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ABSTRACT
We consider collective tasks to be solved by simple agents synthe-
sized automatically by means of neuroevolution. We investigate
whether driving neuroevolution by promoting a form of selfish
behavior, i.e., by optimizing a fitness index that synthesizes the
behavior of each agent independent of any other agent, may also
result in optimizing global, system-wide properties. We focus on a
specific and challenging task, i.e., evolutionary synthesis of agent
as car controller for a road traffic scenario. Based on an extensive
simulation-based analysis, our results indicate that even by opti-
mizing the behavior of each single agent, the resulting system-wide
performance is comparable to the performance resulting from opti-
mizing the behavior of the system as a whole. Furthermore, agents
evolved with a fitness promoting selfish behavior appear to lead to
a system that is globally more robust with respect to the presence
of unskilled agents.
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1 INTRODUCTION
Recent developments in robotics are increasingly focusing on tasks
that should be solved by means of cooperation among a set of au-
tonomous, simple robots [2, 10]. These collective robotics frame-
works are often based on neuroevolution [9], that is, on robotics
controllers based on artificial neural networks, whose structure is
optimized by means of evolutionary procedures. Neuro Evolution
of Augmenting Topologies (NEAT) [12] is one of the most popular
approaches in this respect, which evolves neural network-based
controllers by tuning their weights and, to some extent, their topol-
ogy, based on the task-specific fitness exhibited by controllers. Such
indexes can be defined based on the global behavior of the system,
thus their computation is complex and expensive.

In this work, we investigate the feasibility of driving the evolu-
tionary search by promoting selfish behavior, hence decomposing
the problem of collective evaluation into fitness indexes based on
the behavior of single individuals. In other words, we intend to
assess experimentally whether promotion of forms of selfish be-
haviors, i.e., optimization of local properties, may also result in
optimizing global, system-wide properties. We focus our analysis
on a specific and challenging task, i.e., evolutionary synthesis of a
car controller for a road traffic scenario. We simulate a road graph
crossed by a number of cars at the same time, where each car is
given a sequence of targets, i.e., positions in the graph, that have
to be reached. Each car is equipped with sensors describing the
current kinematic properties of the car, the distance from the closest
car, from the roadside, from the next target, and alike. The behavior
of a car is controlled by a neural network that takes the sensors
readings as input and emits outputs that determine acceleration
and steering angle.

We assess experimentally two radically different alternatives for
driving the neuroevolution, one in which the fitness is defined based
on the behavior of each car (agent) independent on the behavior
of all other agents, the other in which the fitness quantifies the
global behavior of all the agents. The computation of the former
may exploit a much greater degree of parallelism than the latter,
making it an attractive option in practice. Our results indicate
that the two approaches lead to similar global performance, that is,
although the task performance has to be computed system-wide, the
performance resulting from optimizing the behavior of each single
agent is similar to the one resulting from optimizing the behavior of
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the system as a whole. Furthermore, agents evolved with a locally-
defined fitness appear to lead to a system that is globally more
robust in the sense that the system-wide performance decrease
induced by increasing amounts of unskilled agents is smaller.

2 RELATEDWORKS
To the best of our knowledge, there are not other studies facing
the problem of fitness decomposition in a collective environment
in the way we present here. However, there are several previous
works which are relevant to the present study w.r.t. at least one of
the following three research topics: (a) global vs. selfish behavior,
(b) neuroevolution, (c) and autonomous car controllers (a.k.a. driver-
less cars). We here briefly survey some recent works concerning
each of those topics.

Collective behavior is an aspect that appears in many studies
related to animals and human groups. This kind of behavior has
been studied by Lukeman et al. [6] in particular considering aggre-
gation patterns and collective intelligence. Benefits of aggregation
as a form of collective behavior have been studied by Parrish et
al. [11] with focus on organization and decision-making patterns
inspired by complexity theory. Another computational model for
collective behavior has been presented by Goldstone et al. [4] as a
promising way to give information on how individuals decisions
lead to organization into groups. Agent-based modelling of simu-
lated system with collective behavior has been deeply discussed by
Bonabeau [1], in particular regarding real-world applications.

