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ABSTRACT
This work introduces a novel adaptation framework to energy-
e�ciently adapt small-sized circuits operating under scarce re-
sources in dynamic environments, as autonomous swarm of sensory
agents. This framework makes it possible to optimally con�gure the
circuit based on three key mechanisms: (a) an o�-line optimization
phase relying on R2 indicator based Evolutionary Multi-objective
Optimization Algorithm (EMOA), (b) an on-line phase based on
hardware instincts and (c) the possibility to include the environment
in the optimization loop. Speci�cally, the evolutionary algorithm
is able to simultaneously determine an optimal combination of
static settings and dynamic instinct for the hardware, considering
highly dynamic environments. The instinct is then run on-line with
minimal on-chip resources so that the circuit e�ciently react to
environmental changes. This framework is demonstrated on an
ultrasonic communication system between energy-scarce wireless
nodes. The proposed approach is environment-adaptive and en-
ables power savings up to 45% for the same performance on the
considered case studies.
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1 INTRODUCTION
Technology advancements allow for an always increased miniatur-
ization of electronics devices. The level of integration that these
systems can achieve is always pushed forward, which allows for
new application opportunities, from large consumer markets to
speci�c industrial needs. For instance, one can think about the
internet-of-things, with plenty of small devices, composed of sen-
sors, processing and/or communication capabilities, interconnected
to each other, that can now be used in various applications in our
everyday life. Furthermore, it opens a new path for other types of
applications, as the sensory exploration of hard-to-reach environ-
ments where only small-size nodes can enter. Those can be water
distribution systems [19], the human body [12], or also more gener-
ally unknown environments [2]. However, this level of integration
shifts the system constraints from pure performance to low power
consumption. From the hardware perspective, designers have to
make the best use of various trade-o�s to obtain a maximum perfor-
mance while dealing with extremely limited resources and power,
and pushing these trade-o�s is challenging.

Speci�cally, optimal circuit performances depend on a large
variety of parameters as system speci�cations, current operating
conditions, etc. System speci�cations may be de�ned by the appli-
cation o�-line, �xing general performance boundaries. In addition,
operating conditions are by nature changing on-line, and acting op-
timally requires the circuit to modify its settings directly in the �eld.
At design time, it usually results in worst-case design, suboptimal
in many cases on-line [3]. The circuit over-performs most of the
time, wasting power, pushing for the use of adaptation techniques.

But implementing energy-e�cient adaptation techniques re-
quires knowing the relationships between system speci�cations,
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performances, power consumption, and the associated circuit de-
sign variables (currents, voltages, etc.), which are usually very
complex. This can be done for instance by relying on machine-
learning based algorithms adapting directly the circuit regarding
its performances [4, 18] or driven by more high-level speci�cations
regarding the overall application, as in [17]. However, the current
state-of-the-art focuses on relatively large-scale systems, such as
transceiver blocks for Radio Frequency (RF) circuits [4, 5, 18], or
full processors [15].

The situation shifts when adaptation algorithms have to be ap-
plied to extremely resource-scarce small-sized systems, for which
saving power is very critical. For instance, one can consider a mesh
network of cm-size battery-powered wireless sensing nodes mov-
ing in a given environment. One the one hand, the optimal settings
of the circuit strongly depend on the environment to be explored
by the nodes. If the nodes are not con�gured properly, they might
not ful�ll their task correctly, by a lack of either performance or
available power. On the other hand, the adaptation mechanisms em-
bedded in the circuit need to consume the least amount of resources
and power to be e�ective. Thus, smart solutions are required to
develop resource-e�cient adaptation mechanisms, at circuit level
together with automatically con�guring the nodes depending on
the environment to be explored.

