
Using Evolutionary Dynamic Optimization for Monitor
Selection in Highly Dynamic Communication Infrastructures

Robin Mueller-Bady

Martin Kappes

Frankfurt University of Applied Sciences

Frankfurt, Germany

[mueller-bady,kappes]@fb2.fra-uas.de

Inmaculada Medina-Bulo

Francisco Palomo-Lozano

Universidad de Cádiz

Puerto Real, Spain

[inmaculada.medina,francisco.palomo]@uca.es

ABSTRACT

In this paper, we address the problem of applying evolutionary

dynamic optimization of network monitoring to highly dynamic

communication network infrastructures.

One major challenge of modern communication networks is the

increasing volatility due to, e.g., changing availability of nodes and

links, load of paths, or attacks. While optimization of those dynamic

networks has been an important application area since decades,

new developments in the area of network function virtualization

and software defined network facilitate a completely new level of

automated dynamic network optimization. Especially in mobile

networks, changes can be observed to appear swiftly. Thus, using

population-based heuristics becomes challenging as reevaluation

of all candidate solutions may become time-wise impossible and

operations need to rely on possibly obsolete fitness values.

Here, an established method has been applied to solve the dy-

namic monitor selection problem on multiple real-world problem

instances using a different simulated level of change. Statistically

significant results of the proposed method have been compared to

the performance of a best-of-multiple selection local search (BMS LS)
heuristic. As the results show, optimization reaches results of high

quality even under difficult circumstances.

CCS CONCEPTS

• Networks→ Network dynamics; • Theory of computation

→Network optimization; Evolutionary algorithms; Randomized

local search;

ACM Reference Format:

Robin Mueller-Bady, Martin Kappes, Inmaculada Medina-Bulo, and Fran-

cisco Palomo-Lozano. 2018. Using Evolutionary Dynamic Optimization

for Monitor Selection in Highly Dynamic Communication Infrastructures.

In GECCO ’18 Companion: Genetic and Evolutionary Computation Confer-
ence Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3205651.3208252

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00

https://doi.org/10.1145/3205651.3208252

1 INTRODUCTION

Communication network infrastructures have grown massively

over the past decades, increasing its quality and quantity. While

the amount of communication-enabled devices increased due to the

development of mobile communication, internet-of-things, smart

homes and a general increase of communication, also the require-

ment for network quality properties, e.g., bandwidth and latency,

increased. Especially the mobile-broadband subscriptions, which

have grown over 20% annually over the past 5 years and which

are expected to reach a globally total of 4.3 billion soon [11], are a

huge challenge for internet service providers due to the mobility

of the clients. Handling ordinary events, e.g., roaming or planned

downtimes of nodes, is predictable even during the network de-

sign phase. As opposed to ordinary events, handling extraordinary

events, e.g., overload of nodes due to attacks or hardware failures,

must be targeted on demand and can not usually be planned be-

forehand without spending a huge amount of extra resources for

the infrastructure.

Optimization in the area of network infrastructures is an impor-

tant research area since decades. However, current developments in

the area of Software Defined Networking (SDN) andNetwork Function
Virtualization (NFV), in conjunction with common hardware virtu-

alization, offer groundbreaking possibilities in automated dynamic

network optimization as in, e.g., [18]. While the research focus of

network optimization had been on the robust, resilient and efficient

design and maintenance of stationary networks and subnetworks,

SDN and NFV enable a bird’s-eye view on the whole administrative

domain and programmatic access of network properties, e.g., traffic

shaping, bandwidth management, dynamic routing or monitoring.

This facilitates network security applications on a new level by en-

hancing early detection of threats like botnets, (distributed) denial

of service attacks, or propagation of malware [14].

In this paper, we address one of the most basic but also most im-

portant steps in securing communication infrastructures: dynamic

network monitor selection. As it can be observed that growing com-

munication networks are becoming more dynamic and thus volatile,

it is possible that there is a very limited time window between two

network changes. Therefore, the simulated model change is applied

after each evaluation. Implicitly, it is not possible to re-evaluate

all candidate solutions of the evolutionary heuristics’ population

such that the heuristic relies on obsolete fitness information for

selection operations.

The remainder of this paper is structured as follows: In the fol-

lowing Section, the related work and current research is presented,

followed by the problem definition in Section 3 and the proposed

https://doi.org/10.1145/3205651.3208252
https://doi.org/10.1145/3205651.3208252

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan R. Mueller-Bady et. al.

solving strategy in Section 4. Section 5 describes the experimental

setup for our empirical experiments, while Section 6 discusses the

results, finishing with a conclusion and outlook in Section 7.

2 RELATEDWORK

Evolutionary Dynamic Optimization (EDO) [1, 27] is an important

field in the area of heuristic optimization and has grown over the

past decades, as shown by the survey papers of Nguyen et al. [24]

and Cruz et al. [7]. Application has been done to several different

problem areas, e.g., structural optimization of electrical grounding

grids [23] and car distribution systems [19] but also to network

optimization, e.g., in wireless sensor network design [25] and to

the dynamic shortest path routing problems in mobile ad-hoc net-

works [29]. Heuristic optimization in static, sometimes referred

to as stationary, network problem instances, is a recent topic, e.g.,

solving topological design problems having multiple objectives [8].