Concerning neuroevolution, NEAT is one of the most widespread
approaches. It has been presented by Stanley and Miikkulainen [12]
as a method for the optimization of neural networks capable of out-
performing preexisting fixed-topology networks on reinforcement
learning tasks. A method for co-evolution of cooperative agents
called Enforced Subpopulation (ESP) has been presented by Yong
and Miikkulainen [15]. They consider a scenario in which many
agents have to coordinate their behavior to achieve a common goal.
The solution proposed by ESP is based on separating agents into
sub-populations and later testing them together in the same task.
A different approach is to use a collective-based neuroevolution
like in the work by Nitschke et al. [8], where the authors present
the results of a collective neuroevolution controller design method
applied to a multi-rover task. In the cited work, the authors fo-
cus on collective behavior tasks and on behavior specialization
between controllers. Both these two methods have been evaluated
by Van Krevelen et al. [14] in a collective construction task, proving
effectiveness of neuroevolution in such collective environments.
Another evolutionary approach for artificial neural networks has
been developed by Thangavelautham et al. [13] for robotic tasks.
The authors give the networks a global fitness function only: they
show that bigger modular Emergent Task Decomposition strategies
Networks (ETDN) outperform smaller networks not based on these
strategies on collective tasks. ETDN is able to decompose a complex
task into simpler ones through competition and self-organization.

Finally, driverless cars has been a central research topic tackled
frommany points of view. Social and ethical aspects of autonomous
vehicles have been studied by Holstein et al. [5] by dealing with
the decision making process. A rather different approach for pur-
suing global efficiency and safety has been proposed by Medvet

Figure 1: Representation of two cars crossing a road inter-
section (darker area), equipped both with 5 radial proximity
sensors. The sensors detect the distance to the roadsides, in-
tersections, and other cars.

et al. [7]: instead of learning a controller, the authors of the cited
paper propose to learn the traffic rules which could, if applied to
existing controllers, lead to better efficiency and safety. Figueiredo
et al. [3] present an approach for implementing a simulator for
driverless cars; moreover, they include a study of the state of the
art of driverless cars in simulations, focusing on some aspects as
efficiency and collision avoidance.

3 CAR CONTROLLER EVOLUTION
3.1 Traffic model
We consider a scenario with continuous space and discrete time
in which a number of cars move along the roads, possibly collid-
ing with other cars or roadsides. Cars move in a finite and two-
dimensional space, partitioned in regions. Each region can be either
a road or off-road. Cars can never be in an off-road region and can
freely move in road regions. A road region can be of type road
section or road intersection. A roadside divides a road region from
an adjacent off-road region. Cars cannot cross roadsides.

A car is a rigid body that can move along the roads and collide
with other cars or roadsides. A car has geometrical features (e.g.,
shape) and physical features (e.g., mass, density, friction, and resti-
tution). At each time step a car is defined by the position of its
center of mass, its orientation, its linear velocity and its steering
angle.

Each car is equipped with radial proximity sensors equally spaced
in an angle of 180° (see Figure 1). Each sensor, defined by an angle
relative to the orientation of the car and a range, detects three
distances: (a) from the closest car, (b) from the closest roadside, and
(c) from the closest intersection. Sensors have a maximum range. In
case an object is not within the sensor range, the detected distance
is equal to the sensor range. The sensors are ideal, i.e., they are not
affected by noise. Each car has a controller that takes the distances
detected by sensors as input and whose behavior is described below.

Each car is assigned a sequence of targets. A target is a line on a
road section that the car has to cross. Once the car reaches its target,
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the car is immediately assigned a new target. The new target is
located in a road section close to the one where the car is currently
located and selected at random, in the same direction the car is
moving.

At each time step the position of the car is updated according
to its steering angle, its linear velocity at the previous time step,
and the time elapsed from it. A collision occurs when two or more
car shapes overlap or a car shape intersects a roadside. Every car
involved in the collision is penalized by a reduction of the linear
speed.

The car controller is an algorithm that determines the steering
and acceleration/braking of the car. In particular, at each time step,
the controller processes the following input data: distances from
other cars, roadsides, and intersections as detected by the sensors;
linear speed; target direction, i.e., difference between current ori-
entation of the car and angle to the target; and distance from the
target. Based on this data, the controller produces the output that
is interpreted as driving commands for the car: steering angle and
acceleration (possibly negative, i.e., braking) to be applied to the
car.

In this work, we consider a controller based on an artificial neural
network (ANN), in which the input and output layers are predefined.
In particular, the ANN-based controller has three input neurons for
each car sensor (distance from other cars, roadsides, intersections)
and three more input neurons: current car speed, distance from the
target, and target direction. The controller has two output neurons:
one controls the steering angle, the other controls acceleration of
the car.