In this work, we therefore propose a new adaptation framework
targeting nodes operating in extremely resource-scarce conditions
using Evolutionary Algorithms (EAs) to evolve on-line hardware
adaptation mechanism, denoted as instincts. In biological systems,
an instinctive behavior is a behavior that is evolved on hereditary
bases rather than prior self-experience. Similarly, an instinct for
the circuit can be seen as an on-line reaction to changes in its
surrounding environment, learned o�-line, which does not require
intensive computational resources and power to be executed. In the
context of resource-scarce systems, this is an imperative constraint.
Thus, the proposed methodology, based on black-box optimization
and inspired from biological systems is composed of three key
features:

• O�-line optimization through EA: a black box opti-
mizer attempts to �nd the optimum solution through ma-
nipulating the solution’s genes via reproduction operators,
i.e. tuning the circuit without any access to the direct
relationships between parameters, performances, etc. to
be optimized. This optimizer learns both static hardware
parameters and the con�guration of the dynamic instinct.

• On-line hardware instinct: the o�-line learned hard-
ware instinct is implemented in hardware to adapt the
circuit using as less resources as possible.

• Optimization with environment in the loop: the EA
framework allows to evolve the circuit’s instincts directly
including the environment in the loop. This enables to
obtain always the best performance and power for the
circuit, depending on the current environment.

The rest of this paper is organized as follows: Section 2 will
give an overview of the related state-of-the-art. The proposed
methodology will be detailed in section 3 and its application to an
ultrasound communication circuit will be presented in section 4.
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Figure 1: (a) example of o�-line adaptation methodology (b)
example of on-line adaptation methodology (possibly com-
bined with o�-line)

Finally, section 5 will compare the bene�ts of this new adaptation
framework relative to convention methods.

2 CURRENT ADAPTATION PRINCIPLES
O�-line circuit adaptation: classical o�-line adaptation is illus-
trated in Fig. 1(a).

The key elements are: 1.) a measurement of the circuit’s perfor-
mances 2.) tuning knobs, used to tune circuit’s performances, and 3.)
an optimizer, which �nds the Pareto front of the trade-o� between
objectives, such as performance or power consumption. Perfor-
mance measurements can be performed by directly measuring the
circuit, or by using a representative model. These performances are
for instance the communication quality of the wireless nodes, or
the sensing accuracy of embedded sensors. Tuning knobs usually
consists of available variables in the circuit, as bias currents or
power supply voltages for instance. The optimizer explores the
tuning space and evaluates the objectives to converge to the best
trade-o�. Among this Pareto front, a point is chosen meeting the
current speci�cations. The corresponding tuning settings are ap-
plied once to the circuit and remain �xed at run-time. Several types
of optimizers and algorithms can be used, such as gradient-decent
search, or genetic algorithms [11, 13]. As it is performed o�-line,
this adaptation can be run with a massive amount of computing
power. However, optimal tuning settings are chosen only static and
set once o�-line.

On-line circuit adaptation: adaptation can also be performed
directly on-line, as seen in Fig. 1(b). This happens without external
control, and it is hence the circuit itself which self-adapts according
to the operating conditions Cop , which also have to be measured on-
line by the circuit itself. The circuit can for instance measure signal
statistics, as signal-to-noise ratios (SNR) or sensed signal streams,
which gives an estimate of the current operating conditions. On-
line, the circuit can then run on di�erent modes (e.g. n modes), by
dividing the set of operating conditions in clusters and �nd optimal
tuning settingsTKx , where x = 1, ...n for each cluster of conditions
Copx , where x = 1, ...n [4, 18]. As an example, the circuit could
assign several supply voltages and bias currents depending on the
measured SNR, or digitize sensory data using more or less accuracy
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Figure 2: Principle of the proposed hardware adaptation

regarding measured signal statistics. A Look-up table (LUT ) can
be used to store the list of TK and Cop . On-line adaptation o�ers
more e�ectiveness, but the algorithm needs to be embedded on-chip
which requires many resources available.