While tweaking the optimization method is not the major fo-

cus of this paper, it is still important to chose the, to the best of

current knowledge, optimal method for solving the underlying prob-

lem. However, different studies disagree which is the best current

method for solving the monitor selection problem, i.e., the modi-

fied MVC problem. Chauhan et al. have shown that for solving the

MVC problem in stationary scale-free networks, an evolutionary

approach is generally more efficient than a local search [4], while

two of the most efficient applied approaches on massive graphs,

NuMVC [3] and FastVC [2], are both based on local search. Thus,

using a hybrid approach using an evolutionary algorithm with

local search components seems to be a reasonable choice. There

also exist exact optimization approaches [5] which have been used

to solve the general MVC in static environments. However, the

presented approaches on solving the MVC are all applied to static

graph topologies, while the problem studied in this paper covers

optimization in dynamic network instances.

It can be observed that new methods for solving problems in

(dynamic) network problems are often benchmarked using syn-

thetic problem instances. One reason for this is the low amount

of real-world problem instances available, as information about

network topologies is usually considered as mission- or even safety-

critical and is therefore not disclosed. Another reason might be that

usually a general applicability of the respective method wants to

be achieved over a broad spectrum of different instances. Here, we

focus on the application and behavior of the presented method to

real-world network models, which reflect the crucial properties of

real-world networks [15].

3 THE DYNAMIC MONITOR SELECTION

PROBLEM

Monitoring is a first but crucial step towards a secure, robust and

resilient network. The common way to capture network traffic is to

use monitors on nodes, such that the traffic flowing on all adjacent

edges, in the context of networks often referred to as links, can

be monitored. In order to reach the goal of monitoring the whole

network, each edge in the network must be covered by at least one

adjacent monitor.

On the one hand, a robust way to monitor the whole network

is to implement monitors on all nodes. As monitoring on a node

also implies performance loss, maintenance effort and possible

other (monetary) costs, the aim is to use the minimal amount of

necessary monitors for covering the whole network. On the other

hand, uncovered edges may conceal important information and

therefore lead to possible threats. Thus, it is important to find (a)

the optimal amount and (b) the optimal positions of monitors in

the network in order to cover all edges. For the given problem, it is

assumed that a monitor can be applied to each node without further

restrictions. However, it is possible to introduce further constraints

here as well, e.g., by classifying nodes according to priorities based

on their position, performance, cost, node types etc.

Mathematical graphs are a common and natural way to model

communication networks. For the remainder of this paper, it is

assumed that the model of a communication network can be rep-

resented using a finite simple graph, G = (V ,E), with V being the

set of vertices, representing the nodes, and E ⊆ V × V being the

set of edges representing the connecting links between nodes, as

defined in [22]. The described problem is closely related to the well

known minimum vertex cover problem as described by Karp [12].

It is defined as a subset of vertices V ′ ⊆ V such that for each edge

(vi ,vj) ∈ E, either vi ∈ V ′ or vj ∈ V ′, or both. The MVC is a

vertex cover where |V ′ | is minimal for all possible vertex covers

of network model G. As the underlying monitor selection problem

can be generalized to the described MVC problem, it can be shown

that it is also aNP-hard optimization problem. For brevity reasons,

the proof is omitted here in this paper.

In addition to the common MVC problem described before, the

dynamic monitor selection problem uses an edge weighting func-

tion indicating the monitoring priorities of edges, such that the net-

work model definition is extended toG = (V ,E,w) withw : E → N
being a non-negative weighting function. Furthermore, the dynamic

monitor selection problem must be solved on a dynamically chang-

ing networkmodel. Within a given optimization period, [tstart , tend],
the optimization has to react on changes of the network model

providing new optimal solutions. Thus, the quality of a solution

depends on the covered edges, the amount of monitors used and

the time point at which the solution was acquired. Details on the

optimization method will be given in Section 4.

4 PROPOSED SOLVING STRATEGY

The proposed solving strategy for the dynamic monitor selection

problem is a hybridization of a robust evolutionary algorithm for

exploration and a swiftly converging local search for exploitation

of the search space. This hybrid heuristic, Local Search Evolutionary
Algorithm (LS EA), is an established method and has been applied

for solving the monitor selection problem in occasionally changing

environments [21]. In the following, the individual components of

the proposed solving strategy are described in necessary detail.

4.1 Evolutionary Algorithm

The first component is the evolutionary algorithm based on a com-

mon generational EA. Initially, a random population of candidate

solutions (individuals) is created and evaluated. Then, two distinct

parents are selected from the population using a specified selection

operator. Those parents are recombined using a recombination op-

eration creating two children as new individuals, which are then

Using EDO for Monitor Selection in Dynamic Communication Infrastructures GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

modified using a given mutation operation. Finally, the population

containing all former individuals and created children, are reduced

to its defined initial size using selective pressure induced by a se-

lection operation. The process is repeated until a given termination

condition is satisfied, e.g., until a maximum number of evaluations

or a certain quality threshold is reached.

There are different formats to represent individuals in EAs for

graph-based problems, as shown by Gen et al. [10] and Doerr et

al. [9]. For the dynamic monitor selection problem, it seems rea-

sonable to follow a vertex-based approach as follows. Let x̄ =
(x1, . . . ,xn) be a binary n-tuple representing a candidate solution,
such that each xk resolves to whether a monitor is present on the

corresponding vertex vk in the graph or not:

xk =

{
1, if vk is selected as a monitor

0, otherwise

(1)

Having an individual as previously defined, the number of mon-

itors is the first indicator for the quality of the solution:

monitors(x̄) =
n∑

k=1

xk (2)

where a lower amount of monitors indicates a higher quality.

However, individuals may represent infeasible solutions, i.e.,

there exist one or multiple edges in the graph not being covered.