3.2 Traffic evaluation
We are interested in the driving task as a collective task. That is,
we consider the set of cars as a mean for transporting goods or
persons towards their respective targets by moving along the roads.
Hence, one can measure how well this collective task is performed
by considering the traffic efficiency, i.e., the average number of
reached targets. On the other hand, it is also important to consider
the traffic safety, i.e., the number of collisions among cars and with
roadsides.

Based on these considerations, we quantify efficiency and safety
as follows. Given the road graph and a set of ncar car controllers,
we perform a number of nsim simulations, each lasting τ simulated
seconds, and we measure, for each j-th car: the number c j of colli-
sions in which the car was involved, the overall number tj of targets
reached, the initial and final distances l ij and l

f
j between the car

and the last, not reached target when the simulation ended. Then,
we define efficiency as:

E =
1

ncar

ncar∑
j=1

1
τ

©«tj + 1 −
l
f
j

l ij

ª®¬ (1)

and we define safety as:

S = −
1

ncar

ncar∑
j=1

c j

τ
(2)

The indexes are averaged across the nsim simulations. For both
of them, the greater, the better: note that S is, by design, negative,

whereas E may assume negative values if the car moves away, rather
than towards, the last target.

We emphasize that the chosen indexes quantify the performance
of the system as a whole and that maximizing the performance of
a single car may result in lower collective performance. Intuitively,
a car controller which is able to drive fast, and which can hence
reach many targets, might be a danger for the other cars, eventually
making their collective in-efficiency larger than its individual high
efficiency.

3.3 Global and selfish neuroevolution
We evolve car controllers by means of NEAT [12], one of the
most widespread neuroevolution approaches, which simultane-
ously evolves both the topology and the weights of a neural net-
work. NEAT includes a principled method of crossover of different
network topologies, based on the assignment of incremental in-
novation numbers, protection of structural innovations through
speciation, and incremental growing from minimal structure. Ini-
tially, networks generated by NEAT have inputs directly connected
to outputs, with a specified and fixed number of inputs and outputs.
During the evolution, these networks are subjected to mutation
and crossover in their topology as well as in their parameters—i.e.,
NEAT can perturb the weight of a synapse, can add or remove
neurons, or even connections between neurons.

NEAT is a single-objective optimization method, thus the neu-
roevolution is driven by a single fitness index. By global neuroevo-
lution we indicate the scenario in which the fitness index quantifies
the aggregate behavior of all car controllers (i.e., networks evolved
by NEAT), while by selfish neuroevolution we indicate the scenario
in which the fitness index quantifies the behavior of a single car
controller independent of the behavior of the other controllers.

In detail, we define the fitness for the global neuroevolution as:

fcoll = 100E + 0.1S (3)

where 100 and 0.1 are two coefficient arbitrarily chosen based on
some preliminary experimentation and with the aim of providing
similar weighted values for the two indexes. We define the fitness
for the selfish neuroevolution as:

fself = 100Eself + 0.1Sself (4)

where:

Eself =
1
τ

(
t + 1 −

l f

l i

)
(5)

Sself = −
c

τ
(6)

Values for t , l i , l f , and c are obtained by observing the behavior of
a car moved by the controller to be evaluated when inserted in a
simulation with ncar − 1 other cars (possibly controlled by different
controllers, obtained from the individuals of the same population)
lasting τ simulated seconds. As for E and S , we compute Eself and
Sself by averaging the observations over nsim simulations.
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Figure 2: The road track used in the experimentation: the
intersections are represented in dark gray, the sections in
light gray, the roadside in black. The track bounding box
measures approximately 200m × 200m.

Table 1: Parameters of the traffic model.

Parameter Value

Mass of the car 1500 Kg
Size of the car 3.8m × 1.7m
Number of sensors per car 5
Range of the sensors 50m
Maximum speed of the car 42 m

s
Speed reduction of the collided car 90%
Maximum acceleration of the car 6 m

s2
Maximum steering angle per time step π

36
Time step of the simulation 0.05 s

4 EXPERIMENTAL EVALUATION
In order to perform the experimental analysis, we developed a
traffic simulator in Java which implements the traffic model pre-
sented in Section 3.1 and is internally based on the dyn4j Java two-
dimensional physics engine1. We performed all the experiments
using a road graph with 5 intersections enclosed in a bounding
box of approximately 200m × 200m (see Figure 2) and with the
parameters shown in Table 1.