Combining o�-line and on-line adaptation: �nding the op-
timal tuning strategy requires to a priori establish the relationships
between performances, on-chip measurements and tuning settings.
Those are usually complex, thus it has been proposed to rely on
pre-trained machine-learning algorithms, which have been success-
fully applied to adapt circuits for di�erent environmental circum-
stances, workloads, process variations, or a combination of them
[1, 4, 14, 18]. In this case, the machine-learning algorithm learns
a control law o�-line, to map the optimal tuning knob settings to
on-chip measurements. This law is then used in the o�-line opti-
mizer, or stored in an on-chip LUT and used at run time in a loop,
as seen in Fig. 1(b). In essence, the clusters de�nes previously can
be learned automatically, by building a law between SNR and TK,
or between sensor statistics and TK.

Limitations of the previous work: implementing on-chip
adaptation algorithms comes with overhead and power costs, that
are not crucial for large-scale systems. For instance, a LUT can
use megabytes of memory, and the adaptation algorithm may run
on a baseband processor. If those resources are already available
on-chip, the adaptation cost is minimized. However, for resource
constrained systems, they need to be added, thus smart solutions
with less than kilobytes of memory and µW level of power are
required. This limits for instance the use of the LUT to only a
few values and require the algorithm to run on a very low-power
system, limiting the e�ectiveness of the adaptation as well. It
is then crucial to make the best use of the few resources available
on-chip, by for instance optimizing each cluster of a small on-chip
LUT. In that way, the adaptation e�ectiveness is enhanced, without
consuming more resources. This is the focus of this work.

3 PROPOSED METHODOLOGY
3.1 Instinct-based adaptation framework
The proposed instinct-based adaptation framework, which is based
on the work of [10], combines o�-line and on-line adaptation mech-
anisms in a novel way, as illustrated in Fig. 2. Speci�cally, it fa-
cilitates the ability of the optimizer, realized with an Evolutionary

Algorithm (EA), to o�-line learn optimal yet e�cient on-line tun-
ing rules, to achieve an optimal adaptation e�ciency mimicking
biological instincts.

Learning optimal tuning rules: in biology, the learning process of
an instinct is done on the genetic level. This is usually manifested
in the form of a primitive fast reactions to a condition experienced
in the �eld, i.e. an biological element reacting without wasting
valuable time or energy. Using this analogy, learning the instinct
of a circuit refers to a strategy to optimally detect on-line circuit
modes with the lowest amount of resources and power available.
A mode targets to group possible operating conditions in which
the circuit will operate in clusters. This approach is analogous to
LUT techniques described in section 2 but each cluster will be pre-
optimized o�-line before being used in the �eld. This technique will
be referred as Mode Detection MD. For each mode, a value for a
dynamic tuning knob settingdTK will be assigned. To add �exibility
and optimize the adaptation, the number, the characteristics of
each mode, and the corresponding optimal dTK values are also
part of the adaptation process o�-line, as depicted in Fig. 2(c). In
addition, the circuit can be be equipped with static tuning knob
settings sTK that are the same for each cluster, also learned during
the adaptation process. The combination of static tuning knobs
and dynamic instinct increases the solution space and enable the
optimizer to �nd di�erent trade-o�s for the adaptation. For example
as depicted in Fig. 2(b), the power consumption can be reduced for
the same performance speci�cation.

Overall framework: The general framework is illustrated in Fig. 3.
It is composed of two main phases: an o�-line adaptation loop and
an on-line validation in the real environment. First, the circuit is
optimized o�-line, regarding the procedure described in section 3.2.
This optimization is performed using a simulation environment in
the loop, representing the real environment to be explored. In this
way the methodology can �nd settings that �t best for the particular
environment to be explored, achieving extra power savings. Once
the adaptation objectives are reached, the agents explore the real
environment in an on-line validation phase, using the instincts
learned in the o�-line phase to adapt themselves. If needed, the
overall adaptation can be re�ned by launching another o�-line
phase and start the overall procedure.