Thus, the solution is penalized using a linear distance function [6]

based on the given weightingw of the edge:

penalty(x̄) =
∑

{vi ,vj }∈S

w(vi ,vj) (3)

where S = {{vi ,vj } ∈ E | xi = 0 ∧ x j = 0}. Finally, the result is

aggregated into a scalarized fitness value:

f (x̄) = monitors(x̄) + penalty(x̄) (4)

The goal of this minimization problem is to find a candidate solution

x̄0 ∈ S , such that f (x̄0) ≤ f (x̄),∀x̄ ∈ {0, 1}n .
As evaluation of candidate solutions is done in a dynamic envi-

ronment, the fitness function including its individual components

are time-dependent in the given optimization period [tstart , tend]:

ft (x̄) = monitorst (x̄) + penaltyt (x̄) (5)

In this specific case, the optimization period ranges from 0 to the

maximumnumber of allowed evaluations. In order to avoid the prob-

lem of having a variable-length candidate solution encoding, differ-

ences of models are relative to a given base model, setting particular

nodes and edges active or inactive. Therefore, both, monitorst (x̄)
and penaltyt (x̄) are time-dependent, as both underlying sets may

differ in the amount of active elements for each consecutive time

point t .

4.2 Best-of-Multiple Selection Local Search

Local search is an optimization heuristic based on searching neigh-

boring solutions of a given candidate solutions and a neighborhood

relation. Usually, the search is iteratively performed on all neigh-

bors until no better neighbor can be found while continuously

replacing the currently searched candidate solution with the im-

proved one. Here, the neighbors are determined using a Hamming

distance of 1 as neighborhood relation, i.e., the difference in the

encoding of two candidate solutions is exactly 1. However, as an

exhaustive search of all neighbors is inefficient for large problem

instances, the number of searched neighbors is restricted by the

k-value, according to a Best-of-Multiple Selection (BMS) as proposed
by Cai [2]. The original BMS has been adapted to fit the require-

ments of the dynamic monitor selection problem, as indicated by

the local search algorithm as depicted in Algorithm 1, forming the

BMS local search (BMS LS).

Algorithm 1 Scheme of the local search method

Require: Initial individual ind, parameter k, comparison function f
function Localsearch(ind, k, f)

currentOptimum← ind
repeat

neighbors← get_k_random_neighbors(currentOptimum, k)
bestNeighbor ← optimum(neighbors)
if f (bestNeighbor) > f (currentOptimum) then

currentOptimum← bestNeighbor
end if

until bestNeighbor , currentOptimum
return currentOptimum

end function

4.3 LS EA

Finally, both the evolutionary algorithm and the local search are

combined forming the hybrid LS EA used for optimization of the

dynamic monitor selection problem. First, the local search is ap-

plied to the current found optimum value. Then, the evolutionary

operators are applied on the population including the optimum

found by the local search. The optimization is repeated until the ter-

mination condition is satisfied, i.e., the maximum allowed number

of evaluations is reached. The scheme of the algorithm is depicted

in Algorithm 2. The used parameters are described in Section 5.

Algorithm 2 Hybrid local search EA (LS EA)

population← initialize()

evaluate(population)
while termination condition not satisfied do

currentOptimum← remove_current_optimum(population)
bestNeighbor ← localsearch(currentOptimum)
population← population ∪ bestNeighbor
select_parents()

recombine_parents()

mutate_offspring()

evaluate_offspring()

select_individuals()

end while

5 EXPERIMENTS

In this Section, experiments and experimental setup are described

including problem instances and parameters for the proposed solv-

ing strategy.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan R. Mueller-Bady et. al.

5.1 Experimental Setup

For the optimization, the LS EA as described in Section 4 is used.

Parameters of the EA are shown in Table 1.

Generally, as the proposed solving strategy generally follows

a generational EA approach. For each experiment, the number

of evaluations is restricted to 100 000. Results of 100 experiment

repetitions for each parameter configuration and problem instance

have been obtained in order to gain statistical significance. The

population size is set to 10 as short iterations are required in order to

be able to react swiftly on events in the network. It is observable that

a sufficiently large amount of genetic diversity is already achieved

due to the rapid changes of the underlying model, making a higher

population size irrelevant.

In each EA iteration, 10 children are created using uniform

crossover and bit-flip mutation with a mutation rate of 5%. Se-

lection of parents and survivors is both done using tournament

selection having a tournament size of 5.

For the BMS LS part of the optimization process, a k-value of
k = 50 is used, i.e., 50 neighbors of the current solution are searched

for an improved candidate solution. The current best individual

is picked for participation in the local search optimization. As all

individuals except the last evaluated one are likely to have obso-

lete fitness values, it is possible that another individual from the

generation may have a higher fitness value. This is, however, not

considered for the optimization due to the strict time constraints.

For the experiments conducted, the change of the underlying

network model is introduced after each evaluation. In order to

simulate different activity levels in the network, the change of the

network is divided into different change levels from a base model:

5%, 10%, and 25%. Having a change level of 5%, implies that arbitrary

5% nodes from the given base model are switched to inactive and

do neither participate in the network communication nor count

for the fitness evaluation. Edges adjacent to inactive nodes are, per

definition, also set inactive having the same implication as inactive

nodes. Having two consecutive changes using a change level of 5%

implies that a maximum difference of 10% of all nodes and adjacent

edges is possible. Weightings of active edges are preserved.

The results are obtained using the parallelization framework

multijob [20] and GNU parallel [28] on a cluster configuration with

two servers. The first server is composed of 2x Intel Xeon E5-2690

v4 @ 2.60GHz CPUs (28 cores, 56 hyperthreads) and 126 GB RAM

and the second of 2x Intel Xeon CPU E5-2650 v3 @ 2.30GHz CPUs

(20 cores, 40 hyperthreads) and 62 GB RAM, both using a Debian

Linux as operating system.

