8] E. R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory
and practice — closing the gap. In M. J. D. Powell and S. Scholtes, editors, System
Modelling and Optimization, pages 19–49, Boston, MA, 2000. Springer US.

[9] C. Blum and G. R. Raidl. Hybrid Metaheuristics: Powerful Tools for Optimization.
Arti�cial Intelligence: Foundations, Theory, and Algorithms. Springer Interna-
tional Publishing, 2016.

[10] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
New York, 2004.

[11] R. E. Burkard. Quadratic Assignment Problems, pages 2741–2814. Springer New
York, New York, NY, 2013.

[12] C. Coarfa, D. D. Demopoulos, A. San Miguel Aguirre, D. Subramanian, and M. Y.
Vardi. Random 3-SAT: The plot thickens. Constraints, 8(3):243–261, July 2003.

[13] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinato-
rial Optimization. John Wiley and Sons, New York, NY, USA, 2011.

[14] D. Corus and P. S. Oliveto. Standard steady state genetic algorithms can hillclimb
faster than mutation-only evolutionary algorithms. CoRR, abs/1708.01571, 2017.

[15] B. Doerr and C. Doerr. Optimal static and self-adjusting parameter choices for
the (1 + (λ, λ)) genetic algorithm. Algorithmica, 80:1658–1709, 2018.

[16] B. Doerr, C. Doerr, and T. Kötzing. Unbiased black-box complexities of jump
functions. Evolutionary Computation, 23:641–670, 2015.

[17] B. Doerr, C. Doerr, and T. Kötzing. Static and self-adjusting mutation strengths
for multi-valued decision variables. Algorithmica, 80:1732–1768, 2018.

[18] B. Doerr, C. Doerr, R. Spöhel, and H. Thomas. Playing Mastermind with many
colors. Journal of the ACM, 63:42:1–42:23, 2016.

[19] B. Doerr, C. Doerr, and J. Yang. k -bit mutation with self-adjusting k outperforms
standard bit mutation. In Proc. of Parallel Problem Solving from Nature (PPSN’16),
volume 9921 of Lecture Notes in Computer Science, pages 824–834. Springer, 2016.

[20] B. Doerr, C. Doerr, and J. Yang. Optimal parameter choices via precise black-
box analysis. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’16), pages 1123–1130. ACM, 2016.

[21] B. Doerr and D. Johannsen. Edge-based representation beats vertex-based rep-
resentation in shortest path problems. In Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’10), pages 758–766. ACM, 2010.

[22] B. Doerr and M. Künnemann. Optimizing linear functions with the (1+λ) evolu-
tionary algorithm—di�erent asymptotic runtimes for di�erent instances. Theo-
retical Computer Science, 561:3–23, 2015.

[23] C. Doerr. Complexity theory for discrete black-box optimization heuristics.
CoRR, abs/1801.02037, 2018.

[24] P. Erdős and A. Rényi. On two problems of information theory. Magyar Tu-
dományos Akadémia Matematikai Kutató Intézet Közleményei, 8:229–243, 1963.

[25] K. Ghédira and B. Dubuisson, editors. Constraint Satisfaction Problems. John
Wiley and Sons, 2013.

[26] C. Gießen and C.Witt. The interplay of population size andmutation probability
in the (1 + λ) EA on OneMax. Algorithmica, 78(2):587–609, 2017.

[27] N. Hansen, A. Auger, D. Brockho�, D. Tusar, and T. Tusar. COCO: performance
assessment. CoRR, abs/1605.03560, 2016.

[28] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockho�. COCO: A
platform for comparing continuous optimizers in a black-box setting. CoRR,
abs/1603.08785, 2016.

[29] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík. Comparing results of 31
algorithms from the black-box optimization benchmarking bbob-2009. In Pro-
ceedings of the 12th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO ’10, pages 1689–1696, New York, NY, USA, 2010. ACM.

[30] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimiza-
tion benchmarking 2009: Noiseless functions de�nitions. Inria Research Report
RR-6829, 2009.

[31] H.-K. Hwang, A. Panholzer, N. Rolin, T.-H. Tsai, and W.-M. Chen. Probabilistic
analysis of the (1 + 1)-evolutionary algorithm. Evolutionary Computation, pages
1–47, 2018. To appear.

[32] IBM ILOG. The CPLEX Optimizer. www.ibm.com/software/, 2018.
[33] J. Kacprzyk and W. Pedrycz, editors. Springer Handbook of Computational Intel-

ligence. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
[34] S. A. Kau�man and E. D.Weinberger. The NKmodel of rugged �tness landscapes

and its application to maturation of the immune response. Journal of Theoretical
Biology, 141(2):211 – 245, 1989.

[35] P. K. Lehre and C. Witt. Black-box search by unbiased variation. Algorithmica,
64:623–642, 2012.

[36] R. Martí, P. Pardalos, and M. G. Resende, editors. Handbook of Heuristics.
Springer International Publishing, 2018.

[37] B. Militzer, M. Zamparelli, and D. Beule. Evolutionary search for low autocorre-
lated binary sequences. IEEE Transactions on Evolutionary Computation, 2(1):34–
39, Apr 1998.

[38] C. Moore and S. Mertens. The Nature of Computation. Oxford University Press,
2011.

[39] T. Packebusch and S. Mertens. Low autocorrelation binary sequences. Journal
of Physics A: Mathematical and Theoretical, 49(16):165001, 2016.

[40] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover Books on Computer Science. Dover Publications, 1998.

[41] I. A. Pasha, P. S. Moharir, and N. S. Rao. Bi-alphabetic pulse compression radar
signal design. Sadhana, 25(5):481–488, Oct 2000.

[42] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer Program-
ming Solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

[43] G. Rozenberg, T. Bäck, and J. N. Kok, editors. Handbook of Natural Computing:
Theory, Experiments, and Applications. Springer-Verlag, Berlin-Heidelberg, Ger-
many, 2012.

[44] I. I. Shapiro, G. H. Pettengill, M. E. Ash, M. L. Stone,W. B. Smith, R. P. Ingalls, and
R. A. Brockelman. Fourth test of general relativity: Preliminary results. Phys.
Rev. Lett., 20:1265–1269, May 1968.

[45] D. Whitley. Next generation genetic algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’17, pages 922–
941, New York, NY, USA, 2017. ACM.

[46] D. Whitley, K. E. Mathias, S. B. Rana, and J. Dzubera. Evaluating Evolutionary
Algorithms. Arti�cial Intelligence, 85(1-2):245–276, 1996.

http://miplib.zib.de/
http://csplib.org/
www.ibm.com/software/

	Abstract
	1 Introduction
	1.1 The Role of Benchmarking
	1.2 Existing Work and State-of-the-Art

	2 Challenges and Requirements
	2.1 Previously Proposed Guidelines for Black-Box Benchmarking
	2.2 The Continuous Counterpart: BBOB

	3 Nine Fundamental Design Questions
	3.1 Problem Representation
	3.2 Instance-Based Problems
	3.3 Invariant Problem Formulation
	3.4 Performance Evaluation
	3.5 Simple Benchmark Problems Admitting Runtime Analysis
	3.6 Facing Operations Research
	3.7 MP versus CP

	4 Proposed Position and Problems
	5 Example Benchmark Problems
	5.1 Problem Invariances
	5.2 Analyzable Functions
	5.3 CSP
	5.4 Non-Linear Hard Problems

	6 Discussion and Summary
	References