3.2 O�-line optimization based on EA
General methodology: During the o�-line phase, the optimization

is conducted via a EA-based optimizer, mimicking the biological
instinct scheme. This process is known as black box optimization,
since it only has access to the performance of the proposed solution
relative to the population, which then decides if that solution shall
survive to share its genes or not. As a prerequisite for the optimiza-
tion, a �tness function, which serves as a basis for the EA, needs to
be formulated. One can consider two objectives to be optimized:
1.) maximizing a given circuit performance Fperf(Cop ), given by
system speci�cations, and subjected to the operating conditions
(Cop ) while concurrently 2.) minimizing the circuit’s power con-
sumption PDC (TK), which is function of the circuit tuning knobs
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TK = {sTK ,dTK ,MD}. The optimization problem can be formu-
lated as:

max
TK

Fperf(Cop ) and (1a)

min
TK

PDC (TK) (1b)

s. t. TKi,min ≤ TKi ≤ TKi,max ∀i = 1, . . . ,TK (1c)

As given by equations 1a and 1b, performance Fper f (Cop ) is func-
tion of Cop and controlled by TK , and function PDC is directly
determined by TK . The EA will learn the optimal values of TK
regarding the objectives, considering all possible operating condi-
tions Cop . However, unlike traditional techniques, in instincts the
modes of operations and the dynamic parameters are also part of
the optimization process.

Integration of on-line parameters: the EA must completely opti-
mize the instincts by con�guring sTK , dTK and MD, as explained
in section 3.1. Optimizing the instincts means (a) de�ning how to
switch between di�erent modes, by de�ning optimal thresholds in
the operating conditions Cop and (b) de�ning an optimal dTK for
each of these modes. Equations 1a and 1b become:

max
sTK,dTK,MD

Fperf(Cop ) and (2a)

min
sTK,dTK,MD

PDC (sTK ,dTK ,MD) (2b)

Using these new parameters o�ers more tuning possibilities to
the EA. This enables to shift optimization constraints from an on-
line resource constrained environment, to an o�-line phase where
computing power is easily available.

3.3 Hardware requirements & implementation
As computational power is shifted in the o�-line phase, running
the instinct on-line will consist on implementing relatively simple
hardware circuits. Those circuits are able to detect the change
of modes (e.g. thresholds in measurement values) and assign the
appropriate tuning setting corresponding to the current mode, as
depicted in Fig. 1(b). As these modes are pre-optimized o�-line, the
adaptation e�ectiveness is optimized considering on-chip resources.
However, this integration is submitted to additional constraints.
In order to extract Cop directly on-line, the circuit will rely on an
on-chip measurement M that can be selected to re�ect accurately
Cop . This selection can be made driven by design constraints, or
analogously to alternate test procedures, that correlates circuit

(a) Environment 1 (b) Environment 2

Figure 4: (a) (b) The two 20m× 10m environments used in the
case-study

performances to low-cost measurements [1, 3, 21]. In addition, it
has to be ensured that the use ofM to obtain Cop in the optimization
procedure still enables the EA to �nd the optimal tuning knob
settings o�-line. This can for instance be achieved by obtaining a
complete independence between M and dTK [1].

3.4 Evolutionary multi-objective algorithms
Evolutionary multi-objective algorithms (EMOAs) are a family
within the EA family of algorithms that attempt to do black-box
optimization in multi-objective problems. This is more challenging
than the single objective case, as the quality of a single solution
relative to a population of solutions can be determined in a more
straightforward manner relative to the multi-objective case. In the
later case, a lot of factors such as non-dominance and diversity
must be quantitatively considered. In our framework, the proposed
EMOA belongs to the indicator based class of EMOA. The reason
behind this choice is the fact that the number of tunned parameters
are relatively large (ten parameters), given that each evaluation
is computationally expensive, in addition, it is planned to expand
the number of objectives to include even more than the introduced
two, thus other EMOA classes, such as non-dominated sorting (e.g
NSAG-2[8]), is not a good �t. Within the indicator based EMOA
class, R2 indicator is picked [6] as it is less computationally demand-
ing, relative to hyper-volume (HV) indicator based algorithms [22]
for example. This is critical as each CFD simulation is computa-
tionally costly and we can not a�ord highly demanding indicator
calculations.