5.2 Problem Instances

The base of all problem instances is a set of well-known real-world

communication networks. All of the networks use a fixed weight-

ing for the edges acting as priority, which is either composed of

attributes given by the model or picked randomly. All priority val-

ues are normalized within the interval [1, 10]. Details and properties

about the problems instances are shown in Table 2.

In this table, |V | and |E | denote the number of vertices and edges,

D the density of the graph, and K the clustering coefficient. The

minimum andmaximum degrees of the nodes are shown in columns

deg
min
, deg

max
. All networks are undirected, such that the input

Table 1: LS EA parameters for optimization.

Parameter Value

Population size 10

Number of evaluations 100 000

Experiment repetitions 100

Number of children 10

Crossover operation Uniform crossover

Mutation operation Bit-flip mutation

Mutation probability 0.05

Selection operation Tournament selection

Tournament size 5

Survivor selection size 10

Local search k-value 50

Model change after each evaluation

Model change level 5%, 10%, 25%

degree is equal to the output degree and thus simplified to deg. The
final column denotes the degree assortativity coefficient (Adeg). It is

the measure of how likely nodes with similar degrees are connected

over an edge. This is particularly useful to determine the type of

network, e.g., a densely interconnected backbone network or a

sparse scale-free network or spanning tree.

The first problem instance is the “National Research and Educa-

tion Network (NREN) Europe” [13], aggregating information about

the backbone network of the European research network in the

GÉANT (formerly DANTE and TERENA) network. It is composed of

the different national networks, the French RENATER, the German

DFN, the Spanish RedIRIS etc. The model offers several different

attributes, e.g., bandwidth, geo-location, provider, etc., which are

used to form the fixed priority weighting for the optimization.

The second model, internet-as, is a topology graph from sev-

eral autonomous systems in the internet [16]. In this model, there

exist a few nodes having a high degree, while others are discon-

nected from the rest of the graph, i.e., having deg = 0. However,

the graph has a comparably low density.

The last three models, p2p-Gnutella04, p2p-Gnutella24, and
p2p-Gnutella31, are all taken from the same collection [26]. All

of them form individual instances of the well-known peer-2-peer

file sharing network “gnutella”, which has been one of the largest

active file sharing network in the past decades. These instances

are especially useful as they form an overlay network over the

Internet, being a logical network layer above the actual network.

The gnutella networks share a common attribute of having a com-

parably high degree assortativity index close to 0 as opposed to

the other instances. This attribute can be observed to be typical for

internet service provider networks or malicious botnets.

For simulating the changes in the network models, the individual

models are generated randomly on the fly. However, in order to

obtain reproducibility as part of good scientific practice, the mod-

els are generated using an independent (pseudo) random number

generator having the same initial seed value for all experiment

repetitions. This guarantees that all consecutive models throughout

all repetitions implement the same changes as the random number

sequence remains the same. The random number generator used

in the optimization is not affected.

Using EDO for Monitor Selection in Dynamic Communication Infrastructures GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 2: Problem instances and their attributes.

Instance |V | |E | D K deg
max

deg
min

Adeg

NREN 1 157 1 465 0.0022 0.0610 57 1 -0.1483

internet-as 40 165 85 123 0.0001 0.0066 3 370 0 -0.1573

p2p-Gnutella04 10 879 39 994 0.0003 0.0054 103 0 -0.0083

p2p-Gnutella24 26 518 65 369 0.0001 0.0041 355 1 -0.0056

p2p-Gnutella31 62 586 147 892 0.0000 0.0039 95 1 -0.0063

6 RESULTS AND DISCUSSION

In this section, the result evaluation will be explained, followed by

the actual result representation and discussion.

6.1 Result Evaluation

In general, there are two different types of result evaluation for

EDO: optimality-based and behavior-based measures [24]. While

optimality-based measures are used to determine the ability of the

algorithm to find results having a high quality, behavior-based

measures try to analyze the behavior of the algorithm with respect

to different properties, e.g., diversity or robustness. In the literature,

optimality-based measures are more common in EDO, as these

measures focus on solving the underlying problem.

Here, we also follow an optimality-based approach called nor-
malized scoring as proposed in [24]. For normalizing the fitness

values over all different models and problem instances, the fitness

value is divided into both initial parts: number of monitors and

number of covered edges. The values are normalized within an

interval of [0, 1], such that the following ratios apply:

used monitorst =
monitorst (x̄)
|Vt |

(6)

covered edgest = 1 −
©«

∑
{vi ,vj }∈St

w(vi ,vj)∑
{vi ,vj }∈Et

w(vi ,vj)

ª®®¬ (7)

where St = {{vi ,vj } ∈ Et | xi = 0 ∧ x j = 0} of network model

graphG = (Vt ,Et ,w) and candidate solution x̄ ∈ {0, 1}n with |Vt |
and |Et | being the amount of active vertices and edges at time point

t . Generally, the goal of the optimization is to maximize the covered

edges while minimizing the used monitors. However, displaying the

individual parts of the fitness function is only used for evaluation

of results. The optimization remains single-objective using the

scalarized fitness value for the optimization process.

In Figure 1, for each of both measures two different results are

given: LS EA andBMS LS.While LS EAmeasures the actual achieved

optimal values of the LS EAmethod. Themeasure for BMS LS shows

results of the BMS local search heuristic.