We used the standard Java implementation of NEAT2 for per-
forming the neuroevolution with a population of 100 individuals.
For both the evolution driven by the global fitness fcoll and the
one driven by the selfish fitness fself, we gave NEAT a time budget
of 24 h (wall time) after which we stopped the evolution. We per-
formed the experiments on the CINECA HPC cluster Marconi-A1,
one node for each evolutionary run, the node having 2 Intel Xeon
E5-2694 v4 CPUs (2.3GHz) with 18 cores each and 128GB of RAM.
We recall that the computation of a single fitness value takes much
longer with fcoll than with fself: we observed that NEAT performed,

1http://www.dyn4j.org/
2https://github.com/encog/encog-java-core

in the given time budget, ≈ 80 generations with the former and
≈ 1800 generations with the latter. When computing the fitness,
we set nsim = 3, ncar = 20, τ = 30 s (simulated).

We performed 10 evolutionary runs for each of the two variants
(global and selfish). At the end of each of the 20 runs, we took the
best resulting controller (i.e., the one with the greatest fitness value)
and assessed it as follows. We performed 10 simulations with longer
simulation time than the evolution (τ = 60 s instead of τ = 30 s) on
the same track and with a number ncar of cars ranging from 5 to 50
(with steps of 5) and in two scenarios. In the homogeneous scenario,
all the ncar cars in the simulation were controlled by the same
ANN learned by NEAT, i.e., the controller being assessed. In the
heterogeneous scenario, half of the ncar cars in the road graph were
controlled by the controller being assessed while the remaining half
were controlled by car

2 n different controllers; we randomly selected
these not skilled controllers among the individuals from the early
generations of the runs performed. After each simulation of the
validation, we measured the efficiency and safety of the observed
traffic, as described by Equations 1 and 2, as well as the average
speed, measured as:

V =
1

ncar

ncar∑
j=1

lj

τ
(7)

where lj is the overall travelled distance by the j-th car.
The rationale for the validation is two-fold. On one hand, we

were interested in verifying to which degree the goal was achieved
of building a controller able to maximize the traffic efficiency and
safety. On the other hand, we wanted to investigate how robust
the generated controller was w.r.t. (a) different levels of injected
traffic (ranging from light with ncar = 5 to heavy with ncar = 50)
and (b) the presence in the road track of other cars controlled by
different, worse controllers.

4.1 Results and discussion
4.1.1 Evolution. Figure 3 summarizes how the neuroevolution

proceeded in the two cases, by showing the fitness value of the
best individual in the population vs. the elapsed time from the
beginning of the evolution (fitness values are averaged across the
10 evolutionary runs).

It can be seen that the actual values of the fitness are clearly
larger in the selfish variant. This result is consistent with the way
the fitness is computed: in the selfish variant, fself is based on the
efficiency and safety of a single car which, in fortunate conditions,
may score well. In contrast, in the global variant, fcoll takes into ac-
count the efficiency and safety of the whole traffic, hence averaging
fortunate and unfortunate conditions which occur for the different
cars. As a further evidence, it can be seen that the starting values in
the two cases are different, fself being ≈ 10fcoll. From another point
of view and beyond the actual values, this finding suggests that
the selfish variant might overestimate a controller driving ability
because of the fortunate conditions, making fself less capable of
driving the evolution.

Figure 3 also shows that the improvement of the fitness in the
global variant appears to proceed more slowly. Indeed, due to the
long selfish evaluation time with fcoll, less than one hundred gen-
erations are evolved, whereas several hundreds are evolved with
fself.

http://www.dyn4j.org/
https://github.com/encog/encog-java-core
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Figure 3: Best fitness (fcoll or fself) during the evolution. Val-
ues are averaged across the 10 runs.

4.1.2 Homogeneous validation. Figure 4 shows the three indexes
(efficiency E, safety S , and average speed V ) vs. the number ncar of
cars obtained in the homogeneous validation. It can be seen that
there are slight differences in the average index values between
the two variants. In particular, the selfish variant scores a greater
efficiency, whereas the global variants scores a greater safety.

As expected, the absolute values of E and S depend on the in-
jected traffic (ncar): the heavier the traffic, the lower both indexes.
Interestingly, however, the decrease of both efficiency and safety
looks more evident for controllers evolved with the selfish variant.
This finding suggests that those controllers are less robust to heavy
traffic or, from another point of view, more able to exploit the lack
of traffic for obtaining better efficiency and safety. The plot in Fig-
ure 4 concerning the average speed V appears to corroborate this
claim: selfish controllers are always faster (on average) than global
controllers, the difference being greater with light injected traffic.