4 CASE STUDY AND SCENARIO
This case study uses very small wireless nodes able to communi-
cate distance ranging packets among each other to explore two
�uid based environments, for instance in the context of unknown
environment exploration [2]. These nodes communicate through
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ultrasound (US), which is their major source of power consumption,
limiting their exploration lifetime. Finding optimal tuning settings
is not straightforward, as they depend on the environment, node’s
relative distances, conditions, etc.

Ultrasound communication model: a behavioral model of
the communication has been implemented, as seen in Fig. 5(a), with
a communication scheme analogous to On-O� Keying (OOK). The
transmitter consists of a digital sequence generator, which converts
the bit stream into a series of pulses, followed by a driver (DRV) that
excites the US transducer, modeled with an electrical equivalent
model [16]. The channel model considers a �uid medium, where
noise and attenuation are function of the attenuation coe�cient
and spreading losses [20]. The receiver consists of a Low-Noise
Ampli�er (LNA), a Variable Gain Ampli�er (VGA), a demodulator
composed of a envelop detector (ED), a low pass �lter (LPF), and
an Analog-to digital converter (ADC). Channel model has been
validated by performing path loss measurements with existing US
transducers. The transceiver is equipped with two tuning knobs: 1.)
the supply voltageVDRV , that trades o� the node’s power consump-
tion versus the transmit power, and 2.) the bias current ILNA, that
trades o� power consumption versus receiver noise. The commu-
nication follows the protocol described in [9], based on broadcast
and answers, as seen in Fig. 5(b). A node broadcasts a message and
gathers all answers from its neighboring nodes. This information
is subsequently used to calculate their respective distances through
time-of-�ight. This process repeats with other broadcasts until the
time-of-�ights of whole node swarm are computed. It is assumed
that all nodes perform omni-directional communication and all
receivers are constantly active. The transmitter consumes power
only when transmitting.

Environments: two environments will be explored, as depicted
in Fig. 4. The �rst one consists of a tunnel, with a decreasing
diameter. The second one is composed of several sections and
bends of di�erent diameters. Each environment is simulated using
a Computational Fluid Dynamics (CFD) simulator based on Lattice-
Boltzmann algorithm, with nodes traveling inside.

O�-line optimization set up: The simulation scenario is illus-
trated in Fig. 7. A group of 20 nodes is chosen and their relative
distances numbis computed for N di�erent frames spanning the
environment. This enables the optimization to be run on a rep-
resentative inter-node distance vector. The EA algorithm then
concurrently optimizes the static settings and the dynamic instinct.
Referring also to Fig. 2 the EA objectives are 1). To maximize the
system performance Per f , calculated as the minimal SNR over all

Table 1: R2-indicator EMOA Settings

Environment Population Number of Evaluations

Environment 1 20 100
Environment 2 30 100

communications between the set of nodes, and 2). To minimize
the power consumption PDC , averaged per node. The following
results will be presented regarding a communication speci�cation
of SNR ≥ 21dB. This speci�cations enable to keep the bit-error
rate of the communication below 10−3 which is su�cient in this
case [9].

List of tunable parameters: following the example depicted in
Fig. 5(b), tuning settings will be separated for broadcast and answer.
The broadcast must reach nodes in a prede�ned radius Dmax . The
tuning parameters are set to VDRV = VDRV ,B and ILNA = ILNA,B ,
B referring to Broadcast. These parameters are static, as the broad-
cast node will not have additional run-time information of the other
nodes locations before the ranging action. When the node receives
a message, it changes its settings to VDRV ,A and ILNA,A, A refer-
ring to Answering. Yet, opportunities exist for on-line adaptation.
As the node received a packet from the broadcast, it has information
on the signal strength to answer with lower power. VDRV ,A will
then be a dynamic tuning knob. It is also assumed that receiver
settings are the same for each node, i.e. ILNA,A is static.