The measure Generation is a hypothetical measure indicating

the potential of the remaining unevaluated individuals in the LS EA

population, i.e., the individuals whose fitness value is not reevalu-

ated. For this measure, these individuals are evaluated against the

current network model, while the fitness value is neither stored nor

used for further computations in the evolutionary search heuristic.

As this value is close to the mean and standard deviation of the

LS EA, the visualization is omitted for reasons of clarity. Numerical

experimental results are provided in Table 4 for the LS EA, Table 5

for the Generation, and Table 6 for the BMS LS. The plots in the

same column share the same x-axis and change level, where the

change level is shown on the first and the x-axis values on the last

plot in each column. Furthermore, the plots in the same row share

the same y-axis and problem instance, shown on the respective first

plot of each row.

In order to produce comparable results, mean and standard de-

viation (STD) for both measures are used over all evaluations and

averaged over all experiment repetitions of the same experiment.

Using this method ensures comparability of experiments using the

same problem instance but different change levels. Evaluation is

done individually for the LS EA, Generation, and BMS LS.

In another experiment, the aforementioned heuristics have been

compared to choosing random individuals having arbitrary 50%

active monitors. As the random results show equal values on all

experiments having a mean of 0.7 covered edges and a standard

deviation < 0.01, further numerical and visual results are omitted.

In addition to the optimality-based evaluation, a wall-clock run-

time evaluation is done whose results are shown in Table 3. It pro-

vides information about the mean runtime and standard deviation

(STD), both in seconds, for the optimization. This information is

useful for measuring the time required by the optimization between

two model changes depending on the size of the input network.

However, it is strongly related to the hardware and implementa-

tion employed (which is described in Section 5.1) and only useful

for relative comparison between different problem instances and

experiment configurations.

6.2 Discussion

As the wall-clock runtime analysis shows, creation and evaluation

of a candidate solution required < 0.1 seconds on average for all

experiments so this method is generally time-wise applicable for

implementation in time-critical network optimization. Obviously,

the mean runtime depends highly on the size of the communication

network, while implementation of the optimization has a significant

influence on the differences between the change levels due to the

required generation of subsequent network models.

As expected, optimization results become worse while increas-

ing the change level on all problem instances. While the range of

the average amount of monitors used is constantly between 0.50

and 0.59 on all experiments, the amount of covered edges ranges

from 0.55 to 0.86 at different change levels. The effect increases the

smaller the problem instance is, e.g., on problem instance NREN, the
difference between the change level 5% and 25% is −0.12 (from 0.86

to 0.74) while the difference on problem instance p2p-Gnutella31

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan R. Mueller-Bady et. al.

0.5

0.6

0.7

0.8

0.9

In
st

a
n
ce

’N
R

E
N

’
C

o
v
er

ed
ed

g
es

a
n
d

u
se

d
m

o
n
it

o
rs

Change level 5% Change level 10% Change level 25%

0.50

0.52

0.54

0.56

0.58

In
st

a
n
ce

’p
2
p
-G

n
u
te

ll
a
3
1
’

C
o
v
er

ed
ed

g
es

a
n
d

u
se

d
m

o
n
it

o
rs

0 50000 100000

Number of evaluations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

In
st

a
n
ce

’i
n
te

rn
et

-a
s’

C
o
v
er

ed
ed

g
es

a
n
d

u
se

d
m

o
n
it

o
rs

0 50000 100000

Number of evaluations

0 50000 100000

Number of evaluations

Used monitors

LS EA BMS LS

Covered edges

LS EA BMS LS

Figure 1: Runtime behavior plots for EA runs on different problem instances.

decreases by 0.02 (from 0.57 to 0.55). On all experiments, the used

monitors measure starts close at a value close to 50%, as initializa-

tion is done randomly using a uniform distribution.

Comparing the results of the LS EA and the (hypothetically)

missed results of the generation, it shows that both measures share

the same mean but differ in standard deviation. The lower standard

deviation is caused due to the higher amount of individuals used to

create the measure. While for the LS EA only one value is used per

experiment repetition and number of evaluation, the generation

result is composed of all individuals in the population number of

evaluation and repetition. However, it is surprising that obsolete

individuals in the population still have a high quality.

Regarding the individual results of the local search optimization

in the plots, it can be observed that for the depicted experiments

no significant improvement occurs during optimization. Network

model changes occur faster than the change introduced by local

search using the given neighborhood relation, which might be the

reason that the used local search approach does not perform well

in this highly dynamic optimization context.

Using EDO for Monitor Selection in Dynamic Communication Infrastructures GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Table 3: Experimental results of thewall-clock runtime anal-

ysis for the optimization.

Change Runtime (sec.)

Instance level Mean STD

NREN 0.05 15.99 2.54

NREN 0.10 15.28 2.09

NREN 0.25 14.08 1.88

internet-as 0.05 2219.80 1408.81

internet-as 0.10 2306.65 1110.69

internet-as 0.25 2958.39 1763.95

p2p-Gnutella04 0.05 384.89 48.06

p2p-Gnutella04 0.10 455.74 163.67

p2p-Gnutella04 0.25 528.54 137.87

p2p-Gnutella24 0.05 1171.89 760.84

p2p-Gnutella24 0.10 1347.92 369.62

p2p-Gnutella24 0.25 1842.85 1312.09

p2p-Gnutella31 0.05 3934.88 2301.04

p2p-Gnutella31 0.10 4928.97 2987.07

p2p-Gnutella31 0.25 5129.20 2911.07

Table 4: Experimental results of the optimization analysis

for the LS EA results.