Table 2 shows the medianQ2 and the standard deviation σ , com-
puted across the 100 (10 simulations for each of the 10 controllers
of the two variants) values obtained in the homogeneous validation,
for the three indexes and for two values of ncar corresponding to
light (15) and heavy (40) traffic. The table also shows the statistical
significance of the results: in particular, for each index and traffic
condition, Table 2 reports the p-value obtained with the Mann-
Whitney U-test with the null hypothesis that the samples have the
same median value. The figures in the table basically confirm what
already suggested by Figure 4: however, they also show that the
differences among the two methods are not statistically significant.
This suggests that, despite the fact that fself does not match to the
actual goal which is pursued, driving the evolution with that fitness
does not significantly hamper the possibility of achieving that goal.
The same data summarized by Table 2 is shown, in the form of
box-plots, in Figure 5.

4.1.3 Heterogeneous validation. In the heterogeneous valida-
tion, half of the cars were controlled by unskilled controllers, hence
providing a test-bed for the controllers being assessed for their
robustness w.r.t. the presence of others controllers. Figures 6 and 7

Table 2: Homogeneous validation efficiency E (×10−3), safety
S , and average speed V with ncar = 15 (light traffic, top) and
with ncar = 40 (heavy traffic, bottom).

ncar Index Collective Selfish

Q2 σ Q2 σ p-value

15
Efficiency E 3.82 2.73 5.80 3.37 0.256
Safety S −4.53 0.52 −4.51 0.50 0.705
Avg. speed V 6.04 1.38 6.62 0.81 0.130

40
Efficiency E 2.16 1.18 2.94 1.39 0.597
Safety S 6.57 1.23 7.22 7.06 0.256
Avg. speed V 4.90 8.83 4.96 0.70 0.650

Table 3:Heterogeneous validation efficiency E (×10−3), safety
S , and average speed V with ncar = 40 (heavy traffic).

ncar Index Global selfish

Q2 σ Q2 σ p-value

15
Efficiency E 1.86 0.85 2.62 1.82 0.450
Safety S −2.08 0.36 −2.08 0.23 0.940
Avg. speed V 2.81 0.57 2.94 0.33 0.151

40
Efficiency E 1.19 0.74 1.19 1.09 0.880
Safety S −3.23 0.49 −3.22 0.26 0.820
Avg. speed V 2.39 0.36 2.52 0.25 0.130

and Table 3 present the results of the heterogeneous validation as
the corresponding figures and table in Section 4.1.2.

In order to provide a more fine-grained view of the results, Fig-
ure 6 shows, for each index and each variants, three curves: onewith
the values computed considering all the cars (solid), one for only
the cars controlled by the best controller being assessed (dashed),
and one for the remaining cars (dotted).

Overall, it can be seen by looking at the absolute values that in
the heterogeneous validation the traffic is in general less efficient
and safer, with each car being, on average, slower. From another
point of view, the presence of unskilled drivers makes the traffic
less fluent.

As in the homogeneous validation, the differences between the
two variants are not statistically significant. However, two obser-
vations may be made. First, for all the levels of injected traffic, the
differences in safety appears negligible: we recall that in the ho-
mogeneous validation the global variant looked to result in safer
controllers than the selfish variant. Second, with medium traffic
the difference in efficiency is clearer in favor of the selfish variant.
Despite no sharp conclusions can be drawn, these findings seem
to suggest that the controllers evolved with the selfish variant are
more robust to the presence of unskilled drivers.

5 CONCLUDING REMARKS
We investigated the feasibility of driving the evolutionary search
toward optimizing global, system-wide properties, by promoting
selfish behavior, by optimization of local. We compared the two
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Figure 4: Homogeneous validation efficiency E, safety S , and average speed V , averaged across the 10 simulations, vs. the
number ncar of cars in the track.
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Figure 5: Box-plots of homogeneous validation efficiency E,
safety S , and average speedV withncar = 15 (light traffic, left)
and with ncar = 40 (heavy traffic, right).

approaches by simulation in the context of evolutionary synthesis
of a neural-network based car controller for a road traffic scenario.
Experimental results showed that the selfish approach is as valid as
the global one and suggest that the former may lead to more robust
agents than the latter.
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