Instinct implementation and tuning: referring to section
3, Mode Detection MD will be performed by measuring the re-
ceived SNR, denoted SNRr ec . MD consequently consists of a set
of SNRr ec threshold values. The choice of SNRr ec is motivated
by the constraints listed in section 3.2: 1.) SNRr ec directly re�ects
the communication quality, and can be measured at low-cost on-
chip (for example using a power detector). 2.) the answer to the
broadcast VDRV ,A is independent SNRr ec received by the node. In
our implementation of the R2-indicator EMOA, simulated binary
crossover (SBX)[7] was adopted and its rate was set as 0.85. On the
other hand, polynomial based mutation was used with a mutation
rate of 1/n, where n is the population number. Furthermore, The
population size and the maximum number of evaluations adopted
in our experiments are shown in Table 1.
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5 RESULTS
5.1 Baselines for comparison
Design without adaptation: as a baseline, a design approach is
�rst considered, without adaptation (selected knobs are: VDRV ,A
,VDRV ,B ,ILNA,A,ILNA,B ). The transmitter and receiver settings
will be identical, i.e. VDRV ,A = VDRV ,B and ILNA,A = ILNA,B . By
performing a link budget analysis considering a water medium, the
path loss at Dmax=3.5m is estimated to be 90dB. The transmitter
voltage is �xed to VDRV ,A = VDRV ,B = 5V to reach nodes at
this distance. The received power at the receiver is then equal
to -95dBm and the noise power must be lower than -106dBm to
achieve the required SNR. This is equivalent to a noise voltage
VRMS,in = 5µV introduced by the LNA. By considering a Noise
E�ciency Factor (NEF) of 1.5 for the LNA, we can estimate a bias
current of around ILNA = 45µA, taking a small design margin.
The chosen tuning knobs are then VDRV ,A = VDRV ,B = 5V and
ILNA,A = ILNA,B = 45µA. The nodes are con�gured with those
tuning settings and send out in each environment. Chosen settings,
performances and power consumption for the considered group of
nodes can be observed in Table 3.

On-line adaptation with manual LUT: with a small amount
of on-chip resources, a standard practice would be to manually �nd
the LUT settings. For instance, the designer may choose to reduce
VDRV ,A in favorable conditions, relying on SNR measurements. A
possible approach consists in spanning the communication distance
to extract the range of received SNR for worst conditions, and divide
this range in clusters. In this case, the range is 21dB < SNRREC <
49dB. Dividing this space in equal clusters, and assigning a cluster
to each mode leads to: 21dB < mode1 < 28dB, 28dB < mode2 <
35dB, 35dB < mode3 < 42dB and 42dB < mode4 < 49dB. Then,
simulations can be carried out to �nd the corresponding voltage for
each mode. In this case, voltages found for modes 1 to 4 to ensure
SNRREC ≥ 21dB are respectively V 1 = 5V ,V 2 = 3.6V ,V 3 = 2.3V
and V 1 = 1.2V as seen in Fig. 6. This approach is used to compare
our proposed methodology to an on-line adaptation with the same
amount of hardware resources.

5.2 Instinct-based adaptation
In the instinct-based adaptation, the EA will simultaneously tune:
1.) static tuning knobs VDRV ,B , ILNA,B and ILNA,A and 2.) the
on-line instinct, that consists in choosing the best mode detection,

Table 2: Hypervolume indicator (HV)mean and variance for
30 runs

Environment HV mean [%] HV variance [%]

Environment 1 83.97 1.79
Environment 2 78.47 2.44

by setting SNRr ec thresholds (i.e. T12, T23 and T34), and the dy-
namic tuning knob value VDRV ,A assigned per mode, (i.e. V1 to V4)
considering 4 modes. It represents 10 di�erent parameters.

Analysis of the EA performance: EMOA has a stochastic na-
ture, thus it requires statistical analysis over n-trials to test its pro-
duced Pareto-front quality for both consistency of the convergence
and diversity. One widely used performance metric is hyper-volume
(HV) indicator [22]. In this indicator, the HV of the solutions of
the Pareto front proposed by the EMOA is calculated relative to a
proposed reference point. In this work, 30 simulations have been
conducted, each with di�erent random seeds. Table 2 summarizes
the hyper-volume’s mean and variance relative to point (5×10−4,15).
The table shows that the variance is relatively small (1.79% and
2.44%), this highlights the consistency of the algorithm performance.
In addition, environment 2 has less HV % than environment 1, due
to its dynamic nature and complexity.