Change Used Monitors Covered Edges

Instance level Mean STD Mean STD

NREN 0.05 0.59 0.0137 0.86 0.0233

NREN 0.10 0.58 0.0137 0.83 0.0262

NREN 0.25 0.55 0.0177 0.74 0.0421

internet-as 0.05 0.51 0.0024 0.79 0.0159

internet-as 0.10 0.51 0.0025 0.77 0.0175

internet-as 0.25 0.50 0.0029 0.70 0.0296

p2p-Gnutella04 0.05 0.54 0.0046 0.65 0.0098

p2p-Gnutella04 0.10 0.54 0.0052 0.64 0.0109

p2p-Gnutella04 0.25 0.53 0.0056 0.60 0.0141

p2p-Gnutella24 0.05 0.52 0.0031 0.61 0.0073

p2p-Gnutella24 0.10 0.52 0.0031 0.60 0.0083

p2p-Gnutella24 0.25 0.51 0.0034 0.57 0.0107

p2p-Gnutella31 0.05 0.51 0.0019 0.57 0.0053

p2p-Gnutella31 0.10 0.51 0.0021 0.57 0.0057

p2p-Gnutella31 0.25 0.51 0.0022 0.55 0.0075

Even though the focus of this research is not to compare the

performance of different optimization methods, adequate statistical

tests have been applied in order to be able to make significant state-

ments about the performance of the local search and the hybrid

LS EA. Here, the aggregated fitness value is used for comparison,

as it reflects the overall performance of the respective method.

As the results are non-normally distributed, the non-parametric

Mann-Whitney-U test, sometimes referred to asWilcoxon rank-sum

test [17], is applied. The results of the statistical test substantiate the

obvious numerical and visual results: on all experiment configura-

tions and problem instances, the LS EA outperforms the local search

significantly. As all experiment result values are within p < 0.005,

Table 5: Experimental results of the optimization analysis

for the Generation results.

Change Used Monitors Covered Edges

Instance level Mean STD Mean STD

NREN 0.05 0.59 0.0076 0.86 0.0135

NREN 0.10 0.58 0.0080 0.83 0.0158

NREN 0.25 0.55 0.0092 0.74 0.0240

internet-as 0.05 0.51 0.0014 0.79 0.0086

internet-as 0.10 0.51 0.0014 0.77 0.0098

internet-as 0.25 0.50 0.0016 0.70 0.0177

p2p-Gnutella04 0.05 0.54 0.0025 0.65 0.0055

p2p-Gnutella04 0.10 0.54 0.0026 0.64 0.0060

p2p-Gnutella04 0.25 0.53 0.0030 0.60 0.0077

p2p-Gnutella24 0.05 0.52 0.0016 0.61 0.0042

p2p-Gnutella24 0.10 0.52 0.0017 0.60 0.0046

p2p-Gnutella24 0.25 0.51 0.0019 0.57 0.0058

p2p-Gnutella31 0.05 0.51 0.0011 0.57 0.0029

p2p-Gnutella31 0.10 0.51 0.0011 0.57 0.0032

p2p-Gnutella31 0.25 0.51 0.0012 0.55 0.0040

Table 6: Experimental results of the optimization analysis

for the BMS LS results.

Change Used Monitors Covered Edges

Instance level Mean STD Mean STD

NREN 0.05 0.52 0.0119 0.62 0.0272

NREN 0.10 0.52 0.0131 0.60 0.0332

NREN 0.25 0.52 0.0155 0.59 0.0442

internet-as 0.05 0.50 0.0027 0.60 0.0234

internet-as 0.10 0.50 0.0027 0.60 0.0278

internet-as 0.25 0.50 0.0029 0.58 0.0393

p2p-Gnutella04 0.05 0.51 0.0041 0.53 0.0073

p2p-Gnutella04 0.10 0.51 0.0045 0.53 0.0084

p2p-Gnutella04 0.25 0.51 0.0054 0.53 0.0134

p2p-Gnutella24 0.05 0.50 0.0027 0.52 0.0057

p2p-Gnutella24 0.10 0.50 0.0030 0.52 0.0075

p2p-Gnutella24 0.25 0.50 0.0035 0.52 0.0101

p2p-Gnutella31 0.05 0.50 0.0017 0.52 0.0037

p2p-Gnutella31 0.10 0.50 0.0020 0.51 0.0041

p2p-Gnutella31 0.25 0.50 0.0022 0.51 0.0060

showing that the LS EA has a higher performance than the local

search, details and tables are omitted here for reasons of clarity.

7 CONCLUSION AND OUTLOOK

In this paper, the applicability of an established hybrid local search

evolutionary algorithm for solving the dynamic monitor selection

problem in multiple highly dynamic real-world communication in-

frastructure models has been studied. As described in more detail in

preceding sections, a new level of automated network optimization

is facilitated due to recent developments in (network) virtualization

techniques. As opposed to real hardware networks, virtual software

networks can programmatically accessed and managed, offering a

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan R. Mueller-Bady et. al.

wide variety of, possibly automated, reactions to dynamic changes.

A major aspect of this research has been addressing the volatility

of the network instances reflecting changes in real networks. The

focus of this paper has been to show the general feasibility of the

presented approach for dynamic network optimization on several

different real-world network problem instances.

As the results show, the used hybrid evolutionary search heuris-

tics are applicable in even difficult circumstances, where significant

changes of the underlying network occur. Results are stagnating

with an increasing amount of change introduced in the problem

instances. Especially compared to the current situation, requiring a

manual interaction of network administration staff, the proposed

approach offers great benefits with respect to reaction rate, threat

prevention, and risk mitigation.

This research forms the base for multiple interesting future as-

pects, as automated network design and optimization will become

an indispensable part of future network management. As the un-

derlying problem is time-critical, tuning the methods and method

parameters in order to improve optimization performance is crucial

and will be intensified in the future, while extending the number

of problem instances will help to generalize the proposed method.

Application of variable-length encoding could be one interesting

aspect here, which additionally offers independence of the opti-

mization from a base model. Furthermore, an extensive comparison

of further methods, e.g., using aforementioned NuMVC, FastVC or

a (1+1) EA, could be interesting in order to find the most suitable

heuristic for optimization of the given problem.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of Economy and

Competitiveness (National Program for Research, Development

and Innovation) and with funds of the European Union (European

Regional Development Fund - ERDF), project DArDOS TIN2015-

65845-C3-3-R and Excellence Network SEBASENet TIN2015-71841-

REDT. Responsible for the content are the authors.

REFERENCES

[1] Jürgen Branke andHartmut Schmeck. 2003. Designing Evolutionary Algorithms for
Dynamic Optimization Problems. Springer Berlin Heidelberg, Berlin, Heidelberg,

239–262. https://doi.org/10.1007/978-3-642-18965-4_9

[2] Shaowei Cai. 2015. Balance between complexity and quality: Local search for

minimum vertex cover in massive graphs. IJCAI International Joint Conference
on Artificial Intelligence 2015-Janua, Ijcai (2015), 747–753.

[3] Shaowei Cai, Jinkun Lin, and Chuan Luo. 2017. Finding A Small Vertex Cover

in Massive Sparse Graphs: Construct, Local Search, and Preprocess. Journal of
Artificial Intelligence Research 59 (2017), 463–494.

[4] Ankit Chauhan, Tobias Friedrich, and Francesco Quinzan. 2017. Approximating

Optimization Problems using EAs on Scale-Free Networks. In Genetic and Evo-
lutionary Computation Conference (GECCO). 235–242. https://doi.org/10.1145/

3071178.3071257 arXiv:1704.03664

[5] Jianer Chen, Iyad A. Kanj, and Ge Xia. 2010. Improved upper bounds for vertex

cover. Theoretical Computer Science 411, 40-42 (sep 2010), 3736–3756. https:

//doi.org/10.1016/J.TCS.2010.06.026

[6] Carlos Artemio Coello Coello. 2012. Constraint-handling techniques used

with evolutionary algorithms. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference companion -
GECCO Companion ’12 (GECCO ’12). ACM, New York, NY, USA, 849. https:

//doi.org/10.1145/2330784.2330920

[7] C. Cruz, J.R. González, and D.A. Pelta. 2011. Optimization in dynamic environ-

ments: A survey on problems, methods and measures. Soft Computing 15, 7

(2011), 1427–1448. https://doi.org/10.1007/s00500-010-0681-0

[8] Mou Dasgupta, G. P. Biswas, and Chandan Bhar. 2012. Optimization of multiple

objectives and topological design of data networks using genetic algorithm. In

2012 1st International Conference on Recent Advances in Information Technology
(RAIT). IEEE, 256–262. https://doi.org/10.1109/RAIT.2012.6194516

[9] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative

drift analysis. Algorithmica 64, 4 (2012), 673–697. https://doi.org/10.1007/

s00453-012-9622-x arXiv:1101.0776

[10] Mitsuo Gen and Runwei Cheng. 1999. Genetic Algorithms and Engineering Op-
timization. Vol. 7. John Wiley & Sons. 512 pages. https://doi.org/10.1002/

9780470172261

[11] ITU. 2014. The World in 2014 - ICT Facts and Figures. Technical Report in 2008.

International Telecommunication Union (ITU), Geneva, Switzerland. 8 pages.

https://doi.org/10.1787/9789264202085-5-en

[12] Richard M. Karp. 2010. Reducibility among combinatorial problems. In 50 Years
of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art.
219–241. https://doi.org/10.1007/978-3-540-68279-0_8 arXiv:arXiv:1011.1669v3

[13] Simon Knight, Nickolas Falkner, Hung X. Nguyen, Paul Tune, and Matthew

Roughan. 2012. I can see for miles: Re-visualizing the internet. IEEE Network 26,

6 (2012), 26–32. https://doi.org/10.1109/MNET.2012.6375890

[14] Sofiane Lagraa and JéRome François. 2017. Knowledge discovery of port

scans from darknet. In Proceedings of the IM 2017 - 2017 IFIP/IEEE Interna-
tional Symposium on Integrated Network and Service Management. IEEE, 935–940.
https://doi.org/10.23919/INM.2017.7987415

[15] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and

Zoubin Ghahramani. 2008. Kronecker Graphs: An Approach to Modeling

Networks. The Journal of Machine Learning Research 11 (2008), 985–1042.

https://doi.org/10.1145/1756006.1756039 arXiv:0812.4905

[16] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2006. Graph Evolution:

Densification and Shrinking Diameters. ACM Transactions on Knowledge Discov-
ery from Data (TKDD) 1, 1 (mar 2006). https://doi.org/10.1145/1217299.1217301

arXiv:physics/0603229

[17] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/1177730491

[18] Antonio Marotta, Fabio D’Andreagiovanni, Andreas Kassler, and Enrica Zola.