General performance of instinct-based adaptation: after
training, a list of optimal settings can be obtained and compared
to the non-adaptive design and the manual LUT approaches, as
seen in Table 3. A comparative of the chosen splits between modes
is also depicted in Fig. 6. Several observations can be made: The
proposed methodology is adaptive to the current environment: as it
can be seen, the split between modes depends on the environment.
For instance, in environment 1, the group nodes stays relatively
close to each other. Since the probability of nodes to be very far
from each other is low, a �ner zone split is chosen by the EA for
lower distance, where the amount of nodes is maximal.

The o�-line con�guration of the dynamic instinct enables to �nd
better trade-o�s: this is illustrated by the balance between trans-
mitter and receiver settings in answering mode (the current in the
receiver is increased compared to other approaches). Indeed, the
overall power consumption is dominated by the amount of answers
transmitted (several nodes answer to one broadcast), and reducing
the maximum voltage is then more power e�cient than increasing
the receiver currents. This is possible since the EA explores the
whole tuning space and �nds the right balance between static and
dynamic settings regarding the operating environment.

The use of resources is maximized: comparing to the manual LUT
approach, that uses the same amount of resources, power consump-
tion is reduced ensuring just the required SNR performance. In
environment 1, other approaches over perform in terms of SNR, be-
cause the e�ective maximum distance between nodes is reduced in
the environment. The EA capture this and adapt the tuning settings
accordingly to bring the SNR at the required level and consume
less.

Comparison of power consumption for di�erent nodes: 3
nodes were randomly selected to assess the impact of the adaptation
strategy. Results are seen in Fig. 8, where it can be observed that for
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Figure 7: Illustration of the adaptation procedure for the proposed case study

Table 3: Example of obtained tuning knob settings for the two case studies

Tuning Knob VDRV,B ILNA,B ILNA,A V1 T12 V2 T23 V3 T34 V4 PDC SNRmin

settings [V] [µA] [µA] [V] [dB] [V] [dB] [V] [dB] [V] [µW ] [dB]

Non-adaptive ENV1 5 45 45 5 - 5 - 5 - 5 393 22.5
Manual LUT ENV1 5 45 45 5 23.7 3.6 30.7 2.3 37.7 1.2 246 22.5
Instinct-based ENV1 4.7 40.3 69.4 3.8 24.6 2.7 31.2 1.1 41.2 0.7 141 21
Non-adaptive ENV2 5 45 45 5 - 5 - 5 - 5 420 21
Manual LUT ENV2 5 45 45 5 28 3.6 35 2.3 42 1.2 282 21
Instinct-based ENV2 5 44.9 85.3 3.9 29.9 2.6 33.8 2 41.4 1.5 234 21

every node the instinct-based adaptation saves signi�cant power.
For environment 1, the non-adaptive and manual LUT approaches
over perform, i.e. SNR is above 21dB and the circuit consumes more
power. Applying the instinct-based methodology enable to �nd the
required performance level and reduce the power consumption up
to 70% compared to the non-adaptive design approach, and 40%
regarding manual LUT. For environment 2, all methodologies lead
to the same SNR performance, which enable direct power saving
comparison. As it can be seen, power is reduced by 45% compared
to non-adaptive design and by 20% compared to the manual LUT.

6 CONCLUSION
This work introduces the instinct-based adaptation framework
based on an evolutionary algorithm, with instincts being adap-
tive mechanisms e�ciently executed on-chip. On-line instincts are
integrated in the o�-line optimizer which enables to �nd di�erent
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Figure 8: Power consumption comparisons for the 2 envi-
ronments

trade-o�s between performances and achieve signi�cant power
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savings. Results show an improvement up to 45% compared to con-
ventional techniques used to achieve on-line adaptive behavior.
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