2017. On the energy cost of robustness for green virtual network function

placement in 5G virtualized infrastructures. Computer Networks 125 (oct 2017),
64–75. https://doi.org/10.1016/J.COMNET.2017.04.045

[19] Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz, and Constantin

Chiriac. 2007. Adaptive business intelligence: Three case studies. In Studies
in Computational Intelligence. Vol. 51. Springer, Berlin, Heidelberg, 179–196.
https://doi.org/10.1007/978-3-540-49774-5_8

[20] Robin Mueller-Bady, Martin Kappes, Lukas Atkinson, and Inmaculada Medina-

Bulo. 2017. Multijob. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion on - GECCO ’17. ACM, Berlin, 1231–1238. https://doi.org/

10.1145/3067695.3082476

[21] Robin Mueller-Bady, Martin Kappes, Inmaculada Medina-Bulo, and Francisco

Palomo-Lozano. 2017. Optimization of Monitoring in Dynamic Communication

Networks using a Hybrid Evolutionary Algorithm. In GECCO’17: Proceedings of
the 2017 conference on genetic and evolutionary computation companion. https:

//doi.org/10.1145/3071178.3071255

[22] P.S.R. Murty and P.S.R. Murty. 2017. Graph Theory (5th ed.). Springer,

Heidelberg. 7–17 pages. https://doi.org/10.1016/B978-0-08-101111-9.00002-1

arXiv:arXiv:1011.1669v3

[23] Ferrante Neri and Raino A.E. Mäkinen. 2007. Hierarchical evolutionary algo-

rithms and noise compensation via adaptation. In Studies in Computational Intelli-
gence. Vol. 51. Springer, 345–369. https://doi.org/10.1007/978-3-540-49774-5_15

[24] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. 2012. Evolutionary

dynamic optimization: A survey of the state of the art. Swarm and Evolutionary
Computation 6 (oct 2012), 1–24. https://doi.org/10.1016/j.swevo.2012.05.001

[25] F.P. Quintao, F.G. Nakamura, and G.R. Mateus. 2005. Evolutionary Algorithm for

the Dynamic Coverage Problem Applied to Wireless Sensor Networks Design.

In 2005 IEEE Congress on Evolutionary Computation, Vol. 2. IEEE, 1589–1596.
https://doi.org/10.1109/CEC.2005.1554879

[26] Matei Ripeanu and Ian Foster. 2002. Mapping the Gnutella Network: Macroscopic

Properties of Large-Scale Peer-to-Peer Systems. IEEE Internet Computing Journal
(2002), 85–93. https://doi.org/10.1007/3-540-45748-8_8 arXiv:cs/0209028

[27] Philipp Rohlfshagen and Xin Yao. 2008. Attributes of Dynamic Combinatorial

Dynamic Optimisation : A Brief Overview. In Simulated Evolution and Learning,
Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hus-

sein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen

Tan, Jürgen Branke, and Yuhui Shi (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 442–451.

[28] Ole Tange. 2011. GNU Parallel: the command-line power tool. ;login: The USENIX
Magazine 36, 1 (feb 2011), 42–47. https://doi.org/10.5281/zenodo.16303

[29] Shengxiang Yang, Hui Cheng, and Fang Wang. 2010. Genetic algorithms with

immigrants and memory schemes for dynamic shortest path routing problems

in mobile ad hoc networks. IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews 40, 1 (jan 2010), 52–63. https://doi.org/10.1109/

TSMCC.2009.2023676

https://doi.org/10.1007/978-3-642-18965-4_9
https://doi.org/10.1145/3071178.3071257
https://doi.org/10.1145/3071178.3071257
http://arxiv.org/abs/1704.03664
https://doi.org/10.1016/J.TCS.2010.06.026
https://doi.org/10.1016/J.TCS.2010.06.026
https://doi.org/10.1145/2330784.2330920
https://doi.org/10.1145/2330784.2330920
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.1109/RAIT.2012.6194516
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1007/s00453-012-9622-x
http://arxiv.org/abs/1101.0776
https://doi.org/10.1002/9780470172261
https://doi.org/10.1002/9780470172261
https://doi.org/10.1787/9789264202085-5-en
https://doi.org/10.1007/978-3-540-68279-0_8
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/MNET.2012.6375890
https://doi.org/10.23919/INM.2017.7987415
https://doi.org/10.1145/1756006.1756039
http://arxiv.org/abs/0812.4905
https://doi.org/10.1145/1217299.1217301
http://arxiv.org/abs/physics/0603229
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1016/J.COMNET.2017.04.045
https://doi.org/10.1007/978-3-540-49774-5_8
https://doi.org/10.1145/3067695.3082476
https://doi.org/10.1145/3067695.3082476
https://doi.org/10.1145/3071178.3071255
https://doi.org/10.1145/3071178.3071255
https://doi.org/10.1016/B978-0-08-101111-9.00002-1
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/978-3-540-49774-5_15
https://doi.org/10.1016/j.swevo.2012.05.001
https://doi.org/10.1109/CEC.2005.1554879
https://doi.org/10.1007/3-540-45748-8_8
http://arxiv.org/abs/cs/0209028
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.1109/TSMCC.2009.2023676
https://doi.org/10.1109/TSMCC.2009.2023676

	Abstract
	1 Introduction
	2 Related Work
	3 The Dynamic Monitor Selection Problem
	4 Proposed Solving Strategy
	4.1 Evolutionary Algorithm
	4.2 Best-of-Multiple Selection Local Search
	4.3 LS EA

	5 Experiments
	5.1 Experimental Setup
	5.2 Problem Instances

	6 Results and Discussion
	6.1 Result Evaluation
	6.2 Discussion

	7 Conclusion and Outlook
	Acknowledgments
	References

